Measurement of effects of nasal and facial shields on delivered radiation dose for superficial x-ray treatments



Publication Details

Yu, P. K .N. & Butson, M. J. (2013). Measurement of effects of nasal and facial shields on delivered radiation dose for superficial x-ray treatments. Physics in Medicine and Biology, 58 (5), N95-N102.


Kilovoltage x-ray beams are used for the treatment of facial cancers when located on the patient's skin or subcutaneous tissue. This is of course due to the sharp depth dose characteristics of these beams delivering much lower doses at depth, than high energy x-ray beams. When treatment is performed, lead shields are often used within the nasal passage, or behind the lips and ears. These shields affect the backscattering patterns of the x-ray beams producing perturbations to upstream dose thus reducing delivered dose to the tumour. Experimental results using radiochromic films have shown that up to 10.5% +/- 1.9% reduction in tumour dose can occur for field sizes less than 5 cm circle diameter for x-ray beams of 50 to 150 kVp. These results were confirmed using EGSnrc Monte Carlo techniques. Clinically more than 70% of treatments used fields of diameters less than 3 cm where the reductions were up to 6% +/- 1.3%. Using a 1 cm diameter field, which can be used for skin cancer treatment on the nose, reductions up to 2.5% +/- 1.3% were seen. Thus corrections need to be applied for dose calculations when underlying lead shields are used clinically in kilovoltage x-rays. The size of the reduction was also found to be dependent on the depth of the shield which will normally clinically vary from approximately 0.5 cm for nasal shields or behind eye lobes and up to approximately 1 cm for lips or cheek areas. We recommend that clinics utilize data for corrections to delivered dose in kilovoltage x-ray beams when lead shields are used in nasal passages, behind lips or behind ears for dose reduction. This can be easily and accurately measured with EBT2 Gafchromic film.

Please refer to publisher version or contact your library.



Link to publisher version (DOI)