RIS ID

131751

Publication Details

F. Tubbal, R. Raad, K. Chin, L. Matekovits, B. Butters & G. Dassano, "A high gain S-band slot antenna with MSS for CubeSat," Annals of Telecommunications, vol. Online First, pp. 1-15, 2018.

Abstract

Cube satellites, aka CubeSats, are a class of tiny satellites that have become popular for space programs. This is because they can be built relatively cheaply using commercial off-the-shelf components. Moreover, CubeSats can communicate with each other, and assemble into swarms to carry out different functions: e.g., wide area measurements and sensing. Swarms of CubeSats also have the effect of increasing the contact period with ground stations allowing for a longer communications window. These capabilities require CubeSats to be equipped with an efficient, high gain, small antenna to facilitate cross-link or inter-satellite communications. Henceforth, this paper presents a high gain coplanar waveguide (CPW)-fed slot antenna for CubeSats. A key feature is the use of a metasurface superstrate structure (MSS) to significantly improve gain and reduce back-lobe emissions. This also has the advantage of minimizing interference to components inside a CubeSat. We have comprehensively evaluated the antenna using the high-frequency simulator structure (HFSS) as well as a carrying out testing on a 3 U (10 x 10 x 30 cm3) CubeSat platform. We have studied the effect of MSS element sets and their position and the effect of a 3-U CubeSat body on the performance of the proposed antenna. The experimental results confirm that our antenna achieves a return loss of 21.5 dB and a fractional impedance bandwidth (BW) of 55.91% with S11 ≤ 10 dB and has a simulated and measured gains of 9.71 and 8.8 dBi respectively at the desired frequency of 2.45 GHz. In contrast, amongst all previous S-band planar antennas that are suitable for CubeSats, the best gain is only 5.96 dB at 2.45 GHz.

Available for download on Saturday, November 09, 2019

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1007/s12243-018-0674-z