Publication Details

Byrne, M., Archibald-Heeren, B., Hu, Y., Fong, A., Chong, L. & Teh, A. (2018). Comparison of semiautomated tangential VMAT with 3DCRT for breast or chest wall and regional nodes. Journal of Applied Clinical Medical Physics, 19 (5), 684-693.


Radiotherapy to the breast after surgery sometimes requires adjoining nodes to be included in the treatment volume. In these cases, the traditional approach has been a complex 3-Dimensional Conformal Radiotherapy (3DCRT) beam arrangement which can result in significant dose heterogeneity at the beam junctions. A Volumetric Modulated Arc Therapy (VMAT) beam arrangement has previously been proposed for breast cases, where the chest wall/breast is treated with a limited angle (partial arc) tangential VMAT technique (Viren et al. [2015] Radiat Oncol. 10:79). In our study, this approach is extended to breast and chest wall cases with adjoining nodes by adding a separate conventional VMAT arc field specifically limited to the superior nodes. This VMAT method was implemented using a semiautomated approach on 27 patients, and the resultant plan compared to a monoisocentric 3DCRT plan. Plan statistics, Dose-Volume Histogram (DVH) analysis and Radiation Oncologist (RO) preference were assessed. When compared to the 3DCRT technique, the VMAT planning method was found to result in better target volume coverage, high doses to organs at risk (OAR) were reduced but greater OAR volumes received low doses. Having said that, the volume receiving low doses with this tangential VMAT technique was less than that of other VMAT planning methods described in the literature, and the integral dose was less than the 3DCRT method. The VMAT technique also resulted in more robust junction doses that the 3DCRT method. RO review found that the VMAT technique was preferred in 81% of cases. Specifically, the VMAT plans were preferred in all categories of patients except left chest wall cases where the intermammary nodes were also treated. The VMAT technique described here is a useful addition to the treatment options available for breast/chest wall and nodal patients.



Link to publisher version (DOI)