Facile synthesis of LiMn2O4 octahedral nanoparticles as cathode materials for high capacity lithium ion batteries with long cycle life

RIS ID

97781

Publication Details

Cai, Y., Huang, Y., Wang, X., Jia, D., Pang, W. Kong., Guo, Z., Du, Y. & Tang, X. (2015). Facile synthesis of LiMn2O4 octahedral nanoparticles as cathode materials for high capacity lithium ion batteries with long cycle life. Journal of Power Sources, 278 574-581. Journal of Power Sources

Abstract

Spinel lithium manganate octahedral nanoparticles have been prepared by high temperature solid-state combustion reaction using cellulose as fuel. The crystal structure, morphology, and electrochemical performance of the as-prepared materials are analyzed by X-ray diffraction (XRD), electron microscopy, and electrochemical testing. The XRD results show that the materials are single-phase and perfectly crystalline with a spinel structure. Microscopic observations reveal that the nanoparticles possess octahedral morphology, with an average particle size of about 165.4 nm and a uniform particle size distribution. The lithium manganate octahedral nanoparticles exhibit excellent initial discharge capacity of 118.5 and 78.3 mAh g-1, and about 72.49% and 94.6% of its initial discharge capacity can be retained even after 1600 cycles at 10 C and 3000 cycles at 20 C, respectively. The excellent electrochemical performance of the lithium manganate can be mainly attributed to the strong MnO6 framework mitigates the occurrence of Mn dissolution, maintains structural stability, and allows higher Li+ diffusion during electrochemical cycling. Furthermore, the nano-sized octahedral structure not only facilitates fast ion diffusion, but also mitigates the manganese dissolution due to the exposed (111) crystal planes, where the solid electrolyte interphase (SEI) forms.

Please refer to publisher version or contact your library.

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1016/j.jpowsour.2014.12.082