Intramolecular versus intermolecular oxidative couplings of ester tethered di-aryl ethers

Stephen R. Taylor
University of Wollongong

Alison T. Ung
University of Wollongong, alison_ung@uow.edu.au

Stephen G. Pyne
University of Wollongong, spyne@uow.edu.au

Brian W. Skelton
University of Western Australia

Allan H. White
University of Western Australia

Follow this and additional works at: https://ro.uow.edu.au/scipapers

Part of the Life Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Intramolecular versus intermolecular oxidative couplings of ester tethered di-aryl ethers

Abstract
The oxidative cyclization of 3,4-dimethoxyphenyl 3,4-dimethoxyphenylacetate, through intramolecular biphenyl bond formation, was successful and gave the target seven-membered lactone in good yield (85–86%). All other ester substrates gave biphenyl products or their further oxidized products via intermolecular coupling of their radical cation intermediate with the neutral substrate. It appears that matching of the oxidation potentials and nucleophilicity of the two phenyl rings, the positioning of the ring substituents and the ease of E to Z isomerization about the ester C–O bond are important factors contributing to these product outcomes.

Keywords
Intramolecular, versus, intermolecular, oxidative, couplings, ester, tethered, aryl, ethers, CMMB

Disciplines
Life Sciences | Physical Sciences and Mathematics | Social and Behavioral Sciences

Publication Details
Intramolecular versus intermolecular oxidative couplings of ester tethered di-aryl ethers

Stephen R. Taylor, Alison T. Ung* and Stephen G. Pyne* Brian W. Skeltonb and Allan H. Whiteb

aDepartment of Chemistry, University of Wollongong, Wollongong, NSW, 2522, Australia

b Chemistry M313, School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia

Abstract: The oxidative cyclization of 3,4-dimethoxyphenyl 3,4-dimethoxyphenylacetate, through intramolecular biphenyl bond formation, was successful and gave the target 7-membered lactone in good yield (85-86%). All other ester substrates gave biphenyl products or their further oxidized products via intermolecular coupling of their radical cation intermediate with the neutral substrate. It appears that matching of the oxidation potentials and nucleophilicity of the two phenyl rings, the positioning of the ring substituents and the ease of E to Z isomerization about the ester C-O bond are important factors contributing to these product outcomes.

As part of a medicinal chemistry project we have explored the oxidative coupling reactions of the ester tethered di-aryl esters A aimed at the synthesis of lactones of the type B as shown in Scheme 1. While both the intramolecular and intermolecular oxidative couplings of phenyl ethers to give biphenyls using one electron oxidants have been reported, these have generally been restricted to electron rich substrates.1-28 The intramolecular versions of these reactions have been used to prepare 6-29-32 and 7-membered24 carbocyclic ring products using an all-
carbon tether between the two participating aryl ethers, while 6, 7-24,34,35 and 8-membered heterocyclic ring products have been obtained when the tether contains a heteroatom (N, O, S and Si). The use of an ester tether in these types of reaction has not been reported. It was thus of interest to explore the oxidative coupling reactions of A with single electron oxidants and to determine the effects of ring size and the electronic properties of the two coupling partners of the efficiencies and product distributions of such reactions.

Scheme 1

Oxidative coupling reactions of substituted phenyl phenylacetates

Initial experiments focussed on a study of the oxidative coupling reactions of the tetramethoxy substituted phenyl phenylacetate derivative 1a with the one electron oxidants, FeCl₃/SiO₂, MoCl₅, VOF₃, thallium(III) trifluoroacetate (TTFA), Ce(OH)₄, and phenyl iodine(III) bis(trifluoroacetate) (PIFA) using literature procedures (Scheme 2). Reactions with the latter three oxidizing reagents required the addition of BF₃.Et₂O. The results of these reactions are summarized in Table 1.
Scheme 2

Table 1.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Oxidant</th>
<th>Conditions</th>
<th>Time</th>
<th>Yield of 2 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FeCl₃/SiO₂</td>
<td>CH₂Cl₂, rt</td>
<td>6 h</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>MoCl₅</td>
<td>CH₂Cl₂, 0º C to rt</td>
<td>2 h</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>VOF₃</td>
<td>TFA, TFAA, CH₂Cl₂, EtOAc, 0º C</td>
<td>1 h</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>TTFA¹</td>
<td>TFAA, 0º C</td>
<td>1 h</td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td>TTFA</td>
<td>MeCN, BF₃.Et₂O, 0º C</td>
<td>1 h</td>
<td>74</td>
</tr>
<tr>
<td>6</td>
<td>Ce(OH)₄</td>
<td>CH₂Cl₂, TFA, BF₃.Et₂O, 0º C</td>
<td>6 h</td>
<td>86</td>
</tr>
<tr>
<td>7</td>
<td>PIFA²</td>
<td>MeCN, BF₃.Et₂O, rt</td>
<td>10 min</td>
<td>85</td>
</tr>
</tbody>
</table>

¹ TTFA is thallium(III) trifluoroacetate

² PIFA is phenyl iodine(III) bis(trifluoroacetate)

Clearly the use of PIFA, BF₃.Et₂O in MeCN solution at rt for 10 min (Table 1, entry 7) gave the best overall performance in terms of the yield (85%) of 2 and reaction time. This
procedure was far more convenient than the one using hygroscopic Ce(OH)$_4$, even though this
reagent gave a slightly higher yield (86%) of 2 (Table 1, entry 6). Thus the PIFA method and
that using TTFA (Table 1, entry 5) were employed in subsequent oxidative coupling
reactions.

The results of the oxidative couplings of the substituted phenyl phenylacetates 1b-f with
TTFA or PIFA, under the conditions shown in Table 1, are summarized in Scheme 3 (the
yields in brackets refer to the reactions with TTFA and PIFA, respectively). Unlike the
reactions of 1a, none of these substrates gave the desired intramolecular cyclization product
(B, $m = 1$, $n = 0$). Esters 1b-d ($R^1 = OMe$) gave the biphenyl products 3b-d, through
intermolecular coupling of the phenylacetate rings of 1b-d, while the ester 1e ($R^1 = H$) gave
the biphenyl 4e, formed via the intermolecular coupling of the more electron rich dimethoxy-
substituted phenoxy ring, followed by further oxidation of the biphenyl ring system and then
hydrolysis to give a para-quinone (see Scheme 4 for more details). The ester 1f, having
only one methoxy group on each aromatic ring, was unreactive to the PIFA oxidative
conditions. The structure of 3c was confirmed by a single crystal X-ray study (Figure 1;
CCDC 647893). The simpler esters 5 and 7, representing the phenylacetate and phenoxy ring
moieties of 1a-d and 1e, respectively gave the related biphenyl product 6 and the para-
quinone 8, respectively, upon treatment with TTFA or PIFA (Scheme 4). The structure of 8
was confirmed by a single crystal X-ray study (Figure 2, CCDC 647894). These results
indicated that both aromatic rings of 1a are readily oxidized. This was further supported by
the measurements of the oxidation potentials (E^0) of compounds 5 and 7 (see Supporting
Information for details) which were 1.40 V and 1.41 V, respectively.
Scheme 3 (the yields in brackets refer to the reactions with TTFA and PIFA, respectively)

Scheme 3

![Scheme 3 Diagram]

- **1b-e**:
 - Reaction with TFFA or PIFA

- **3b**, (0%, 39%)
- **3c**, (97%, 81%)
- **3d**, (63%, 50%)

- **4e** (PIFA : 38%)

b: R¹ = OMe, R² = OMe, R³ = H, R⁴ = OMe

c: R¹ = OMe, R² = OMe, R³ = H, R⁴ = H

d: R¹ = OMe, R² = H, R³ = OMe, R⁴ = H

e: R¹ = H, R² = OMe, R³ = OMe, R⁴ = H

f: R¹ = H, R² = OMe, R³ = H, R⁴ = H
Figure 1. Molecular projection of 3c (50% probability displacement amplitude ellipsoids for non-hydrogen atoms, hydrogen atoms having arbitrary radii of 0.1 Å, here and in Figures 2 and 3).
Scheme 4

5

MeO CO₂Me

PIFA

41%

6

MeO CO₂Me

OMe

MeO

MeO₂C

OMe

7

MeO OAc

MeO

OTFA (62%)

MeO OAc

OAc

OMe

8

MeO OAc

MeO

MeO

OAc

OMe

2 H₂O -e⁻

9

MeO OAc

MeO OAc

OMe

AcO

OMe

[O]

10

MeO AcO

MeO OMe

AcO

OMe

[O]
Figure 2. Molecular projection of 8 (molecule 1; there are four molecules in the asymmetric unit, molecules 3,4 differing from molecules 1,2 by rotation of ca 180 ° about the pendant acetate bond).

Notably, 1b, the isomeric 3,5-dimethoxyphenyl ester of 1a failed to provide the corresponding cyclization product analogous to 2, even though the phenoxy ring of 1b had the same number of activating methoxy groups as 1a. Two possible mechanisms for the formation of 2 from 1a are shown in Scheme 5. In the first mechanism, the radical cation intermediate Ca undergoes intramolecular electrophilic attack by the 3,4-dimethoxyphenyloxyacyl ring, para to the activating methoxy group which also stabilizes intermediate Da. While such stabilization is also possible in intermediate Db, derived from cyclization of 1b, this intermediate would be destabilized relative to Da due to an unfavourable steric interaction between X (X = OMe) and the CH of the adjoining 6-membered ring (Scheme 5). An alternative mechanism involving the intermediate E followed
by a dienone-phenol–like rearrangement is possible for Ea but not for Eb in which $Y = H$ because of the relatively poorer stabilization of the intermediate cation.34

Scheme 5

An alternative path, involving oxidation of the phenoxy ring of 1a first is also possible. Cyclization would lead to an intermediate related to Da in which the two 6-membered rings had the reverse electronic nature.
Oxidative coupling reactions of substituted phenyl benzoates

Treatment of the substituted phenyl benzoates 11a-c (R^5 = OMe) with PIFA under similar reaction conditions as applied to 1a-f, provided the para-quinones 12a-c in variable yields (Scheme 6). Treatment of 11b with TTFA also provided the quinone 12b, whereas the esters 11a and 11c gave the corresponding biphenyls 13a and 13c, respectively (Scheme 6). These products were a result of the initial oxidation and dimerization of the more electron rich 3,4-dimethoxyphenoxy ring. In contrast the esters 11d,e (R^5 = H) having only one methoxy group of the phenoxy ring, but in the case of 11d three methoxy on the benzoate ring, gave no isolable oxidation products and in each case the starting ester was recovered (24-57%). These latter results indicated that both the trimethoxybenzoate and the 3-methoxyphenoxy rings in 11d,e were too deactivated (the former by the carboxylate group) to undergo smooth oxidation.
Scheme 6 (the yields in brackets refer to the reactions with TTFA and PIFA, respectively)

The analogous tetramethoxy substituted benzamide 14 (R = H) to 11a was reported to give
the corresponding biphenyl 15 (R = H) through dimerization of the more electron rich aniline
ring, while its N-methyl derivative 14 (R = Me) gave the cyclization product 16 (Scheme 7).32
The unsuccessful cyclization of 14 (R = H) has been attributed to the inaccessibility of the s-
cis (E) amide isomer that is required for cyclization. While oxidative cyclization of the esters
1 and 11 would also require them to adopt the energetically less favourable s-cis (E) isomer
this isomer is more readily accessible in the case of esters (E-Z energy difference 18-22 kcal
mol⁻¹ for amides and 5-6 kcal mol⁻¹ for esters)37 but may also be a contributing factor in the
lack of cyclization products being produced from oxidation of these ester substrates. This
effect would be more pronounced in the phenyl benzoate ester 11a when compared to 1a,
since the s-cis (-E) isomer would be of higher energy due to the closer proximity of the two phenyl groups.

Scheme 7

![Scheme 7](image)

Oxidative coupling reactions of substituted benzyl phenylacetates

Not surprisingly, exposure of the methoxy substituted benzyl phenylacetates 17a-c to the above oxidative conditions resulted in oxidative cleavage of the O-benzyl group and formation of 3,4-dimethoxy- or 4-methoxybenzaldehyde (Scheme 8). None of the desired cyclization products, or the corresponding biphenyls could be detected from analysis of the crude reaction mixtures. In contrast, the 3-methoxybenzyl ester 17d was less prone to oxidative cleavage and gave the biphenyl 18 in 45% yield using PIFA. Oxidative coupling of 17d had occurred through the more electron rich 3,4-dimethoxyphenylacetate aromatic ring. The structure of 18 was confirmed by a single crystal X-ray analysis (Figure 3; CCDC 647895).
Scheme 8

![Scheme 8][1]

Figure 3. Molecular projection of 18.

The dihydrocinnamate ester 19, the homologue of 1a, underwent intermolecular oxidative coupling through the cinnamate aryl ring to give the biphenyl 20 and none of the desired cyclized product, although this would require cyclization through an unfavourable, 8-
membered ring transition state or a less likely 7-membered spiro-intermediate, a homologue of intermediate E (Scheme 5). Notably, intramolecular biaryl couplings to form 8-membered heterocyclic rings have been reported using -CH₂N(TFA)CH₂CH₂- as a tether on substrates that have the same or less number of methoxy groups as 19 (Scheme 9).³⁴

Scheme 9

In conclusion, the oxidative cyclization of the ester 1a, through intramolecular biphenyl bond formation, was successful and the target 7-membered lactone 2 was obtained in good yield (85-86%). All other ester substrates gave biphenyl products or their further oxidized products via intermolecular coupling of their radical cation intermediate with the neutral substrate. It appears that matching of the oxidation potentials and nucleophilicity of the two phenyl rings, the positioning of the ring substituents and the ease of E to Z isomerization about the ester C-O bond are important factors contributing to these product outcomes.

EXPERIMENTAL

PS refers to the fraction of petroleum spirit with a boiling point of 40-60 °C. DCM refers to dichloromethane. All ¹H NMR spectra were measured at 300 MHz and all ¹³C NMR (DEPT) spectra at 75 MHz in CDCl₃ solution, unless otherwise noted. All spectra were referenced to CDCl₃ (¹H δ 7.26 ppm and ¹³C NMR δ 77.00 ppm). ¹H NMR assignments were achieved with the aid of gCOSY, and in some cases NOESY and TOCSY experiments. ¹³C NMR
assignments were based upon DEPT, gHSQC and gHMBC experiments. In the NMR assignments Q refers to quinone NMR signals.

General Methods for Ester Formation (see Supporting Information for data and procedures for other esters)

3,4-Dimethoxyphenyl 3,4-dimethoxyphenylacetate 1a.

To a stirred solution of 3,4-dimethoxyphenyl acetic acid (500 mg, 2.54 mmol), DCC (578 mg, 2.80 mmol) and DMAP (77 mg, 0.637 mmol) in dry DCM (10 mL) was added a solution of 3,4-dimethoxyphenol (373 mg, 2.42 mmol) in dry DCM (2 mL). The reaction was stirred at rt for 18 h under N₂, diluted with DCM (20 mL), filtered and the filtrate washed with water (20 mL) and saturated NaHCO₃ solution (20 mL). The organic phase was dried over MgSO₄, filtered, evaporated and the residue chromatographed, using EtOAc:PS (1:1) as the mobile phase, to yield the title compound as a white solid (727 mg, 90 %). Spectral data was consistent with that reported in the literature. M.p. 110-112 °C (lit. m.p. 109-110 °C).

General Methods for Oxidative Couplings

Method A – Hypervalent iodine (PIFA)

2,3,9,10-Tetramethoxydibenzo[b,d]oxepin-6(7H)-one 2.

To a solution of 1a (61 mg, 0.18 mmol) and PIFA (82 mg, 0.19 mmol) in dry MeCN (2 mL) at 0 °C under N₂ was added BF₃·Et₂O (100 μL). After 10 min the mixture was diluted with water (15 mL) and extracted with DCM (2 x 20 mL). The extracts were combined, washed with sat. aqueous NaHCO₃ (20 mL), dried over MgSO₄, filtered and evaporated. Purification by flash silica gel chromatography using EtOAc:PS (1:1) as the eluent, yielded the title compound as a white solid (52 mg, 85 %). This compound was also prepared by oxidative coupling methods B, C, D and E.

Method B – Thallium trifluoroacetate (TTFA)

To a solution of 1a (100 mg, 0.30 mmol) and TTFA (163 mg, 0.30 mmol) in dry MeCN (4 mL) at 0 °C under N₂ was added BF₃·Et₂O (200 μL). After 1 h the mixture was diluted with water (15 mL) and extracted with DCM (2 x 20 mL). The extracts were combined, washed with sat. aqueous NaHCO₃ (20 mL), dried over MgSO₄, filtered and evaporated. Purification
by flash silica gel chromatography using EtOAc:PS (1:1) as the eluent yielded the title compound as a white solid (74 mg, 74 %).

Method C – MoCl₅

Compound 1a (50 mg, 0.15 mmol) was dissolved in dry DCM (2 mL) and was stirred with powdered molecular sieves (4 Å, 100 mg) for 30 min, then the mixture was cooled to 0 ºC. MoCl₅ (90 mg, 0.33 mmol) was added to the reaction mixture and stirring was continued at 0 ºC for 2 h after which the mixture was diluted with water (15 mL) and extracted with DCM (2 x 20 mL). The extracts were combined, washed with sat. aqueous NaHCO₃ (20 mL), dried over MgSO₄, filtered and evaporated. Purification by flash silica gel chromatography using EtOAc:PS (1:1) as the eluent yielded the title compound as a white solid (13 mg, 26 %).

Method D – Ce(OH)₄

To a solution of 1a (50 mg, 0.15 mmol), Ce(OH)₄ (156 mg, 0.75 mmol), TFA (2 mL) and trifluoroacetic anhydride (0.4 mL) in dry DCM (7 mL) at 0 ºC under N₂ was added BF₃·Et₂O (38 μL). The ice bath was removed and the reaction warmed to RT over 6 h. The reaction was quenched with water (15 mL) and extracted with DCM (2 x 20 mL). The combined extracts were washed with sat. aqueous NaHCO₃ (20 mL), dried over MgSO₄, filtered and evaporated. Purification by flash silica gel chromatography using EtOAc:PS (1:1) as the eluent yielded the title compound as a white solid (43 mg, 86 %).

Method E – VOF₃

To a solution of TFA:trifluoroacetic anhydride (20:1, 1.5 mL) in dry EtOAc (1.5 mL) at 0 ºC was added VOF₃ (47 mg, 0.37 mmol), followed by a solution of 1a (50 mg, 0.15 mmol) in dry DCM (3 mL). The ice bath was removed and the reaction warmed to RT over 3 h. The reaction was quenched with water (15 mL) and extracted with DCM (2 x 20 mL). The extracts were combined, washed with sat. aqueous NaHCO₃ (20 mL), dried over MgSO₄, filtered and evaporated. Purification by flash silica gel chromatography using EtOAc:PS (1:1) as the eluent yielded the title compound as a white solid (30 mg, 60 %). Starting material (14 mg, 28 %) was also obtained from the column. M.p. 176-178 ºC. ¹H NMR: δ 7.02 (s, 1H, Ar-H-11), 6.94 (s, 1H, Ar-H-1), 6.82 (s, 1H, Ar-H-8), 6.76 (s, 1H, Ar-H-4), 3.92 (s, 6H, OCH₃-2, 3), 3.88 (s, 3H, OCH₃-10), 3.87 (s, 3H, OCH₃-9), 3.51 (ABq, 2H J = 12.6 Hz, Ar-CH₂). ¹³C
NMR: δ 169.4 (C=O), 149.6 (Ar-C=OCH$_3$-9), 149.3 (Ar-C=OCH$_3$-2), 149.2 (Ar-C=OCH$_3$-3), 146.5 (Ar-C=OCH$_3$-10), 143.5 (Ar-C=4a), 127.4 (Ar-C-11a), 123.1 (Ar-C-8a), 121.2 (Ar-C-1a), 111.1 (Ar-C-H-8), 110.9 (Ar-C-H-1), 110.2 (Ar-C-H-11), 104.3 (Ar-C-H-4), 56.4 (Ar-OCH$_3$-2), 56.2 (Ar-OCH$_3$-3), 56.1 (Ar-OCH$_3$ 10), 56.0 (Ar-OCH$_3$ 9), 39.6 (Ar-CH$_2$). MS (Cl+): m/z 331 (M+1, 100%), HRMS (EI+): Calcd for C$_{18}$H$_{18}$O$_6$ = 330.1103 (M+), found 330.1102.

(Di-3,5-dimethoxyphenyl)$_2$2-(4,4',5,5'-tetramethoxybiphenyl-2,2'-diyl)diacetate 3b.

The title compound was prepared in 39% yield (white solid, 37 mg) from 1b (100 mg, 0.30 mmol) in the presence of PIFA (129 mg, 0.30 mmol), BF$_3$ Et$_2$O (100 μL) and MeCN (3 mL) according to oxidative coupling method A. M.p. 114-116 °C. 1H NMR: δ 6.97 (s, 2H, Ar-H-6), 6.79 (s, 2H, Ar-H-3), 6.29 (t, 2H, $J = 2.2$ Hz, Ar-H-4'), 6.13 (d, 4H, $J = 2.1$ Hz, Ar-H-2', 6'), 3.94 (s, 6H, OCH$_3$), 3.81 (s, 6H, OCH$_3$), 3.71 (s, 12H, 4 x OCH$_3$), 3.61 (ABq, 4H, $J = 15.0$ Hz, Ar-CH$_2$). 13C NMR: δ 170.2 (C=O), 161.0 (2x Ar-C=OCH$_3$-3’, 5’), 152.1 (Ar-C-1’), 148.4 (Ar-C=OCH$_3$-4), 147.8 (Ar-C=OCH$_3$-5), 133.0 (Ar-C-1), 124.3 (Ar-C-2), 113.4 (Ar-C-H-3), 112.7 (Ar-C-H-6), 99.9 (2 x Ar-C=H-2’, 6’), 98.1 (Ar-C-H-4’), 55.98 (Ar-OCH$_3$), 55.92 (Ar-OCH$_3$), 55.37 (2x Ar-OCH$_3$), 38.3 (Ar-CH$_2$). MS (ES+): m/z 663 (M+H, 100 %), HRMS (ES+): Calcd for C$_{36}$H$_{39}$O$_{12}$ = 663.2442 (M+H+), found 663.2438.

Di-(3-methoxyphenyl)$_2$2-(4,4’5,5’-tetramethoxybiphenyl-2,2’-diyl)diacetate 3c.

The title compound was prepared in 81% yield (pale yellow solid, 107 mg) from 1c (150 mg, 0.49 mmol) in the presence of PIFA (227 mg, 0.53 mmol), BF$_3$.Et$_2$O (130 μL) and MeCN (5 mL) according to oxidative coupling method A. The title compound was prepared in 97% yield (yellow film, 116 mg) from 1c (117 mg, 0.38 mmol) in the presence of TTFA (210 mg, 0.38 mmol), BF$_3$.Et$_2$O (2000 μL) and MeCN (4 mL) according to oxidative coupling method B. M.p. 122-124 °C. 1H NMR: δ 7.20 (t, 2H, $J = 8.1$ Hz, Ar-H-5’), 6.97 (s, 2H, Ar-H-6), 6.79 (s, 2H, Ar-H-3), 6.74 (dd, 2H, $J = 8.1$, 2.1 Hz, Ar-H-6’), 6.54 (dd, 2H, $J = 8.1$, 2.1 Hz, Ar-H-4’), 6.50 (t, 2H, $J = 2.1$ Hz, Ar-H-2’), 3.94 (s, 6H, OCH$_3$-4), 3.79 (s, 6H, OCH$_3$-3), 3.73 (s, 6H, OCH$_3$-3’), 3.62 (ABq, 4H, $J = 16.2$ Hz, Ar-CH$_2$). 13C NMR: δ 170.3 (C=O), 160.3 (Ar-C-OCH$_3$-3’), 151.5 (Ar-C-1’), 148.4 (Ar-C-OCH$_3$-3), 147.7 (Ar-C-OCH$_3$-4), 132.9 (Ar-C-1), 129.6 (Ar-C-H-5’), 124.3 (Ar-C-2), 113.5 (Ar-C-H-5), 113.4 (Ar-C-H-4’), 112.7 (Ar-C-H-2), 111.5 (Ar-C-H-6’), 107.4 (Ar-C-H-2’), 55.9 (Ar-OCH$_3$-4), 55.8 (Ar-OCH$_3$-3), 55.2 (Ar-
OCH₃-3’), 38.3 (Ar-CH₂-CO). MS (EI+): m/z 602 (M⁺, 10 %), 299 (100 %), HRMS (EI+):
Caled for C₃₄H₃₄O₁₀ = 602.2151 (M⁺), found 602.2160.

Di-(4-methoxyphenyl)-2,2'-(4,4'5,5'-tetramethoxybiphenyl-2,2'-diyl)diacetate 3d.
The title compound was prepared in 50 % yield (white solid, 49.5 mg) from 1d (100 mg, 0.28 mmol) in the presence of PIFA (149 mg, 0.34 mmol), BF₃·Et₂O (83 μL) and MeCN (5 mL) according to oxidative coupling method A. The title compound was also prepared in 63 % yield (clear film, 49.5 mg) from 1d (50 mg, 0.14 mmol) in the presence of TTFA (44 mg, 0.082 mmol), BF₃·Et₂O (100 μL) and MeCN (1 mL) according to oxidative coupling method B. M.p. 102-104 °C. ¹H NMR: δ 6.97 (s, 2H, Ar-H-6), 6.86 (d, 4H, J = 9.0 Hz, Ar-H-2’, 6’), 6.82 (d, 4H, J = 9.0 Hz, Ar-H-3’, 5’), 6.79 (s, 2H, Ar-H-3), 3.95 (s, 6H, OCH₃), 3.79 (s, 6H, OCH₃), 3.77 (s, 6H, OCH₃), 3.59 (ABq, 4H, J = 16.2 Hz, Ar-CH₂). ¹³C NMR: δ 170.8 (C=O), 157.1 (Ar-C=OCH₃-4’), 148.3 (Ar-C=OCH₃-5), 147.6 (Ar-C=OCH₃-4), 144.0 (Ar-C-1’), 132.9 (Ar-C-1), 124.3 (Ar-C-2), 122.1 (2 x Ar-C-H-2’ 6’), 114.2 (2x Ar-C-H-3’, 5’), 113.3 (Ar-C-H-3), 112.6 (Ar-C-H-6), 55.9 (Ar-OCH₃), 55.8 (Ar-OCH₃), 55.4 (Ar-OCH₃), 38.2 (Ar-CH₂-CO). MS (EI+): m/z 602 (M⁺, 2 %), HRMS (EI+): Caled for C₃₄H₃₄O₁₀ = 602.2151 (M⁺), found 602.2182.

4,5-Dimethoxy-2-(4-methoxy-3,6-dioxocyclohexa-1,4-dien-1-yl)phenyl (3-methoxyphenyl)acetate 4e.
The title compound was prepared in 38 % yield (pale film, 34 mg) from 3,4-dimethoxyphenyl (3-methoxyphenyl)acetate 1e (123 mg, 0.41 mmol) in the presence of PIFA (184 mg, 0.43 mmol), BF₃·Et₂O (104 μL) and MeCN (5 mL) according to oxidative coupling method A. ¹H NMR: δ 7.16 (t, 1H, J = 7.8 Hz, Ar-H-5), 6.82 (dd, 1H, J = 7.8, 2.7 Hz, Ar-H-6), 6.79 (d, 1H, J = 2.1 Hz, Ar-H-2), 6.76 (dd, 1H, J = 7.8, 2.7 Hz, Ar-H-4), 6.71 (s, 1H, Ar-H-6’), 6.65 (s, 1H, Ar-H-3’), 6.52 (s, 1H, Q-H-b), 5.78 (s, 1H, Q-H-e), 3.87 (s, 3H, OCH₃-5’), 3.83 (s, 3H, OCH₃-3’), 3.81 (s, 3H, OCH₃-3), 3.77 (s, 3H, Q-OCH₃), 3.66 (s, 2H, Ar-CH₂). ¹³C NMR: δ 185.5 (Q-C=O-c), 181.4 (Q-C=O-f), 169.3 (C=O), 159.6 (Ar-C=OCH₃-3), 158.0 (Q-C=OCH₃-d), 150.5 (Ar-C=OCH₃-4’), 146.7 (Ar-C=OCH₃-5’), 144.0 (Ar-C-1’), 141.8 (Q-C-a), 134.2 (Ar-C-1), 132.4 (Q-C-H-b), 129.7 (Ar-C-H-5), 121.5 (Ar-C-H-6), 117.4 (Ar-C-2’), 114.5 (Ar-C-H-2), 113.1 (Ar-C-H-4), 112.5 (Ar-C-H-3’), 107.5 (Q-C-H-e), 106.4 (Ar-C-H-6’), 56.2 (Ar-OCH₃-4’), 56.1 (Ar-OCH₃-5’), 56.0 (Ar-OCH₃-3), 55.1 (Q-OCH₃), 41.3 (Ar-CH₂). MS
Dimethyl 2,2’-(4,4’,5,5’-tetramethoxybiphenyl-2,2’-diyl)diacetate 6.

The title compound was prepared in 41 % yield (clear crystals, 53 mg) from 5 (129 mg, 0.62 mmol) in the presence of PIFA (250 mg, 0.58 mmol), BF₃·Et₂O (150 μL) and MeCN (10 mL) according to oxidative coupling method A. M.p. 142-144 °C (lit.39 m.p. 145 °C). ¹H NMR: δ 6.84 (s, 2H, Ar-H-6), 6.72 (s, 2H, Ar-H-3), 3.92 (s, 6H, OCH₃-5), 3.83 (s, 6H, OCH₃-4), 3.60 (s, 6H, CO₂CH₃), 3.35 (ABq, 4H, J = 16.5 Ar-CH₂). ¹³C NMR: δ 172.4 (C=O), 148.1 (Ar-C-OCH₃-4), 147.4 (Ar-C-OCH₃-5), 132.8 (Ar-C-1), 124.6 (Ar-C-2), 113.2 (Ar-C-H-3), 112.5 (Ar-C-H-6), 55.8 (Ar-OCH₃), 55.7 (Ar-OCH₃), 51.8 (CO₂CH₃), 37.9 (Ar-CH₂). MS (Cl⁺): m/z 419 (M+H, 100 %), HRMS (EI⁺): Calcd for C₂₂H₂₆O₈ = 418.1627 (M⁺), found 418.1615.

4,5-Dimethoxy-2-(4-methoxy-3,6-dioxocyclohexa-1,4-dien-1-yl)phenyl acetate 8.

The title compound was prepared in 70 % yield (cloudy film, 49 mg) from 7 (100 mg, 0.51 mmol) in the presence of PIFA (227 mg, 0.53 mmol), BF₃·Et₂O (130 μL) and MeCN (5 mL) according to oxidative coupling method A. The title compound was also prepared in 62 % yield (clear film, 44 mg) from 3,4-dimethoxyphenylacetate (100 mg, 0.51 mmol) in the presence of TTFA (44 mg, 0.082 mmol), BF₃·Et₂O (100 μL) and MeCN (1 mL) according to oxidative coupling method B. ¹H NMR: δ 6.75 (s, 1H, Ar-H-3), 6.73 (s, 1H, Ar-H-6), 6.72 (s, 1H, Q-H-b), 6.03 (s, 1H, Q-H-e), 3.89 (s, 3H, -OCH₃-5), 3.87 (s, 3H, OCH₃-4), 3.86 (s, 3H, Q-OCH₃), 2.16 (s, 3H, COCH₃). ¹³C NMR: δ 185.4 (Q-C=O-c), 181.8 (Q-C=O-f), 168.9 (C=O), 158.4 (Q-C-OCH₃), 150.6 (Ar-C-OCH₃-5), 146.5 (Ar-C-OCH₃-4), 144.2 (Ar-C-1), 142.1 (Q-C-a), 132.2 (Q-C-H-b), 117.1 (Ar-C-2), 112.8 (Ar-C-H-3), 107.7 (Q-C-H-e), 106.6 (Ar-C-H-6), 56.2 (Ar-OCH₃-5), 56.1 (Ar-OCH₃-4), 56.0 (Q-OCH₃), 20.8 (COCH₃). MS (EI⁺): m/z 332 (M⁺, 16 %), 292 (100 %), HRMS (EI⁺): Calcd for C₁₇H₁₆O₇ = 332.0896 (M⁺), found 332.0896.

4,5-Dimethoxy-2-(4-methoxy-3,6-dioxocyclohexa-1,4-dien-1-yl)phenyl 3,4-dimethoxybenzoate 12a.

The title compound was prepared in 98 % yield (red crystals, 55 mg) from 11a (79 mg, 0.25 mmol) in the presence of PIFA (112 mg, 0.26 mmol), BF₃·Et₂O (63 μL) and DCM (5 mL) according to oxidative coupling method A. M.p. 196-198 °C. ¹H NMR: δ 7.71 (dd, 1H, J =
8.7, 2.1 Hz, Ar-H-6), 7.54 (d, 1H, J = 2.1 Hz, Ar-H-2), 6.91 (d, 1H, J = 8.7 Hz, Ar-H-5), 6.84 (s, 1H, Ar-H-6’), 6.81 (s, 1H, Ar-H-3’), 6.79 (s, 1H, Q-H-b), 5.94 (s, 1H, Q-H-e), 3.95 (s, 3H, OCH₃), 3.93 (s, 3H, OCH₃), 3.91 (s, 3H, OCH₃), 3.90 (s, 3H, OCH₃), 3.79 (s, 3H, Q-OCH₃).

13C NMR: δ 185.5 (Q-C=O-c), 181.7 (Q-C=O-f), 164.4 (C=O), 158.3 (Q-C-OCH₃), 153.6 (Ar-C-OCH₃-3), 150.7 (Ar-C-OCH₃-4’), 148.7 (Ar-C-OCH₃-4), 146.6 (Ar-C-OCH₃-5’), 144.3 (Ar-C-1’), 142.5 (Q-C-a), 132.5 (Q-C-H-b), 124.3 (Ar-C-H-6), 121.1 (Ar-C-1), 117.4 (Ar-C-2’), 112.8 (Ar-C-H-3’), 112.2 (Ar-C-H-2), 110.4 (Ar-C-H-5), 107.7 (Q-C-H-e), 106.7 (Ar-C-H-6’), 56.3 (Ar-OCH₃), 56.2 (Ar-OCH₃), 56.1 (Ar-OCH₃), 56.0 (Ar-OCH₃), 55.9 (Q-OCH₃).

MS (EI+): m/z 454 (M⁺, 2 %), HRMS (EI⁺): Calcd for C₂₄H₂₂O₉ = 454.1263 (M⁺), found 454.1256.

4,5-Dimethoxy-2-(4-methoxy-3,6-dioxocyclohexa-1,4-dien-1-yl)phenyl 2,3,4-trimethoxybenzoate 12b.

The title compound was prepared in 25 % yield (white film, 17 mg) from 11b (100 mg, 0.28 mmol) in the presence of PIFA (132 mg, 0.35 mmol), BF₃·Et₂O (73 μL) and MeCN (4 mL) according to method A; and in 60 % yield (42 mg, 97 % brsm) from 11b (100 mg, 0.28 mmol) in the presence of TTFA (93 mg, 0.17 mmol), BF₃·Et₂O (73 μL) and MeCN (4 mL) according to oxidative coupling method B. 1H NMR: δ 7.63 (d, 1H, J = 8.7 Hz, Ar-H-6), 6.83 (s, 1H, Ar-H-6’), 6.79 (s, 1H, Ar-H-3’), 6.78 (s, 1H, Q-H-b), 6.70 (d, 1H, J = 8.7 Hz, Ar-H-5), 5.95 (s, 1H, Q-H-e), 3.91 (s, 3H, OCH₃-3), 3.90 (s, 3H, OCH₃-5’), 3.89 (s, 3H, OCH₃-2), 3.88 (s, 3H, OCH₃-4), 3.85 (s, 3H, OCH₃-4’), 3.79 (s, 3H, Q-OCH₃). 13C NMR: δ 185.5 (Q-C=O-c), 181.8 (Q-C=O-f), 163.1 (C=O), 158.2 (Q-C-OCH₃-d), 157.8 (Ar-C-OCH₃-4), 155.3 (Ar-C-OCH₃-2), 150.6 (Ar-C-OCH₃-4’), 146.5 (Ar-C-OCH₃-5’), 144.2 (Ar-C-1’), 142.9 (Q-C-a), 142.5 (Ar-C-OCH₃-3), 132.4 (Q-C-H-b), 127.3 (Ar-C-H-6), 117.5 (Ar-C-2’), 116.1 (Ar-C-1), 112.9 (Ar-C-H-3’), 107.7 (Q-C-H-e), 106.9 (Ar-C-H-5), 106.8 (Ar-C-H-6’), 61.6 (Ar-OCH₃-2), 60.8 (Ar-OCH₃-4), 56.3 (Ar-OCH₃-4’), 56.2 (Ar-OCH₃-5’), 56.1 (Ar-OCH₃-3), 56.0 (Q-OCH₃). MS (EI+): m/z 484 (M⁺, 4 %), 195 (100 %) HRMS (EI⁺): Calcd for C₂₅H₂₅O₁₀ = 484.1447 (M⁺), found 484.1459.

4,5-Dimethoxy-2-(4-methoxy-3,6-dioxocyclohexa-1,4-dien-1-yl)phenyl 3,4,5-trimethoxybenzoate 12c.
The title compound was prepared in 43 % yield (white solid, 70 mg) from 11c (100 mg, 0.28 mmol) in the presence of PIFA (132 mg, 0.35 mmol), BF$_3$.Et$_2$O (73 μL) and MeCN (4 mL) according to oxidative coupling method A. 1H NMR: δ 7.29 (s, 2H, Ar-H-2,6), 6.82 (s, 1H, Ar-H-6'), 6.79 (s, 1H, Q-H-b), 5.93 (s, 1H, Q-H-e), 3.91 (s, 3H, OCH$_3$-4), 3.90 (s, 3H, OCH$_3$-5'), 3.89 (s, 9H, OCH$_3$-3, 5, 4'), 3.78 (s, 3H, Q-OCH$_3$). 13C NMR: δ 185.5 (Q-C=O-c), 181.7 (Q-C=O-f), 164.3 (C=O), 158.4 (Q-C=OCH$_3$), 153.0 (2 x Ar-C=OCH$_3$-3, 5), 150.8 (Ar-C=OCH$_3$-4'), 146.7 (Ar-C=OCH$_3$-5'), 144.3 (Ar-C-1'), 142.9 (Ar-C=OCH$_3$-4), 142.4 (Q-C-a), 132.6 (Q-C-H-b), 123.6 (Ar-C-1), 117.4 (Ar-C-2'), 112.8 (Ar-C-H-3'), 107.7 (Q-C=H-e), 107.2 (2 x Ar-C-H-2, 6), 106.7 (Ar-C-H-6'), 60.9 (Ar-OCH$_3$-4), 56.3 (Ar-OCH$_3$-5'), 56.2 (3 x Ar-OCH$_3$-3, 5, 4'), 56.1 (Q-OCH$_3$). MS (EI+): m/z 484 (M$,^+$, 24 %), HRMS (EI+): Calcd for C$_{25}$H$_{24}$O$_{10}$ = 484.1369 (M$,^+$), found 484.1367.

4,4',5',5'-Tetramethoxybiphenyl-2,2'-diyl di-(3,4-dimethoxydibenzoate) 13a.

The title compound was prepared in 42 % yield (clear film, 41 mg) from 11a (100 mg, 0.29 mmol) in the presence of TTFA (86 mg, 0.16 mmol), BF$_3$.Et$_2$O (73 μL) and MeCN (5 mL) according to oxidative coupling method B. 1H NMR: δ 7.65 (dd, 2H, J = 8.4, 2.1 Hz, Ar-H-6), 7.46 (d, 2H, J = 2.1 Hz, Ar-H-2), 6.85 (s, 2H, Ar-H-3'), 6.84 (d, 2H, J = 8.4 Hz, Ar-H-5), 6.81 (s, 2H, Ar-H-6'), 3.91 (s, 6H, OCH$_3$-3), 3.85 (s, 6H, OCH$_3$-5'), 3.84 (s, 6H, OCH$_3$-4'), 3.73 (s, 6H, OCH$_3$-4). 13C NMR: δ 165.0 (C=O), 153.3 (Ar-C=OCH$_3$-3), 148.6 (Ar-C=OCH$_3$-4'), 148.5 (Ar-C=OCH$_3$-5'), 146.3 (Ar-C=OCH$_3$-4), 141.7 (Ar-C=OCH$_3$-5'), 124.1 (Ar-C-H-6), 121.6 (Ar-C-1), 113.0 (Ar-C-H-5), 112.1 (Ar-C-H-2), 110.2 (Ar-C-H-6'), 106.3 (Ar-C-H-3'), 55.9 (3 x Ar-OCH$_3$-3, 4', 5'), 55.8 (Ar-OCH$_3$-4). MS (EI+): m/z 634 (M$,^+$, 9 %), 167 (100 %), HRMS (EI$^+$): Calcd for C$_{34}$H$_{34}$O$_{12}$ = 634.2050 (M$,^+$), found 634.2047.

4,4',5,5'-Tetramethoxy-2,2'-diyl di-(3,4,5-trimethoxydibenzoate) 13c.

The title compound was prepared in 42 % yield (clear film, 41 mg) from 11c (100 mg, 0.29 mmol) in the presence of TTFA (86 mg, 0.16 mmol), BF$_3$.Et$_2$O (73 μL) and MeCN (5 mL) according to oxidative coupling method B. 1H NMR: δ 7.22 (s, 4H, Ar-H-2, 6), 6.86 (s, 4H, Ar-H-3', 6'), 3.89 (s, 6H, OCH$_3$-4), 3.86 (s, 6H, OCH$_3$-5'), 3.81 (s, 12H, OCH$_3$-3, 5), 3.78 (s, 6H, OCH$_3$-4'). 13C NMR: δ 164.8 (C=O), 152.9 (2 x Ar-C=OCH$_3$-3, 5), 148.8 (Ar-C=OCH$_3$-5'), 146.5 (Ar-C=OCH$_3$-4'), 142.6 (Ar-C=OCH$_3$-4), 141.8 (Ar-C=OCH$_3$-5'), 124.2 (Ar-C-1), 121.6 (Ar-C-1'), 113.1 (Ar-C-H-6'), 107.2 (2 x Ar-C-H-2, 6), 106.1 (Ar-C-H-3'), 60.9 (Ar-OCH$_3$-
5'), 56.2 (Ar-OC\textsubscript{H}\textsubscript{3}-4'), 56.1 (2 x Ar-OC\textsubscript{H}\textsubscript{3}-3, 5), 56.0 (Ar-OC\textsubscript{H}\textsubscript{3}-4). MS (EI+): \textit{m/z} 694 (M+, 18 \%), 195 (100 \%), HRMS (EI+): Calcd for C\textsubscript{35}H\textsubscript{38}O\textsubscript{14} = 694.2262 (M+), found 694.2282.

[Di-(3-methoxybenzyl)-(4,4',5,5'-tetramethoxybiphenyl-2,2'-diyl)diacetate 18.

The title compound was prepared in 42 % yield (white solid, 41 mg) from 17\textsubscript{d} (100 mg, 0.28 mmol) in the presence of PIFA (142 mg, 0.33 mmol), BF\textsubscript{3}.Et\textsubscript{2}O (73 \mu L) and MeCN (4 mL) according to oxidative coupling method A. M.p. 102-104 °C. 1H NMR: \(\delta\) 7.22 (t, 2H, \(J = 7.8\) Hz, Ar-H-5'), 6.84-6.80 (m, 4H, Ar-H-4', 6'), 6.82 (s, 2H, Ar-H-6), 6.76 (t, 2H, \(J = 2.1\) Hz, Ar-H-2'), 6.70 (s, 2H, Ar-H-3), 5.00 (ABq, 4H, \(J = 12.3\) Hz, Ar-CH\textsubscript{2}-O), 3.86 (s, 6H, OCH\textsubscript{3}-4), 3.75 (s, 6H, OCH\textsubscript{3}-3'), 3.72 (s, 6H, OCH\textsubscript{3}-3), 3.36 (s, 4H, Ar-CH\textsubscript{2}-CO). 13C NMR: \(\delta\) 171.7 (C=O), 159.6 (Ar-\(\bar{C}\)-OCH\textsubscript{3}-3'), 148.2 (Ar-\(\bar{C}\)-OCH\textsubscript{3}-4), 147.4 (Ar-\(\bar{C}\)-OCH\textsubscript{3}-3), 137.2 (Ar-\(\bar{C}\)-1'), 132.8 (Ar-\(\bar{C}\)-1), 129.5 (Ar-\(\bar{C}\)-H-5'), 124.6 (Ar-\(\bar{C}\)-2), 120.1 (Ar-\(\bar{C}\)-H-6'), 113.6 (Ar-\(\bar{C}\)-H-4'), 113.4 (Ar-\(\bar{C}\)-H-3), 113.2 (Ar-\(\bar{C}\)-H-6), 112.5 (Ar-\(\bar{C}\)-H-2'), 66.2 (Ar-CH\textsubscript{2}-O), 55.8 (Ar-OCH\textsubscript{3}-4), 55.7 (Ar-OCH\textsubscript{3}-3), 55.1 (Ar-OCH\textsubscript{3}-3'), 38.1 (Ar-CH\textsubscript{2}-CO). MS (EI+): \textit{m/z} 630 (M+, 10 \%), 121 (100 \%), HRMS (EI+): Calcd for C\textsubscript{36}H\textsubscript{38}O\textsubscript{10} = 630.2465 (M+), found 630.2439.

Di-(3,4-dimethoxyphenyl) 3,3'-(4,4',5,5'-tetramethoxybiphenyl-2,2'-diyl)dipropanoate 20.

The title compound was prepared in 24 % yield (yellow film, 24 mg) from 19 (100 mg, 0.28 mmol) in the presence of PIFA (130 mg, 0.30 mmol), BF\textsubscript{3}.Et\textsubscript{2}O (100 \mu L) and MeCN (3 mL) according to oxidative coupling method A. 1H NMR: \(\delta\) 6.88 (s, 2H, Ar-H-6), 6.78 (d, 2H, \(J = 8.7\) Hz, Ar-H-5'), 6.72 (s, 2H, Ar-H-3), 6.49 (dd, 2H, \(J = 8.7, 2.4\) Hz, Ar-H-6'), 6.45 (d, 2H, \(J = 2.4\) Hz, Ar-H-2'), 3.91 (s, 6H, OCH\textsubscript{3}), 3.85 (s, 6H, OCH\textsubscript{3}), 3.80 (s, 6H, OCH\textsubscript{3}), 2.93-2.72 (m, 4H, Ar-CH\textsubscript{2}), 2.64 (t, 4H, \(J = 7.2\) Hz, Ar-CH\textsubscript{2}-CH\textsubscript{2}). 13C NMR: \(\delta\) 171.6 (C=O), 149.2 (Ar-\(\bar{C}\)-OCH\textsubscript{3}-3'), 148.2 (Ar-\(\bar{C}\)-OCH\textsubscript{3}-4), 147.0 (Ar-\(\bar{C}\)-OCH\textsubscript{3}-4), 146.7 (Ar-\(\bar{C}\)-OCH\textsubscript{3}-3'), 144.1 (Ar-\(\bar{C}\)-1'), 132.5 (Ar-\(\bar{C}\)-1), 130.2 (Ar-\(\bar{C}\)-2), 113.4 (Ar-\(\bar{C}\)-H-3), 112.6 (Ar-\(\bar{C}\)-H-6'), 112.1 (Ar-\(\bar{C}\)-H-6), 111.0 (Ar-\(\bar{C}\)-H-5'), 105.5 (Ar-\(\bar{C}\)-H-2'), 56.0 (Ar-OCH\textsubscript{3}), 55.9 (2 x Ar-OCH\textsubscript{3}), 55.8 (Ar-OCH\textsubscript{3}), 35.3 (Ar-CH\textsubscript{2}-CH\textsubscript{2}), 28.2 (Ar-CH\textsubscript{2}). MS (EI+): \textit{m/z} 690 (M+, 14 \%), HRMS (EI+): Calcd for C\textsubscript{38}H\textsubscript{43}O\textsubscript{12} = 691.2755 (M+), found 691.2726.
REFERENCES

33. Carbocycles have also been generated from bis(3,4-dimethoxyphenyl) alkanes phenyl ethers by electrochemical oxidation, see: Ronlan, A.; Parker V. D. *J. Am. Chem. Soc.* **1974**, *39*, 1014-1016.

Acknowledgments:

We thank Johnson and Johnson Research Pty. Limited, Sydney and the University of Wollongong for supporting this research and Dr. Wayne Gerlach for encouragement and support.
GRAPHICAL ABSTRACT

Intramolecular versus intermolecular oxidative couplings of ester tethered di-aryl ethers

Stephen R. Taylor, Alison T. Ung and Stephen G. Pyne Brian W. Skelton and Allan H. White

Department of Chemistry, University of Wollongong, Wollongong, NSW, 2522, Australia

Chemistry M313, School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia
Intramolecular versus intermolecular oxidative couplings of ester tethered di-aryl ethers

Stephen R. Taylor, Alison T. Ung* and Stephen G. Pyne* Brian W. Skeltonb and Allan H. Whiteb

aDepartment of Chemistry, University of Wollongong, Wollongong, NSW, 2522, Australia
bDepartment of Chemistry, University of Western Australia, Crawley, Western Australia, 6009, Australia

Supporting Information

Structure determinations

Full spheres of 'low-temperature' CCD area-detector diffractometer data were measured (Bruker AXS instrument, ω-scans; monochromatic Mo Kα radiation; λ = 0.71073 Å; T ca. 153 K), yielding \(N_{\text{total}} \) reflections, these merging to \(N \) unique \((R_{\text{int}} \) cited) after 'empirical'/multiscan absorption correction, \(N_{\text{o}} \) with \(F > 4\sigma(F) \) considered 'observed'. Conventional residuals \(R, R_w \) (weights: \(\sigma^2(F^2) + n F^2 \)\(^{-1} \)) are cited on the latter convergence, the full matrix least squares refinement refining anisotropic displacement parameters for C, O, \((x,y,z,U_{\text{iso}})\)H being included, constrained at estimates. Neutral atom complex scattering factors were employed within the XTAL 3.7 program system.* Molecular projections are shown in the Figures, C, O with 50% probability amplitude displacement envelopes, H

having arbitrary radii of 0.1 Å. Full .cif depositions (excluding structure factor amplitudes) reside with the Cambridge Crystallographic Data Base, CCDC 647893-647895; the results are consistent with the stoichiometries and connectivities as presented.

Crystal/refinement data

3c. \(\text{C}_{34}\text{H}_{34}\text{O}_{10} \), \(M = 602.7 \). Orthorhombic, space group \(Pba\text{2} \) (\(C_{2\text{v}}^{8} \), No. 32), \(a = 13.074(8) \), \(b = 23.014(12) \), \(c = 4.844(2) \) Å, \(V = 1457 \) Å³. \(D_c \) (\(Z = 2 \)) = 1.37\(_3\) g cm\(^{-3}\). \(\mu_{\text{Mo}} = 0.10 \) mm\(^{-1}\); specimen: 0.16 x 0.15 x 0.15 mm; \(T_{\text{min/max}} = 0.80 \). 2\(\theta \)\(_{\text{max}} = 50^\circ \); \(N_t = 5224 \), \(N = 1330 \) (\(R_{\text{int}} = 0.060 \), \(N_o = 981 \); \(R = 0.048 \), \(R_w \) (\(n = 5 \)) = 0.098; \(S = 0.98 \). \(|\Delta \rho_{\text{max}}| = 0.35 \) e Å\(^{-3}\).

Comment. The molecule is disposed about a crystallographic 2-axis, one half comprising the asymmetric unit of the structure. In the present and following structure, 'Friedel' data were merged in the refinement.

8. \(\text{C}_{17}\text{H}_{16}\text{O}_{7} \), \(M = 332.3 \). Monoclinic, space group \(C\text{c} \) (\(C_{\text{s}}^{4} \), No. 9), \(a = 23.144(4) \), \(b = 18.658(3) \), \(c = 15.415(3) \) Å, \(\beta = 110.525(4)^\circ \), \(V = 6234 \) Å³. \(D_c \) (\(Z = 16 \)) = 1.37\(_3\) g cm\(^{-3}\). \(\mu_{\text{Mo}} = 0.11 \) mm\(^{-1}\); specimen: 0.50 x 0.34 x 0.32 mm; \(T_{\text{min/max}} = 0.92 \). 2\(\theta \)\(_{\text{max}} = 65^\circ \); \(N_t = 43567 \), \(N = 11364 \) (\(R_{\text{int}} = 0.040 \), \(N_o = 8198 \); \(R = 0.065 \), \(R_w \) (\(n = 25 \)) = 0.14; \(S = 1.02 \). \(|\Delta \rho_{\text{max}}| = 0.56 \) e Å\(^{-3}\).

Comment. The crystal packing is spectacular, molecular planes being disposed quasi-normal to \(a^* \) with pseudo-symmetry evident among the four molecules of the asymmetric unit. The latter may be partitioned as molecules, 1,2 // 3,4 depending on the orientation of the pendant acetate groups. Relevant dihedral angles (degree) are as follows:

<table>
<thead>
<tr>
<th>Molecule</th>
<th>(\text{C(n2)-C(n1)-O(n1')-C(n2')})</th>
<th>(\text{C(n1)-C(n2)-O(n21)-C(n21)})</th>
<th>(\text{C(n3')-C(n4')-O(n4')-C(n41')})</th>
<th>(\theta(\text{ar(C6)/ar'(C6)}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>138.7(3)</td>
<td>–103.3(3)</td>
<td>0.0(6)</td>
<td>40.0(2)</td>
</tr>
<tr>
<td>2</td>
<td>134.3(4)</td>
<td>–95.5(4)</td>
<td>–3.4(6)</td>
<td>46.6(2)</td>
</tr>
<tr>
<td>3</td>
<td>128.5(4)</td>
<td>103.4(4)</td>
<td>–4.5(6)</td>
<td>52.2(2)</td>
</tr>
<tr>
<td>4</td>
<td>133.3(4)</td>
<td>106.9(4)</td>
<td>–1.9(6)</td>
<td>46.9(2)</td>
</tr>
</tbody>
</table>
18. \(C_{36}H_{38}O_{10}, M = 630.7 \). Monoclinic, space group \(P21/c \) (\(C_{2h}^3 \), No.13), \(a = 11.716(3) \), \(b = 5.249(1) \), \(c = 25.763(7) \, \text{Å} \), \(\beta = 110.311(5)° \), \(V = 1559 \, \text{Å}^3 \). \(D_c \) \((Z = 2) = 1.34_4 \, \text{g cm}^{-3} \). \(\mu_{\text{Mo}} = 0.10 \, \text{mm}^{-1} \); specimen: 0.16 x 0.16 x 0.10 mm; \(T_{\text{min/max}} = 0.86 \). \(2\theta_{\text{max}} = 50° \); \(N_t = 11791, N = 2753 \) \((R_{\text{int}} = 0.074), N_o = 1729; R = 0.055, R_w \) \((n_w = 9) \); \(S = 0.98 \). \(|\Delta\rho_{\text{max}}| = 0.47 \, \text{e Å}^{-3} \).

Cyclic Voltammetry

Compounds were dissolved in degassed MeCN containing 0.1 M LiClO₄ and diluted to 0.01 M, and then subjected to anodic oxidation in an undivided beaker-type cell (50 mL). The working electrode was a 1 mm platinum disk, the auxiliary electrode was platinum mesh and the reference was an Ag/Ag⁺ (Ag wire dipped in to a solution containing 0.01 M AgNO₃ and 0.1 M tetrabutylammonium perchlorate in MeCN). Scan rates were 100 mV/s.

Figure The Cyclic Voltamagrams obtained following the electrochemical oxidation of compounds a) 6 and b) 7 as 0.01 M solutions in MeCN.

Synthesis of Esters

All \(^1\text{H}\) NMR spectra were performed at 300 MHz and all \(^{13}\text{C}\) NMR (DEPT) spectra at 75 MHz in CDCl₃ solution, unless otherwise noted. All spectra were referenced to CDCl₃ \((^1\text{H} \delta 7.26 \, \text{ppm} \) and \(^{13}\text{C}\)
NMR δ 77.00 ppm). ¹H NMR assignments were achieved with the aid of gCOSY, and in some cases NOESY and TOCSY experiments. ¹³C NMR assignments were based upon DEPT, gHSQC and gHMBC experiments. * Indicates individual OMe resonances were not assigned.

3,4-Dimethoxyphenyl 3,5-dimethoxyphenylacetate 1b

The title compound was prepared in 92 % yield (cream solid, 497 mg) from 3,4-dimethoxyphenylacetic acid (318 mg, 1.6 mmol) and 3,5-dimethoxyphenol (300 mg 1.94 mmol) in the presence of DCC (367 mg, 1.78 mmol), DMAP (47 mg, 0.38 mmol) and DCM (6 mL) as for 1a.

m.p. 94-96 °C

¹H NMR: δ 6.91 (d, 1H, J = 2.0 Hz, Ar-H-2), 6.90 (dd, 1H, J = 8.9, 2.0 Hz, Ar-H-6), 6.83 (d, 1H, J = 8.9 Hz, Ar-H-5), 6.31 (t, 1H, J = 2.1 Hz, Ar-H-4’), 6.23 (d, 2H, J = 2.1 Hz, Ar-H-2’, 6’), 3.87 (s, 3H, OCH₃), 3.86 (s, 3H, OCH₃), 3.76 (s, 2H, Ar-CH₂), 3.72 (s, 6H, OCH₃).

¹³C NMR: δ 169.8 (C=O), 160.9 (2 x Ar-C-OCH₃-3’, 5’), 152.0 (Ar-C-OCH₃-1’), 148.7 (Ar-C-OCH₃-3), 148.1 (Ar-C-OCH₃-4), 125.5 (Ar-C-1’), 121.3 (Ar-C-H-6), 112.1 (Ar-C-H-5), 111.0(Ar-C-H-2), 99.8 (2x Ar-C-H-2’, 6’), 97.9 (Ar-C-H-4’), 55.6 (Ar-OCH₃)*, 55.2 (Ar-OCH₃)*, 40.6 (Ar-CH₂).

MS (Cl+): m/z 333 (M+H⁺, 100 %), HRMS (Cl+): Calcd for C₁₈H₂₁O₆ = 333.1338 (M+H⁺), found 333.1332.

3,4-Dimethoxyphenyl 3-methoxyphenylacetate 1c

The title compound was prepared in 83 % yield (clear oil, 822 mg) from 3,4-dimethoxyphenylacetic acid (640 mg, 3.26 mmol) and 3-methoxyphenol (0.524 mL, 4.83 mmol) in the presence of DCC (740 mg, 3.58 mmol), DMAP (100 mg, 8.18 mmol) and DCM (12 mL) as for 1a.

¹H NMR: δ 7.24 (t, 1H, J = 8.1 Hz, Ar-H-5’), 6.91-6.89 (m, 2H, Ar-H-2, 6), 6.84 (d, 1H, J = 8.6 Hz, Ar-H-5), 6.75 (dd, 1H, J = 8.1, 2.1 Hz, Ar-H-6’), 6.65 (dd, 1H, J = 8.1, 2.1 Hz, Ar-H-4’), 6.62 (t, 1H, J = 2.1 Hz, Ar-H-2’), 3.87 (s, 3H, OCH₃)*, 3.85 (s, 3H, OCH₃)*, 3.77 (s, 2H, Ar-CH₂), 3.74 (s, 3H, OCH₃-3’).
13C NMR: δ 169.9 (C=O), 160.2 (Ar-C-OCH$_3$-3’), 151.4 (Ar-C-1’), 148.7 (Ar-C-OCH$_3$-3), 148.0 (Ar-C-OCH$_3$-4), 129.5 (Ar-C-H-5’), 125.6 (Ar-C-1), 121.3 (Ar-C-H-6), 113.4 (Ar-C-H-5), 112.1 (Ar-C-H-4’), 111.4 (Ar-C-H-6’), 111.0 (Ar-C-H-2), 107.3 (Ar-C-H-2’), 55.6 (2 x Ar-OCH$_3$-3, 4), 55.1 (Ar-OCH$_3$-3’), 40.6 (Ar-CH$_2$-CO).

MS (EI+): m/z 302 (M$^+$, 39 %), 151 (100 %), HRMS (EI+): Calcd for C$_{17}$H$_{18}$O$_5$ = 302.1154 (M$^+$), found 302.1148.

3,4-Dimethoxyphenyl 4-methoxyphenylacetate 1d

The title compound was prepared in 86 % yield (white solid, 848 mg) from 3,4-dimethoxyphenylacetic acid (640 mg, 3.26 mmol) and 4-methoxyphenol (600 mg 4.83 mmol) in the presence of DCC (740 mg, 3.58 mmol), DMAP (100 mg, 8.18 mmol) and DCM (12 mL) as for 1a. m.p. 54-56 °C

1H NMR: δ 6.97 (d, 2H, J = 9.3 Hz, Ar-H-2’, 6’), 6.93 (d, 1H, J = 9.3 Hz, Ar-H-5), 6.90 (dd, 1H, J = 9.3, 3.0 Hz, Ar-H-6), 6.87 (d, 2H, J = 9.3 Hz, Ar-H-3’, 5’), 6.86 (d, 1H, J = 3.0 Hz, Ar-H-2), 3.89 (s, 3H, OCH$_3$)*, 3.88 (s, 3H, OCH$_3$)*, 3.78 (s, 3H, OCH$_3$)*, 3.77 (s, 2H, Ar-CH$_2$).

13C NMR: δ 170.7 (C=O), 157.1 (Ar-C-OCH$_3$-4’), 148.8 (Ar-C-OCH$_3$-3), 148.1 (Ar-C-OCH$_3$-4), 144.1 (Ar-C-1’), 125.8 (Ar-C-1), 122.1 (2 x Ar-C-H-2’, 6’), 121.4 (Ar-C-H-6), 114.3 (2 x Ar-C-H-3’, 5’), 112.2 (Ar-C-H-5), 111.1 (Ar-C-H-2), 56.6 (Ar-OCH$_3$)*, 55.7 (Ar-OCH$_3$)*, 55.4 (Ar-OCH$_3$)*, 40.7 (Ar-CH$_2$).

MS (EI+): m/z 302 (M$^+$, 14 %), 151 (100 %), HRMS (EI+): Calcd for C$_{17}$H$_{18}$O$_5$ = 302.1154 (M$^+$), found 302.1155.

3,4-Dimethoxyphenyl 3-methoxyphenylacetate 1e

The title compound was prepared in 97 % yield (waxy cream solid, 712 mg) from 3-methoxyphenylacetic acid (400 mg, 2.40 mmol) and 3,4-dimethoxyphenol (352 mg, 2.28 mmol) in the presence of DCC (546 mg, 2.64 mmol), DMAP (73 mg, 0.61 mmol) and DCM (10 mL) as for
1a.

\(^1\)H NMR: δ 7.24 (t, 1H, J = 7.8 Hz, Ar-H-5), 6.93 (d, 1H, J = 7.8 Hz, Ar-H-6), 6.92 (d, 1H, J = 2.4 Hz, Ar-H-2), 6.82 (dd, 1H, J = 7.8, 2.4 Hz, Ar-H-4), 6.77 (dd, 1H, J = 6.9, 2.1 Hz, Ar-H-6’), 6.61 (d, 1H, J = 2.1 Hz, Ar-H-2’), 6.60 (d, 1H, J = 6.9 Hz, Ar-H-5’), 3.79 (s, 3H, OCH\(_3\)-3’), 3.78 (s, 6H, OCH\(_3\)-3, 4’), 3.75 (s, 2H, Ar-CH\(_2\)-CO).

\(^{13}\)C NMR: δ 169.8 (C=O), 159.5 (Ar-\(-\)OCH\(_3\)-3), 149.0 (Ar-\(-\)OCH\(_3\)-3’), 146.5 (Ar-\(-\)OCH\(_3\)-4’), 144.0 (Ar-\(-\)C-1’), 134.6 (Ar-\(-\)C-1), 129.3 (Ar-\(-\)C-H-5), 121.3 (Ar-\(-\)C-H-6), 114.7 (Ar-\(-\)C-H-2), 112.5 (Ar-\(-\)C-H-4), 112.4 (Ar-\(-\)C-H-5’), 110.8 (Ar-\(-\)C-H-6’), 105.3 (Ar-\(-\)C-H-2’), 55.7 (Ar-OCH\(_3\)-3’), 55.6 (Ar-OCH\(_3\)-4’), 54.8 (Ar-OCH\(_3\)-3), 40.9 (Ar-\(-\)CH\(_2\)-CO).

MS (Cl+): m/z 303 (M+H, 100 %), HRMS (EI +): Calcd for C\(_{17}\)H\(_{18}\)O\(_5\) = 302.1154 (M +), found 302.1158.

3-Methoxyphenyl 3-methoxyphenylacetate 1f

3,4-Dimethoxy 3,4-dimethoxyphenylbenzoate 11a

The title compound was prepared in 91 % yield (pale oil, 702 mg) from 3-methoxyphenylacetic acid (515 mg, 3.10 mmol) and 3-methoxyphenol (350 mg, 2.92 mmol) in the presence of DCC (703 mg, 3.41 mmol), DMAP (95 mg, 0.77 mmol) and DCM (10 mL) as for 1a.

\(^1\)H NMR: δ 7.28-7.19 (m, 2H, Ar-H-5, 5’), 6.96-6.91 (m, 2H, Ar-H-2,6), 6.83 (dd, 1H, J = 8.4, 2.7 Hz, Ar-H-4’), 6.74 (dd, 1H, J = 8.1, 2.1 Hz, Ar-H-6’), 6.65 (dd, 1H, J = 8.1, 2.1 Hz, Ar-H-4), 6.61 (t, 1H, J = 2.1 Hz, Ar-H-2’), 3.79 (s, 2H, Ar-CH\(_2\)), 3.77 (s, 3H, OCH\(_3\)-3’), 3.73 (s, 3H, OCH\(_3\)-3).

\(^{13}\)C NMR: δ 169.7 (C=O), 160.3 (Ar-\(-\)C-OCH\(_3\)-3), 159.6 (Ar-\(-\)C-OCH\(_3\)-3’), 151.5 (Ar-\(-\)C-1’), 134.6 (Ar-\(-\)C-1), 129.5 (Ar-\(-\)C-H-5’), 121.5 (Ar-\(-\)C-H-6), 114.8 (Ar-\(-\)C-H-2), 113.5 (Ar-\(-\)C-H-4), 112.7 (Ar-\(-\)C-H-4’), 111.5 (Ar-\(-\)C-H-6’), 107.3 (Ar-\(-\)C-H-2’), 55.2 (Ar-OCH\(_3\)-3), 55.0 (Ar-OCH\(_3\)-3’), 41.2 (Ar-\(-\)CH\(_2\)).

MS (EI+): m/z 272 (M\(^+\), 6 %), 148 (100%), HRMS (EI\(^+\)): Calcd for C\(_{16}\)H\(_{16}\)O\(_4\) = 272.1048 (M\(^+\)), found 272.1052.
The title compound was prepared in 91 % yield (white solid, 1.31 g) from 3,4-dimethoxybenzoic acid (910 mg, 5.00 mmol) and 3,4-dimethoxyphenol (700 mg 4.54 mmol) in the presence of DCC (1.10 g, 5.33 mmol), DMAP (150 mg, 1.27 mmol) and DCM (20 mL) as for 1a.

m.p. 142-144 °C

1H NMR: δ 7.86 (dd, 1H, $J = 8.6$, 2.0 Hz, Ar-H-6), 7.67 (d, 1H, $J = 2.0$ Hz, Ar-H-2), 6.95 (d, 1H, $J = 8.6$ Hz, Ar-H-5), 6.89 (d, 1H, $J = 9.3$ Hz, Ar-H-2’), 6.77 (d, 1H, $J = 2.6$ Hz, Ar-H-5’), 6.76 (dd, 1H, $J = 9.3$, 2.6 Hz, Ar-H-6’), 3.98 (s, 3H, OCH$_3$)*, 3.97 (s, 3H, OCH$_3$)*, 3.90 (s, 3H, OCH$_3$)*, 3.88 (s, 3H, OCH$_3$)*.

13C NMR: δ 164.8 (C=O), 153.1 (Ar-C-OCH$_3$-4), 149.0 (Ar-C-OCH$_3$-3), 148.3 (Ar-C-OCH$_3$-3), 146.4 (Ar-C-OCH$_3$-4), 144.3 (Ar-C-1’), 123.9 (Ar-C-H-6), 121.5 (Ar-C-1), 112.7 (Ar-C-H-6’), 111.9 (Ar-C-H-2), 110.9 (Ar-C-H-5’), 110.0 (Ar-C-H-5), 105.6 (Ar-C-H-2’), 55.7 (Ar-OCH$_3$)*, 55.66 (Ar-OCH$_3$)*, 55.64 (Ar-OCH$_3$)*, 55.5 (Ar-OCH$_3$)*.

MS (EI+): m/z 331 (M$^+$, 9 %), HRMS (EI+): Calcd for C$_{17}$H$_{18}$O$_6$ = 318.1103 (M$^+$), found 318.1099.

3,4-Dimethoxyphenyl 2,3,4-trimethoxybenzoate 11b

The title compound was prepared in 93 % yield (cream solid, 840 mg) from 2,3,4-trimethoxybenzoic acid (549 mg, 2.58 mmol) and 3,4-dimethoxyphenol (400 mg, 2.59 mmol) in the presence of DCC (600 mg, 2.90 mmol), DMAP (72 mg, 0.59 mmol) and DCM (10 mL) as for 1a.

m.p. 85-86 °C

1H NMR: δ 7.79 (d, 1H, $J = 9.0$ Hz, Ar-H-6), 6.88 (dd, 1H, $J = 6.7$, 2.2 Hz, Ar-H-6’), 6.76 (d, 1H, $J = 2.2$ Hz, Ar-H-2’), 6.75 (d, 1H, $J = 6.7$ Hz, Ar-H-5’), 6.74 (d, 1H, $J = 9.0$ Hz, Ar-H-5), 3.98 (s, 3H, Ar-OCH$_3$-2), 3.94 (s, 3H, Ar-OCH$_3$-3), 3.90 (s, 3H, Ar-OCH$_3$-4), 3.88 (s, 3H, Ar-OCH$_3$-4’), 3.87 (s, 3H, Ar-OCH$_3$-3’).

13C NMR: δ 163.9 (C=O), 157.6 (Ar-C-OCH$_3$-4), 155.1 (Ar-C-OCH$_3$-2), 149.2 (Ar-C-OCH$_3$-3’), 146.6 (Ar-C-OCH$_3$-4’), 144.4 (Ar-C-1’), 142.9 (Ar-C-OCH$_3$-3), 127.2 (Ar-C-H-6), 116.7 (Ar-C-1), 112.8
(Ar-C-H-5), 111.0 (Ar-C-H-6’), 106.8 (Ar-C-H-5’), 105.8 (Ar-C-H-2’), 61.6 (Ar-OC(=O)-H3-2), 60.8 (Ar-OC(=O)-H3-4), 56.0 (Ar-OC(=O)-H3-5), 55.9 (Ar-OC(=O)-H3-3’), 55.7 (Ar-OC(=O)-H3-3).

MS (EI+): m/z 348 (M+, 10 %), 151 (100 %) HRMS (EI’): Calcd for C_{18}H_{20}O_{7} = 348.1209 (M+), found 348.1213.

3,4-Dimethoxyphenyl 3,4,5-trimethoxybenzoate 11c

The title compound was prepared in 97 % yield (cream solid, 877 mg) from 3,4,5-trimethoxybenzoic acid (549 mg, 2.58 mmol) and 3,4-dimethoxyphenol (400 mg, 2.59 mmol) in the presence of DCC (600 mg, 2.90 mmol), DMAP (72 mg, 0.59 mmol) and DCM (10 mL) as for 1a.

m.p. 136-138 °C

^1^H NMR: δ 7.38 (s, 2H, Ar-H-2, 6), 6.83 (dd, 1H, J = 7.8, 1.2 Hz, Ar-H-6’), 6.71 (d, 1H, J = 1.2 Hz, Ar-H-2’), 6.70 (d, J = 7.8 Hz, Ar-H-5’), 3.88 (s, 3H, OCH_3-4), 3.87 (s, 6H, OCH_3-3, 5), 3.83 (s, 3H, OCH_3-4’), 3.81 (s, 3H, OCH_3-3’).

^13^C NMR: δ 164.8 (C=O), 152.7 (2 x Ar-C-OC(=O)-H3-3), 149.2 (Ar-C-OC(=O)-H3-4’), 146.6 (Ar-C-OC(=O)-H3-3’), 144.3 (Ar-C-1’), 142.4 (Ar-C-OC(=O)-H3-4), 124.1 (Ar-C-1), 112.7 (Ar-C-H-5’), 111.0 (Ar-C-H-6’), 107.0 (2 x Ar-C-H-2,6), 105.6 (Ar-C-H-2’), 60.6 (Ar-OC(=O)-H3-4), 56.0 (2 x Ar-OC(=O)-H3-3,5), 55.9 (Ar-OC(=O)-H3-3’), 55.7 (Ar-OC(=O)-H3-4’).

MS (EI+): m/z 348 (M’, 30 %), 195 (100 %), HRMS (EI’): Calcd for C_{18}H_{21}O_{7} = 349.1287 (M’), found 349.1281.

3-Methoxyphenyl 2,3,4-trimethoxybenzoate 11d

The title compound was prepared in 98 % yield (white solid, 735 mg) from 2,3,4-trimethoxybenzoic acid (500 mg, 2.35 mmol) and 3-methoxyphenol (321 mg, 2.59 mmol) in the presence of DCC (534 mg, 2.59 mmol), DMAP (79 mg, 0.67 mmol) and DCM (10 mL) as for 1a.

m.p. 50-52 °C
\(^1\)H NMR: \(\delta\) 7.80 (d, 1H, \(J = 8.7\) Hz, Ar-H-6), 7.31 (d, 1H, \(J = 8.2\) Hz, Ar-H-5'), 6.81 (dd, 2H, \(J = 8.2, 2.2\) Hz, Ar-H-4', 6'), 6.77 (t, 1H, \(J = 2.2\) Hz, Ar-H-2'), 6.76 (d, 1H, \(J = 8.7\) Hz, Ar-H-5), 3.98 (s, 3H, OCH\(_3\)-4), 3.94 (s, 3H, OCH\(_3\)-2), 3.90 (s, 3H, OCH\(_3\)-3), 3.81 (s, 3H, OCH\(_3\)-3').

\(^{13}\)C NMR: \(\delta\) 163.6 (C=O), 160.4 (Ar-C-OCH\(_3\)-3'), 157.7 (Ar-C-OCH\(_3\)-2), 155.3 (Ar-C-OCH\(_3\)-4), 151.9 (Ar-C-OCH\(_3\)-3'), 143.1 (Ar-C-1'), 129.7 (Ar-C-H-5), 127.5 (Ar-C-OCH\(_3\)-6), 116.9 (Ar-C-1), 114.4 (Ar-C-H-6'), 111.6 (Ar-C-H-4'), 107.7 (Ar-C-H-2'), 106.9 (Ar-C-H-5'), 61.8 (Ar-OCH\(_3\)-3), 61.0 (Ar-OCH\(_3\)-4), 56.1 (Ar-OCH\(_3\)-2), 55.3 (Ar-OCH\(_3\)-3').

MS (EI+): \(m/z\) 318 (M\(^+\), 6 %), 195 (100 %), HRMS (EI\(^+\)): Calcd for C\(_{17}\)H\(_{18}\)O\(_6\) = 318.1103 (M\(^+\)), found 318.1105.

3-Methoxyphenyl 3,4,5-trimethoxybenzoate 11e

The title compound was prepared in 98 % yield (white solid, 740 mg) from 3,4,5-trimethoxybenzoic acid (500 mg, 2.35 mmol) and 3-methoxyphenol (321 mg, 2.59 mmol) in the presence of DCC (534 mg, 2.59 mmol), DMAP (79 mg, 6.47 mmol) and DCM (10 mL) as for 1a. NMR data not reported.\(^1\)

m.p. 92-94 °C (lit.\(^1\) m.p. not reported)

\(^1\)H NMR: \(\delta\) 7.45 (s, 2H, Ar-H-2, 6), 7.33 (t, 1H, \(J = 8.0\) Hz, Ar-H-5'), 6.83 (dd, 1H, \(J = 8.0, 2.4\) Hz, Ar-H-4'), 6.80 (dd, 1H, \(J = 8.0, 2.4\) Hz, Ar-H-6'), 6.76 (t, 1H, \(J = 2.1\) Hz, Ar-H-2'), 3.95 (s, 3H, OCH\(_3\)-4), 3.94 (s, 6H, OCH\(_3\)-3, 5), 3.82 (s, 3H, OCH\(_3\)-3').

\(^{13}\)C NMR: \(\delta\) 164.7 (C=O), 160.5 (Ar-C-OCH\(_3\)-3'), 152.9 (2 x Ar-C-OCH\(_3\)-3,5), 151.8 (Ar-C-OCH\(_3\)-4), 142.6 (Ar-C-1'), 129.8 (Ar-C-H-5'), 124.3 (Ar-C-1), 113.9 (Ar-C-OCH\(_3\)-6'), 111.8 (Ar-C-OCH\(_3\)-4'), 107.6 (Ar-C-H-2'), 107.3 (2 x Ar-C-H-2, 6), 60.9 (Ar-OCH\(_3\)-4), 56.2 (2 x Ar-OCH\(_3\)-3, 5), 55.3 (Ar-OCH\(_3\)-3').

MS (EI+): \(m/z\) 318 (M\(^+\), 31 %), 195 (100 %), HRMS (EI\(^+\)): Calcd for C\(_{17}\)H\(_{18}\)O\(_6\) = 318.1103 (M\(^+\)), found 318.1106.

3,4-Dimethoxybenzyl 3,4-dimethoxyphenylacetate 17a

The title compound was prepared in 98 % yield (white solid, 740 mg) from 3,4,5-trimethoxybenzoic acid (500 mg, 2.35 mmol) and 3-methoxyphenol (321 mg, 2.59 mmol) in the presence of DCC (534 mg, 2.59 mmol), DMAP (79 mg, 6.47 mmol) and DCM (10 mL) as for 1a. NMR data not reported.\(^1\)

m.p. 92-94 °C (lit.\(^1\) m.p. not reported)

\(^1\)H NMR: \(\delta\) 7.45 (s, 2H, Ar-H-2, 6), 7.33 (t, 1H, \(J = 8.0\) Hz, Ar-H-5'), 6.83 (dd, 1H, \(J = 8.0, 2.4\) Hz, Ar-H-4'), 6.80 (dd, 1H, \(J = 8.0, 2.4\) Hz, Ar-H-6'), 6.76 (t, 1H, \(J = 2.1\) Hz, Ar-H-2'), 3.95 (s, 3H, OCH\(_3\)-4), 3.94 (s, 6H, OCH\(_3\)-3, 5), 3.82 (s, 3H, OCH\(_3\)-3').

\(^{13}\)C NMR: \(\delta\) 164.7 (C=O), 160.5 (Ar-C-OCH\(_3\)-3'), 152.9 (2 x Ar-C-OCH\(_3\)-3,5), 151.8 (Ar-C-OCH\(_3\)-4), 142.6 (Ar-C-1'), 129.8 (Ar-C-H-5'), 124.3 (Ar-C-1), 113.9 (Ar-C-OCH\(_3\)-6'), 111.8 (Ar-C-OCH\(_3\)-4'), 107.6 (Ar-C-H-2'), 107.3 (2 x Ar-C-H-2, 6), 60.9 (Ar-OCH\(_3\)-4), 56.2 (2 x Ar-OCH\(_3\)-3, 5), 55.3 (Ar-OCH\(_3\)-3').

MS (EI+): \(m/z\) 318 (M\(^+\), 31 %), 195 (100 %), HRMS (EI\(^+\)): Calcd for C\(_{17}\)H\(_{18}\)O\(_6\) = 318.1103 (M\(^+\)), found 318.1106.
The title compound was prepared in 78% yield (cream solid, 689 mg) from 3,4-dimethoxyphenylacetic acid (500 mg, 2.55 mmol) and 3,4-dimethoxybenzyl alcohol (0.44 mL, 3.05 mmol) in the presence of DCC (578 mg, 2.80 mmol), DMAP (62 mg, 0.509 mmol) and DCM (10 mL) as for 1a. NMR data not recorded.2

m.p. 104-106 °C (lit.2 m.p. not reported)

1H NMR: δ 6.88 (dd, 1H, J = 8.1, 1.8 Hz, Ar-H-6), 6.82 (bs, 2H, Ar-H-2, 5), 6.79 (bs, 3H, Ar-H-2’, 5’, 6’), 5.06 (s, 2H, Ar-CH$_2$-O), 3.84 (s, 3H, OCH$_3$-3), 3.83 (s, 3H, OCH$_3$-4), 3.81 (s, 6H, -OCH$_3$-3’, 4’), 3.58 (s, 2H, Ar-CH$_2$-CO).

13C NMR: δ 171.2 (C=O), 148.6 (Ar-C-CH$_3$-4’), 148.5 (Ar-C-CH$_2$-3), 148.4 (Ar-C-CH$_2$-3’), 147.7 (Ar-C-CH$_3$-4), 128.0 (Ar-C-1), 126.0 (Ar-C-1’), 121.0 (Ar-C-H-6’), 120.7 (Ar-C-H-6), 111.9 (Ar-C-H-5), 111.1 (Ar-C-H-2), 110.7 (Ar-C-H-5’), 110.5 (Ar-C-H-2’), 66.2 (Ar-CH$_2$-O), 55.5 (Ar-OCH$_3$-3), 55.4 (Ar-OCH$_3$-4), 55.3 (Ar-OCH$_3$-3’), 55.2 (Ar-OCH$_3$-4’), 40.5 (Ar-CH$_2$-CO).

MS (EI+): m/z 346 (M$^+$, 9%), 151 (100%), HRMS (EI+): Calcd for C$_{19}$H$_{22}$O$_6$ = 346.1416 (M$^+$), found 346.1415.

4-Methoxybenzyl 3,4-dimethoxyphenylacetate 17b

The title compound was prepared in 81% yield (white film, 735 mg) from 3,4-dimethoxyphenylacetic acid (400 mg, 2.03 mmol) and 4-methoxybenzyl alcohol (267 mg, 1.93 mmol) in the presence of DCC (462 mg, 2.24 mmol), DMAP (62 mg, 0.509 mmol) and DCM (10 mL) as for 1a.

1H NMR: δ 7.24 (d, 2H, J = 8.8 Hz, Ar-H-2’, 6’), 6.84 (d, 2H, J = 8.8 Hz, Ar-H-3’, 5’), 6.77 (s, 3H, Ar-H-2, 5, 6), 5.04 (s, 2H, Ar-CH$_2$-O), 3.81 (s, 3H, OCH$_3$-3), 3.79 (s, 3H, OCH$_3$-4), 3.75 (s, 3H, OCH$_3$-4’), 3.55 (s, 2H, Ar-CH$_2$-CO).

13C NMR: δ 171.3 (C=O), 159.3 (Ar-C-CH$_3$-4’), 148.6 (Ar-C-CH$_2$-3), 147.8 (Ar-C-CH$_2$-3’), 129.7 (2 x Ar-C-H-2’ 6’), 127.7 (Ar-C-1’), 126.1 (Ar-C-1), 121.1 (Ar-C-H-6’), 113.6 (2 x Ar-C-H-3’, 5’), 112.1 (Ar-C-H-5), 110.9 (Ar-C-H-2), 66.0 (Ar-CH$_2$-O), 55.5 (Ar-OCH$_3$-3), 55.4 (Ar-OCH$_3$-4), 54.9 (Ar-OCH$_3$-4’), 40.5 (Ar-CH$_2$-CO).
MS (EI+): m/z 316 (M+, 19%), 121 (100%), HRMS (EI+): Calcd for C_{18}H_{20}O_{5} = 316.1311 (M+), found 316.1309.

3-Methoxybenzyl 3-methoxyphenylacetate 17c

The title compound was prepared in 80 % yield (waxy cream solid, 580 mg) from 3-methoxyphenylacetic acid (463 mg, 2.78 mmol) and 3-methoxybenzyl alcohol (350 mg, 2.53 mmol) in the presence of DCC (632 mg, 3.06 mmol), DMAP (85 mg, 0.69 mmol) and DCM (10 mL) as for 1a.

1H NMR: \(\delta \) 7.28-7.20 (m, 2H Ar-H-5, 5'), 6.90 (bs, 1H Ar-H-2), 6.89-6.82 (m, 4H Ar-H-4, 4', 6, 6'), 6.79 (d, 1H, \(J = 2.1 \) Hz, Ar-H-2'), 5.11 (s, 2H, Ar-CH\(_2\)-O), 3.78 (s, 3H, OCH\(_3\)-3), 3.77 (s, 3H, OCH\(_3\)-3'), 3.65 (s, 2H, Ar-CH\(_2\)-CO).

13C NMR: \(\delta \) 171.0 (C=O), 159.6 (2 x Ar-C=OCH\(_3\)-3, 3'), 137.2 (Ar-C-1'), 135.1 (Ar-C-1), 129.4 (Ar-C-H-5), 129.3 (Ar-C-H-5'), 121.5 (Ar-C-H-6), 120.0 (Ar-C-H-6'), 114.6 (Ar-C-H-2), 113.6 (Ar-C-H-4'), 113.1 (Ar-C-H-4), 112.6 (Ar-C-H-2'), 66.2 (Ar-CH\(_2\)-O), 55.0 (Ar-OCH\(_3\)-3), 54.9 (Ar-OCH\(_3\)-3'), 41.2 (Ar-CH\(_2\)-CO).

MS (EI+): m/z 286 (M+, 25%), 121 (100%), HRMS (EI+): Calcd for C\(_{17}\)H\(_{18}\)O\(_4\) = 286.1205 (M+), found 286.1201.

3-Methoxybenzyl 3,4-dimethoxyphenylacetate 17d

The title compound was prepared in 84 % yield (waxy cream solid, 678 mg) from 3,4-dimethoxyphenylacetic acid (546 mg, 2.78 mmol) and 3-methoxybenzyl alcohol (350 mg, 2.53 mmol) in the presence of DCC (632 mg, 3.06 mmol), DMAP (85 mg, 0.69 mmol) and DCM (10 mL) as for 1a.

1H NMR: \(\delta \) 7.22 (t, 1H, \(J = 8.2 \) Hz, Ar-H-5'), 6.86 (d, 1H, \(J = 8.2 \) Hz, Ar-H-6'), 6.84-6.77 (m, 2H Ar-H-2, 2'), 6.81 (dd, 1H, \(J = 8.0, 2.4 \) Hz, Ar-H-6), 6.78 (d, 1H, \(J = 8.0 \) Hz, Ar-H-5), 6.23 (d, 1H, \(J = 8.2 \) Hz, Ar-H-4'), 5.08 (s, 2H, Ar-CH\(_2\)-O), 3.81 (s, 3H, OCH\(_3\)-4), 3.80 (s, 3H, OCH\(_3\)-3'), 3.72 (s, 3H, OCH\(_3\)-3'), 3.59 (s, 2H, Ar-CH\(_2\)-CO).
\[^{13}C \text{ NMR: } \delta 171.1 (\text{C}=\text{O}), 159.4 (\text{Ar}-\text{C}-\text{OCH}_3-3'), 148.6 (\text{Ar}-\text{C}-\text{OCH}_3-4), 147.8 (\text{Ar}-\text{C}-\text{OCH}_3-3), 137.1 (\text{Ar}-\text{C}-1), 129.2 (\text{Ar}-\text{C}-\text{H}-5'), 126.0 (\text{Ar}-\text{C}-1), 121.1 (\text{Ar}-\text{C}-\text{H}-6), 119.8 (\text{Ar}-\text{C}-\text{H}-2'), 113.4 (\text{Ar}-\text{C}-\text{H}-4'), 113.1 (\text{Ar}-\text{C}-\text{H}-6'), 112.1 (\text{Ar}-\text{C}-\text{H}-5), 110.9 (\text{Ar}-\text{C}-\text{H}-2), 66.0 (\text{Ar}-\text{CH}_2-O), 55.5 (\text{Ar}-\text{OCH}_3-4), 55.4 (\text{Ar}-\text{OCH}_3-3), 54.8 (\text{Ar}-\text{OCH}_3-3'), 40.5 (\text{Ar}-\text{CH}_2-\text{CO}). \]

MS (EI+): \(m/z \) 316 (M+, 23%), 151 (100%), HRMS (EI+): Calcd for C\(_{18}\)H\(_{20}\)O\(_5\) = 316.1311 (M+), found 316.1316.

3,4-Dimethoxyphenyl 3,4-dimethoxyphenylpropanoate 19

The title compound was prepared in 82% yield (waxy solid, 648 mg) from 3-(3,4-dimethoxyphenyl)propanoic acid (524 mg, 2.5 mmol) and 3,4-dimethoxyphenol (350 mg, 2.70 mmol) in the presence of DCC (566 mg, 2.74 mmol), DMAP (76 mg, 0.62 mmol) and DCM (10 mL) as for 1a.

\[^{1}H \text{ NMR: } \delta 6.83 (d, 1H, J = 8.7 Hz, Ar-\text{H}-5'), 6.82 (d, 1H, J = 1.5 Hz, Ar-\text{H}-2), 6.81 (dd, 1H, J = 8.7, 1.5 Hz, Ar-\text{H}-6), 6.80 (d, 1H, J = 8.8 Hz, Ar-\text{H}-5), 6.57 (dd, 1H, J = 8.8, 2.7 Hz, Ar-\text{H}-6'), 6.51 (d, 1H, J = 2.7 Hz, Ar-\text{H}-2'), 3.88 (s, 3H, OCH\(_3\))*, 3.87 (s, 3H, OCH\(_3\))*, 3.86 (s, 3H, OCH\(_3\))* , 3.85 (s, 3H, OCH\(_3\))* , 3.02 (t, 2H, J = 7.2 Hz, Ar-\text{CH}_2) , 2.85 (t, 2H, J = 7.2 Hz, Ar-\text{CH}_2-\text{CH}_2). \]

\[^{13}C \text{ NMR: } \delta 171.4 (\text{C}=\text{O}), 148.9 (\text{Ar}-\text{C}-\text{OCH}_3-3'), 148.5 (\text{Ar}-\text{C}-\text{OCH}_3-3), 147.2 (\text{Ar}-\text{C}-\text{OCH}_3-4), 146.4 (\text{Ar}-\text{C}-\text{OCH}_3-4'), 143.9 (\text{Ar}-\text{C}-1'), 132.3 (\text{Ar}-\text{C}-1), 119.9 (\text{Ar}-\text{C}-\text{H}-6), 112.4 (\text{Ar}-\text{C}-\text{H}-6'), 111.4 (\text{Ar}-\text{C}-\text{H}-5), 110.9 (\text{Ar}-\text{C}-\text{H}-5'), 110.7 (\text{Ar}-\text{C}-\text{H}-2), 105.2 (\text{Ar}-\text{C}-\text{H}-2'), 55.7 (\text{Ar}-\text{OCH}_3)*, 55.5 (2 x \text{Ar}-\text{OCH}_3)*, 55.4 (\text{Ar}-\text{OCH}_3)*, 35.8 (\text{Ar}-\text{CH}_2-\text{CH}_2), 30.2 (\text{Ar}-\text{CH}_2). \]

MS (EI+): \(m/z \) 346 (M+, 8%), HRMS (EI+): Calcd for C\(_{19}\)H\(_{22}\)O\(_6\) = 346.1416 (M+), found 346.1424.

3,4-Dimethoxyphenyl acetate 5

Thionyl chloride (5.6 mL, 76.46 mmol) was added under N\(_2\) to an ice-cold solution of 3,4-dimethoxyphenylacetic acid (5.0 g, 25.48 mmol) in dry MeOH (30 mL). The reaction was stirred for 18 h with warming to RT. The volatiles were evaporated and the residue dissolved in DCM (20 mL). The solution was washed with sat. aqueous Na\(_2\)CO\(_3\) solution (20 mL), dried over MgSO\(_4\), filtered, evaporated and chromatographed...
using EtOAc:PS (2:1) as the mobile phase to yield the title compound as a clear oil (5.31 g, 99 %).
NMR data was not reported.3

1H NMR: δ 6.82 (s, 3H, Ar-H-2, 5, 6), 3.88 (s, 3H, OCH$_3$-4), 3.86 (s, 3H, OCH$_3$-3), 3.69 (s, 2H, Ar-CH$_2$), 3.57 (s, 3H, CO$_2$CH$_3$).

13C NMR: δ 171.9 (C=O), 148.6 (Ar-C-OCH$_3$-3), 147.9 (Ar-C-OCH$_3$-4), 126.2 (Ar-C-1), 121.1 (Ar-C-H-6), 112.1 (Ar-C-H-5), 111.0 (Ar-C-H-2), 55.76 (Ar-OCH$_3$)*, 55.73 (Ar-OCH$_3$)*, 51.8 (CO$_2$CH$_3$), 40.6 (Ar-CH$_2$).

MS (EI+): m/z 210 (M$^+$, 23) 197 (100 %), HRMS (EI+): Calcd for C$_{11}$H$_{14}$O$_4$ = 210.0892 (M$^+$), found 210.0886.

3,4-Dimethoxyphenyl acetate 7

3,4-Dimethoxyphenol (400 mg, 2.59 mmol) was dissolved in dry pyridine (3 mL) and acetic anhydride (3 mL) was added. The solution was stirred for 18 h at RT. The mixture was diluted and stirred with 1M HCl solution (30 mL) for 30 min, then extracted with DCM (2 x 20 mL). The extracts were washed with sat. aqueous NaHCO$_3$ solution (2 x 20 mL), dried over MgSO$_4$, filtered and evaporated. Purification by flash silica gel chromatography with EtOAc : PS (1 : 1) as mobile phase yielded the title compound as a clear oil (474 mg, 93 %). NMR data was not reported.4

1H NMR: δ 6.83 (d, 1H, J = 8.5 Hz, Ar-H-5), 6.637 (d, 1H, J = 2.4 Hz, Ar-H-2), 6.635 (dd, 1H, J = 8.5, 2.4 Hz, Ar-H-6), 3.85 (s, 3H, OCH$_3$-4), 3.84 (s, 3H, OCH$_3$-3), 2.27 (s, 3H, COCH$_3$).

13C NMR: δ 169.6 (C=O), 149.0 (Ar-C-OCH$_3$-3), 146.5 (Ar-C-OCH$_3$-4), 144.0 (Ar-C-1), 112.5 (Ar-C-H-6), 110.8 (Ar-C-H-5), 105.4 (Ar-C-H-2), 55.8 (Ar-OCH$_3$)*, 55.6 (Ar-OCH$_3$)*, 20.8 (COCH$_3$).

MS (Cl+): m/z 197 (M+H$^+$, 100 %), HRMS (Cl+): Calcd for C$_{11}$H$_{14}$O$_4$ = 196.0735 (M$^+$), found 196.0735.

References

