RIS ID

93925

Publication Details

Gao, X., Jiang, Z., Wei, D., Jiao, S., Chen, D., Xu, J., Zhang, X. & Gong, D. (2014). Effects of temperature and strain rate on microstructure and mechanical properties of high chromium cast iron/low carbon steel bimetal prepared by hot diffusion-compression bonding. Materials and Design, 63 650-657.

Abstract

The objective of this study is to develop a hot diffusion-compression bonding process for cladding low carbon steel (LCS) to high chromium cast iron (HCCI) in solid-state. The influence of temperature (950-1150 degrees C) and strain rate (0.001-1 s (1)) on microstructure, hardness and bond strength of the HCCI/LCS bimetal were investigated. The interface microstructure reveals that the unbonded region can only be found for 950 degrees C due to lack of diffusion, while the intergrowth between the constituent metals occurred at and above 1100 degrees C. When bonding temperature increases to 1150 degrees C, a carbide-free zone was observed near the interface on the HCCI layer, and the thickness of the zone decreases with an increase of bonding strain rate. These evolutions indicate that the bond quality was improved by raising temperature and reducing strain rate due to the increase of element diffusion. The hot compression process of the bonding treatment not only changes the carbide orientation of the HCCI, but also increases the volume fraction of Cr-carbide. Based on the microstructural examinations and mechanical tests, the optimum bonding temperature and bonding strain rate are determined to be 1150 degrees C and 0.001 s (1), respectively.

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1016/j.matdes.2014.06.067