The chain rule for V u-decompositions of nonsmooth functions



Publication Details

Hare, W., Planiden, C. & Sagastizabal, C. (2020). The chain rule for V u-decompositions of nonsmooth functions. Journal of Convex Analysis, 27 (1),


Heldermann Verlag In Variational Analysis, VU-theory provides a set of tools that is helpful for understanding and exploiting the structure of nonsmooth functions. The theory takes advantage of the fact that at any point, the space can be separated into two orthogonal subspaces: one that describes the direction of nonsmoothness of the function, and the other on which the function behaves smoothly and has a gradient. For a composite function, this work establishes a chain rule that facilitates the computation of such gradients and characterizes the smooth subspace under reasonable conditions. From the chain rule presented, formulæ for the separation, smooth perturbation and sum of functions are provided. Several nonsmooth examples are explored, including norm functions, max-of-quadratic functions and LASSO-type regularizations.

Please refer to publisher version or contact your library.