Denoising and R-peak detection of electrocardiogram signal based on EMD and improved approximate envelope
RIS ID
89209
Abstract
The electrocardiogram (ECG) signal is prone to various high and low frequency noises, including baseline wandering and power-line interference, which become the source of errors in QRS and in other extracted features. This paper presents a new ECG signal-processing approach based on empirical mode decomposition (EMD) and an improved approximate envelope method. To reduce the number of the initial intrinsic mode functions (IMFs), a Butterworth lowpass filter is used to eliminate high frequency noises before the EMD. To correct baseline wandering and to eliminate low frequency noises, the two last-order IMFs are abandoned. An improved approximate envelope is proposed and applied after the Hilbert transform to enhance the energy of QRS complexes and to suppress unwanted P/T waves and noises. Then, an algorithm based on the slope threshold is used for R-peak detection. The proposed denoising and R-peak detection algorithm are validated using the MIT-BIH Arrhythmia Database. The simulation results show that the proposed method can effectively eliminate the Gaussian noise, baseline wander, and power-line interference added to the ECG signal. The method can also function reliably even under poor signal quality and with long P and T peaks. The QRS detector has an average sensitivity of Se=99.94 % and a positive predictivity of +P=99.87 % over the first lead of the MIT-BIH Arrhythmia Database.
Publication Details
Li, H., Wang, X., Chen, L. & Li, E. (2014). Denoising and R-peak detection of electrocardiogram signal based on EMD and improved approximate envelope. Circuits, Systems, and Signal Processing, 33 (4), 1261-1276.