Skeleton Optical Spectra-Based Action Recognition Using Convolutional Neural Networks



Publication Details

Hou, Y., Li, Z., Wang, P. & Li, W. (2018). Skeleton Optical Spectra-Based Action Recognition Using Convolutional Neural Networks. IEEE Transactions on Circuits and Systems for Video Technology, 28 (3), 807-811.


2016 IEEE. This letter presents an effective method to encode the spatiotemporal information of a skeleton sequence into color texture images, referred to as skeleton optical spectra, and employs convolutional neural networks (ConvNets) to learn the discriminative features for action recognition. Such spectrum representation makes it possible to use a standard ConvNet architecture to learn suitable 'dynamic' features from skeleton sequences without training millions of parameters afresh and it is especially valuable when there is insufficient annotated training video data. Specifically, the encoding consists of four steps: mapping of joint distribution, spectrum coding of joint trajectories, spectrum coding of body parts, and joint velocity weighted saturation and brightness. Experimental results on three widely used datasets have demonstrated the efficacy of the proposed method.

Please refer to publisher version or contact your library.



Link to publisher version (DOI)