Authors

Andrew Chacon, University of Wollongong, Australian Nuclear Science and Technology OrganisationFollow
Susanna Guatelli, University of WollongongFollow
Harley Rutherford, University of Wollongong, Australian Nuclear Science and Technology OrganisationFollow
David Bolst, University of WollongongFollow
Akram Mohammadi, National Institutes for Quantum and Radiological Science and Technology
Abdella Ahmed, University of Wollongong, Australian Nuclear Science and Technology Organisation
Munetaka Nitta, National Institutes for Quantum and Radiological Science and Technology
Fumihiko Nishikido, National Institutes for Quantum and Radiological Science and Technology
Yuma Iwao, National Institutes for Quantum and Radiological Science and Technology
Hideaki Tashima, National Institutes for Quantum and Radiological Science and Technology
Eiji Yoshida, National Institutes for Quantum and Radiological Science and Technology
Go Akamatsu, National Institutes for Quantum and Radiological Science and Technology
Sodai Takyu, National Institutes for Quantum and Radiological Science and Technology
Atsushi Kitagawa, National Institutes for Quantum and Radiological Science and Technology
Theresa Hofmann, Ludwig-Maximilians-University Munich
Marco Pinto, Ludwig-Maximilians-University Munich
Daniel R. Franklin, University of Technology SydneyFollow
Katia Parodi, Ludwig-Maximilians-University MunichFollow
Taiga Yamaya, National Institutes for Quantum and Radiological Science and Technology
Anatoly B. Rosenfeld, University of WollongongFollow
Mitra Safavi-Naeini, University of Wollongong, Australian Nuclear Science and Technology Organisation, University of SydneyFollow

RIS ID

138464

Publication Details

Chacon, A., Guatelli, S., Rutherford, H., Bolst, D., Mohammadi, A., Ahmed, A., Nitta, M., Nishikido, F., Iwao, Y., Tashima, H., Yoshida, E., Akamatsu, G., Takyu, S., Kitagawa, A., Hofmann, T., Pinto, M., Franklin, D. R., Parodi, K., Yamaya, T., Rosenfeld, A. & Safavi-Naeini, M. (2019). Comparative study of alternative Geant4 hadronic ion inelastic physics models for prediction of positron-emitting radionuclide production in carbon and oxygen ion therapy. Physics in Medicine and Biology, 64 (15), 155014-1-155014-16.

Abstract

The distribution of fragmentation products predicted by Monte Carlo simulations of heavy ion therapy depend on the hadronic physics model chosen in the simulation. This work aims to evaluate three alternative hadronic inelastic fragmentation physics options available in the Geant4 Monte Carlo radiation physics simulation framework to determine which model most accurately predicts the production of positron-emitting fragmentation products observable using in-beam PET imaging. Fragment distributions obtained with the BIC, QMD, and INCL + + physics models in Geant4 version 10.2.p03 are compared to experimental data obtained at the HIMAC heavy-ion treatment facility at NIRS in Chiba, Japan. For both simulations and experiments, monoenergetic beams are applied to three different block phantoms composed of gelatin, poly(methyl methacrylate) and polyethylene. The yields of the positron-emitting nuclei 11C, 10C and 15O obtained from simulations conducted with each model are compared to the experimental yields estimated by fitting a multi-exponential radioactive decay model to dynamic PET images using the normalised mean square error metric in the entrance, build up/Bragg peak and tail regions. Significant differences in positron-emitting fragment yield are observed among the three physics models with the best overall fit to experimental 12C and 16O beam measurements obtained with the BIC physics model.

Available for download on Thursday, August 06, 2020

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1088/1361-6560/ab2752