Model development for prediction of diabetic retinopathy



Publication Details

Sangi, M., Win, K. T., Shirvani, F. & Fulcher, J. A. (2013). Model development for prediction of diabetic retinopathy. AMCIS 2013 Proceedings: Americas Conference on Information Systems. (pp. 1-12). AIS Electronic Library: AISel.


this research focuses on presenting an empirical method to gather necessary data and then developing several models to predict the chance of diabetic retinopathy (proliferative and non-proliferative) by observing HbA1c, duration of disease and albumin excretion rate of diabetic patients. We gathered required knowledge fromother studies that have investigated the relation of different risk factors and complications in diabetes. In order to create 1-1 models, curve fitting was performed by using two different software applications: Tiberius and SPSS which work based on ANN And least square regression, respectively. To start producing the model, seven different patterns ie linear, logarithmic, quadratic, cubic, power, s and exponential have been chosen as the best regression options. Using R-squared it can be clearly seen that the best selected regression models fit the data in all the dataset tables better than ANN< as well as the other six regression patterns.

Please refer to publisher version or contact your library.