Comment on the Ionization Energy of B2F4

Bun Chan
University of Sydney,

Adam J. Trevitt
University of Wollongong, adamt@uow.edu.au

Stephen J. Blanksby
University of Wollongong, blanksby@uow.edu.au

Leo Radom
University of Sydney

Follow this and additional works at: https://ro.uow.edu.au/scipapers

Part of the Life Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons

Recommended Citation
Chan, Bun; Trevitt, Adam J.; Blanksby, Stephen J.; and Radom, Leo: Comment on the Ionization Energy of B2F4 2012, 9214-9215.

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Comment on the Ionization Energy of B2F4

Abstract
The Gn test sets(1) of accurate (uncertainty ≤ 1 kcal mol–1 ≈ 4 kJ mol–1) experimental data are widely employed in the development and assessment of quantum chemistry procedures. However, while all the data in the Gn sets nominally carry a sub-kcal mol–1 uncertainty, several of the experimental values show uncharacteristically large discrepancies when compared with values determined by high-level theoretical calculations. One of these questionable values is the adiabatic ionization energy (IE) of B2F4, for which the theoretical values calculated, for example, with the high-level G2 (1133.9, kJ mol–1),(1b) G3 (1135.4 kJ mol–1),(2) and G4 (1127.2 kJ mol–1)(3) procedures differ significantly from the experimental value of 1164.6 ± 1.0 kJ mol–1.(4)

Keywords
b2f4, comment, energy, ionization, GeoQUEST

Disciplines
Life Sciences | Physical Sciences and Mathematics | Social and Behavioral Sciences

Publication Details

This journal article is available at Research Online: https://ro.uow.edu.au/scipapers/4725
Comment on the Ionization Energy of B₂F₄

Bun Chan, Adam J. Trevitt, Stephen J. Blanksby, and Leo Radom

School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia
ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, Australia

Published: June 22, 2012
Revised: August 15, 2012
Published: August 28, 2012

© 2012 American Chemical Society

The G2 test sets of accurate (uncertainty ≤ 1 kcal mol⁻¹ ≈ 4 kJ mol⁻¹) experimental data are widely employed in the development and assessment of quantum chemistry procedures. However, while all the data in the G2 sets nominally carry a sub-kcal mol⁻¹ uncertainty, several of the experimental values show uncharacteristically large discrepancies when compared with values determined by high-level theoretical calculations. One of these questionable values is the adiabatic ionization energy (IE) of B₂F₄, for which the theoretical values calculated, for example, with the high-level G2 (1133.9 kJ mol⁻¹)¹b G3 (1135.4 kJ mol⁻¹)² and G4 (1127.2 kJ mol⁻¹)³ procedures differ significantly from the experimental value of 1164.6 ± 1.0 kJ mol⁻¹.

Taken together with the general agreement between these and other high-level theoretical results, the discrepancies between theory and experiment for the ionization energy of B₂F₄ have called into question the accuracy of the experimental values. In the course of our own developments of quantum chemistry procedures, we have also been persistently concerned by the large discrepancies between theory and experiment for this quantity. However, as the reason behind the discrepancy was not clear, and in the absence of an alternative experiment for this quantity, the change in structure from B₂F₄ to B₂F₄⁺ diﬀers signiﬁcantly, leading to large normal mode displacements, so that it would be difficult experimentally to observe the ionization onset that corresponds to the adiabatic process. Indeed, both Montgomery et al.⁵ and Li and Fan⁶ suggest this possibility. However, in both cases, they focus on the change in geometry accompanying the vertical ionization, strengthens the case for either removing the experimental adiabatic ionization energy of B₂F₄ from the G2 test sets or (in the absence of an experimental redetermination) replacing it by a high-level theoretical value. For the time being, we recommend a value of 1132 kJ mol⁻¹ based on our W2w calculations. It would seem that retention of the current experimental value, which is now widely acknowledged to be quite poor, could lead to unnecessary distortions in the parametrization and assessment of the performance of new theoretical procedures.

Author Information

Notes

The authors declare no competing financial interest.

Acknowledgments

We gratefully acknowledge funding (to L.R.) from the Australian Research Council (ARC), and generous grants of computer time (to L.R.) from the National Computational Infrastructure (NCI) National Facility and Intersect Australia Ltd.

References

(9) All calculations were performed using Gaussian 09: Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09, revision A.02; Gaussian, Inc.: Wallingford, CT, 2009.