Publication Details

Pierce, C., Flentje, P., Dunstan, A., Monk, A., Sladakovic, M. & Silva, D. (2017). Monitoring and management of a landslide on the main motorway between Sydney and Wollongong, NSW Australia. In J. V. De Graff & A. Shakoor (Eds.), Landslides: Putting Experience, Knowledge and Emerging Technologies into Practice: Proceedings of the 3rd North American Symposium on Landslides (pp. 233-246). Lexington, United States: Association of Environmental and Engineering Geologists.


The Mount Ousley Road section of the M1 Princes Motorway is one of the main transportation links between the cities of Sydney and Wollongong, New South Wales (NSW), on the east coast of Australia. The road was originally constructed during World War II as an alternative defense route and now supports approximately 50,000 vehicle movements per day. The road negotiates 4.4km of the Illawarra escarpment at grades up to 1:8. A section of the road traverses the largest landslide in the Wollongong Landslide Inventory, Site 141. The surface area of the landslide is 67,000m2, which includes a 350m section of Mount Ousley Road affecting all six lanes. The landslide is a deep seated, episodically active translational debris slide with a maximum depth of sliding of 20.5m. The landslide is managed by a continuous real-time monitoring system and is dewatered by nine 30m deep pumping wells to maintain lower ground water levels. The dewatering system was installed in 1988, but has been upgraded three times to enhance serviceability and most recently to provide a further 10 years of landslide management. This paper presents some analysis of data collected from the continuous real-time monitoring system established by the University of Wollongong Landslide Research Team, in partnership with NSW Government organizations including Roads and Maritime Services (RMS) and NSW Public Works and highlights the troubleshooting work associated. Periodic and continuous monitoring has been successful in identifying needs for the dewatering system upgrades, assessing thresholds for slope movement and evaluating the overall effectiveness of the remedial measures installed.