Experimental and numerical investigation of high-yield grout ore pass plugs to resist impact loads

RIS ID

89849

Publication Details

Remennikov, A., Mutton, V., Nimbalkar, S. & Ren, T. (2014). Experimental and numerical investigation of high-yield grout ore pass plugs to resist impact loads. International Journal of Rock Mechanics and Mining Sciences, 70 1-15.

Abstract

In the last fifteen years, Tekseal high yield foaming group ore pass plugs that could later be easily removed, have been poured above chute maintenance areas providing protection from high energy rock impact and isolating workers fom the hazard. Construction and removal methods awill be briefly explained. Since it is not economically feasible to investigate the problem of ore pass plug impact response using full-scale experimental studies, this paper presents a combined four-stage approach that includes (1) laboratory testing to investigate the mechanical behaviour of the high-yield foaming grout; (2) high-precision impact testing of reduced-scale models of ore pass plugs; (3) high-fidelity physics-based numerical model calibration using experimental data; and (4) full-scale modelling of mine ore pass plugs using calibrated material models. To calibrate numerical models, threeone--metre diameter steel pipes filled with Tekseal high yield foaming grout were tested with falling steel projectiles of different shapes. Impact tests provided data on the depth of penetration and size of the craters formed by the projectiles. Numerical models were calibrated by optimising the material parameteres and modelling techniques to provide the best match withthe experimental results. Full-scale numerical models of ore pass plugs were developed for typical ore pass dimensions and subjected to impact events by falling rock projectiles. The proposed approach has allowed investigating energy absorbing characteristics of ore pass plugs to further predict and increase understanding of their capacity to withstand high-speed impacts by large falling projectiles.

Please refer to publisher version or contact your library.

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1016/j.ijrmms.2014.03.010