Microwave-assisted facile synthesis and crystal structure of cis-9,10,11,15-tetrahydro-9,10[3'4']-furanoanthracene-12,14-dione

Weerachai Phutdhawong
Maejo University

Duang Buddhasukh
Chiang Mai University

Stephen G. Pyne
University of Wollongong, spyne@uow.edu.au

Apinpus Rujiwatra
Chiang Mai University

Chaveng Pakawatchai
Prince of Songkla University

Publication Details
Microwave-assisted facile synthesis and crystal structure of cis-9,10,11,15-tetrahydro-9,10[3′,4′]-furanoanthracene-12,14-dione

Abstract
A facile synthesis and crystal structure of cis-9,10,11,15-tetrahydro-9,10[3′,4′]-furanoanthracene-12,14-dione from the reaction of anthracene and maleic anhydride in xylene in a short time and high yield using a modified commercial domestic microwave oven is reported.

Keywords
Microwave, assisted, facile, synthesis, crystal, structure, cis, tetrahydro, furanoanthracene, dione, CMMB

Disciplines
Life Sciences | Physical Sciences and Mathematics | Social and Behavioral Sciences

Publication Details

This journal article is available at Research Online: http://ro.uow.edu.au/scipapers/4067
Microwave-assisted facile synthesis and crystal structure of cis-9,10,11,15-tetrahydro-9,10[3',4']-furanoanthracene-12,14-dione

Weerachai Phutdhawong¹*, Duang Buddhasukh², Stephen G. Pyne³, Apinpus Rujiwatra² and Chaveng Pakawatchai⁴

¹ Department of Chemistry, Maejo University, Chiang Mai, 50290, Thailand
² Department of Chemistry, Chiang Mai University, Chiang Mai, 50202, Thailand
³ Department of Chemistry, University of Wollongong, Wollongong, NSW, 2522, Australia
⁴ Department of Chemistry, Prince of Songkla University, Hat Yai, Songkla 90112, Thailand

* Author to whom correspondence should be addressed; e-mail: weerachai@mju.ac.th

Abstract

A facile synthesis and crystal structure of cis-9,10,11,15-tetrahydro-9,10[3',4']-furanoanthracene-12,14-dione from the reaction of anthracene and maleic anhydride in xylene in a short time and high yield using a modified commercial domestic microwave oven is reported.
Microwave reactors are becoming increasingly popular and effective for applications in organic synthesis.\(^1\) The reported preparation of *cis*-9,10,11,15-tetrahydro-9,10[3',4']-furanoanthracene-12,14-dione (3) involves heating a mixture of anthracene (1) and maleic anhydride (2) in a high boiling point solvent at reflux temperature (Scheme 1).\(^2\) This process requires long reaction times to achieve a satisfactory yield. We report here the synthesis and the crystal structure of *cis*-9,10,11,15-tetrahydro-9,10[3',4']-furanoanthracene-12,14-dione (3) by using a modified domestic microwave oven.\(^3\)

When a mixture of anthracene (1) and maleic anhydride (2) in xylene, was irradiated (800 W) in a microwave oven for 8 min, the cycloadduct 3 was obtained in 97% yield. The temperature during microwave irradiation was recorded using an infrared thermometer (129-138°C). For comparison, this reaction was repeated in a sealed tube in an oil bath maintained at 100-110°C for 24 h. This reaction gave the desired product (3) in 85% yield (Scheme 1). The structure of compound 3 was confirmed by single crystal X-ray structural analysis as shown in Figure 1.

![Scheme 1](image-url)

Scheme 1. Diels-Alder reactions of anthracene (1) and maleic anhydride (2) under different reaction conditions.
Short communication

Figure 1. Molecular structure of cis-9,10,11,15-tetrahydro-9,10[3',4']-furanoanthracene-12,14-dione (3) showing 50% thermal ellipsoids.

Spectroscopic Procedures:

1H NMR (400 MHz) and 13C NMR (100 MHz) experiments were carried out on a Bruker AM 400 spectrometer in CDCl$_3$ solution; IR spectrum was recorded on a Perkin Elmer FT-IR spectrometer; mass spectrum was recorded on a Perkin-Elmer GC/MS .

General Procedure for the Synthesis of cis-9,10,11,15-tetrahydro-9,10[3',4']-furanoanthracene-12,14-dione (3)

By using a modified commercial domestic microwave oven (http://www.science.mju.ac.th/chemistry/research/weerachai/reactor_eng.htm): A mixture of anthracene (1.00 g, 5.6 mmol), maleic anhydride (0.823 g, 8.4 mmol) and xylene (5 mL) contained in a 100 ml round bottom flask was placed in the modified microwave oven. A condenser was attached and the solution was subjected to irradiation of 800 Watt for 8 min. It was
then allowed to cool to room temperature. The product was purified according to the report of Bachmann et al.² After recrystallization from MeOH, colorless needles were obtained (1.512g, 97.85% yield), m.p. 262-265 °C (Lit.² 262-263 °C). IR (KBr) (νmax, cm⁻¹): 1228 (C=O-C), 1475 and 1655 (C=C Ar.), 1783 (C=O), 3100 (=C-H Ar.); ¹H NMR δ: 3.51 (2H, s, 2CH), 4.80 (2H, s, 2CH), 7.16-7.39 (8H, m, Ar-H); ¹³C NMR δ: 45.9 (CH), 48.2 (CH), 124.2-127.1 (ArCH), 138.2 (ArC), 140.1 (ArC), 170.1 (C=O); MS (EI) m/z : 276 (18), 203 (19), 178 (100), 149 (67)

Acknowledgements

Financial support from the Thailand Research Foundation (MRG 4780111) is gratefully acknowledged.

References

3. Details of the microwave reactor are available on our Research Unit web page:
 http://www.science.mju.ac.th/chemistry/research/weerachai/reactor_eng.htm