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Indoor Scene Reconstruction for Through-the-Wall Radar

Imaging using Low-Rank and Sparsity Constraints

V. H. Tang, A. Bouzerdoum, S. L. Phung, and F. H. C. Tivive

School of Electrical, Computer and Telecommunications Engineering,

University of Wollongong, NSW 2522, Australia

(Email: vht986@uowmail.edu.au, a.bouzerdoum@uow.edu.au, phung@uow.edu.au, tivive@uow.edu.au)

Abstract—This paper addresses the problem of indoor scene recon-

struction in compressed sensing through-the-wall radar imaging. The

proposed method is motivated by two observations that wall reflections

reside in a low-rank subspace and the imaged scene tends to be sparse.

The task of mitigating the wall reflections and reconstructing an image

of the scene behind-the-wall is cast as a joint low-rank and sparsity

constrained optimization problem, where a low-rank matrix captures

the wall returns and a sparse matrix represents the formed image. An

iterative algorithm is developed to estimate the low-rank matrix and

the sparse scene vector from a reduced measurement set. Experimental

results using real radar data show that the proposed model is very

effective at reconstructing the indoor image and removing wall clutter.

I. INTRODUCTION

Through-the-wall radar (TWR) imaging is an emerging technology

that aims to interrogate scenes behind walls and other visually

opaque materials. The ability to sense through enclosed building

structures is highly desirable in numerous civilian and military

applications, including search-and-rescue missions and surveillance

and reconnaissance operations [1], [2]. The development of efficient

TWR sensing systems, however, faces several challenges. One of the

major challenges is to detect stationary indoor targets for compressed

sensing operations in which not all data samples can be acquired

successfully, due to competing wireless services, intentional interfer-

ences, or radar jamming [3], [4]. Furthermore, the strong front-wall

electromagnetic returns overwhelm the target reflections, rendering

target detection very difficult, or even impossible [5]. Therefore,

developing an efficient technique that can mitigate the wall clutter and

form the image of the indoor targets is essential for TWR imaging.

Several imaging techniques have been proposed for TWR and

urban operations. Conventional backprojection methods, such as

delay-and-sum (DS) beamforming can be used to form a scene image

if the full measurement set is available [6]. Compressed sensing

(CS) has been employed for fast data acquisition and accurate signal

reconstruction from compressed measurements [7], [8]. Many CS-

based TWR imaging techniques assume that the wall returns have

been removed, or measurements from the background scene are

available for suppressing the wall reflections [9]–[12]. Recent CS-

based methods for TWR indoor scene reconstruction consist of two

stages [13]–[15]: (i) wall clutter mitigation, and (ii) image formation.

Before the wall clutter mitigation stage, the antenna signals have to

be recovered from reduced data samples using ℓ1 minimization [13],

joint Bayesian sparse approximation [14], or block-sparse estimation

[15]. Then, existing wall clutter mitigation methods, such as spatial

filtering [16], or subspace projection [17], [18] are applied before

image formation. The issue of these two-stage methods is that the

image formation depends on the accuracy of the signal recovery and

the wall clutter mitigation operations.

In this paper, we propose a new image formation technique

for compressed sensing TWR imaging. The proposed approach is

motivated by the observation that the wall reflections reside in a low-

rank subspace and the images of indoor targets tend to be sparse.

We model wall clutter mitigation and image formation as a joint

low-rank and sparse constrained optimization problem. An iterative

technique is developed to estimate a low-rank matrix and a sparse

vector. The low-rank matrix captures the wall returns, and the sparse

vector represents the image of the targets.

The remainder of the paper is organized as follows. Section II

introduces the TWR signal model. Section III describes the proposed

joint low-rank and sparsity model for removing the wall clutter and

reconstructing an image of the behind-wall scene. Section IV presents

the experimental setup and results. Section V gives concluding re-

marks.

II. TWR SIGNAL MODEL

Consider a monostatic stepped-frequency TWR system where a

transceiver is placed at several scan positions parallel to the wall to

synthesize a horizontal M -element linear antenna array. The scene is

interrogated by transceiving a stepped-frequency signal comprising N

frequencies, equally spaced over the sensing bandwidth. Suppose that

the scene contains P targets placed behind the wall. Let zn,m denote

the n-th frequency signal received at the m-th antenna location. The

signal zn,m is modeled as the superposition of the wall reflections

zwn,m (including the wall reverberations), target returns ztn,m, and

noise υn,m:

zn,m = z
w
n,m + z

t
n,m + υn,m. (1)

The wall component zwn,m is given by

z
w
n,m =

R
∑

r=1

σware
−j2πfnτr

m,w , (2)

where σw is the reflectivity of the wall, R is the number of wall

reverberations, ar is the path loss factor associated with the r-th

wall return, and τrm,w is the propagation delay of the r-th wall

reverberation. The target return can be expressed as

z
t
n,m =

P
∑

p=1

σpe
−j2πfnτm,p , (3)

where σp is the reflectivity of the p-th target, and τm,p is the round-

trip travel time of the signal from the m-th antenna location to the

p-th target.

For image formation, the behind-the-wall scene is partitioned into

a rectangular grid comprising Q pixels, and the image pixels are

arranged into a vector s ∈ C
Q×1. The value sq can be considered

as a weighted indicator function representing the target reflectivity

defined as

sq =

{

σp, if the p-th target occupies the q-th pixel;

0, otherwise.
(4)



Furthermore, a wall mitigation technique, such as spatial filtering [16]

or subspace projection [5], [17], [18] is applied to the measurements

to recover the target signal ztn,m from zn,m. Let τm,q denote

the focusing delay between the m-th antenna and the q-th pixel.

Assuming the target consists of points located precisely on the image

pixels, from (3) the target signal at the m-th antenna can be expressed

in matrix-vector form as

z
t
m = Ψm s, (5)

where ztm = [zt1,m, . . . , z
t
N,m]T and Ψm = [ψm(n, q)] is an

N × Q matrix with the (n, q)-th element given by ψm(n, q) =
exp(−j2πfnτm,q). The relation between the collected measurements

and the formed image s can be expressed as

z
t = Ψ s, (6)

where zt = [(zt1)
T , . . . , (ztM )T ]T , Ψ = [ΨT

1 , . . . ,Ψ
T
M ]T .

In practical compressed TWR imaging applications, only a subset

of frequency samples is available at each antenna location, but

for wall clutter mitigation, a full set of frequency samples or the

same frequency samples at all antenna locations are often required.

Therefore, many CS-based methods comprise two separate stages

to form the image of behind-the-wall scene: signal reconstruction

followed by wall clutter mitigation and image formation. The next

section describes the proposed joint low-rank and sparsity-based

model for combining wall clutter mitigation and image formation.

III. JOINT LOW-RANK AND SPARSITY MODEL

This section presents an image formation method using low-rank and

sparsity constraints. First, the received measurements from different

antennas are arranged into a matrix. Then, the task of mitigating the

wall reflections and reconstructing the image of the targets is cast as

a joint low-rank and sparse constrained optimization problem, where

the nuclear-norm is used to enforce the low-rank property of the wall

clutter and the ℓ1-norm is used to provide the sparsity of the target

image. Moreover, an iterative algorithm is introduced to solve the

optimization problem, yielding an image of the indoor targets.

A. Problem formulation

Let Z = [zn,m], Zw = [zwn,m], Zt = [ztn,m], and Υ = [υn,m]
denote the N×M matrices containing, respectively, the radar signals,

the wall reflections, the target returns, and the noise received by all

M antennas for all N frequencies. Equation (1) can be rewritten in

matrix-form as

Z = Z
w + Z

t +Υ. (7)

Now, the objective is to decompose the data matrix Z into a low-rank

matrix Zw carrying the wall returns, a sparse matrix Zt containing

the target signal, and noise. This decomposition task is known as

stable principal component pursuit (SPCP) [19]. Both the low-rank

and sparse matrices can be recovered by minimizing a weighted

combination of the nuclear norm and ℓ1 norm. Let ‖Zw‖∗ denote

the nuclear norm (i.e. the sum of the singular values of the matrix

Zw) and let
∥

∥Zt
∥

∥

1
be the ℓ1-norm of Zt. Then, the low-rank

component Zw and sparse component Zt can be estimated by solving

the following optimization problem:

minimize
Zw, Zt

‖Zw‖∗ + λ
∥

∥Z
t
∥

∥

1

subject to
∥

∥Z− (Zw + Z
t)
∥

∥

2

F
≤ ǫ,

(8)

where λ is a regularization parameter used to achieve a trade off

between the low-rank and sparse constraints, and ǫ is a noise bound.

Algorithms including convex optimization method [20] or greedy

technique [21] can be applied to solve this minimization problem.

These methods, however, are either applicable for full sensing mode

where all entries of Z are available or they mainly focus on recovering

the low-rank matrix only. Note that our focus here is to estimate a

sparse vector s representing the scene targets from a compressed

measurement set. Therefore, in the next section, we extend the

formulation for TWR imaging and introduce an iterative algorithm

for efficient scene reconstruction and wall clutter mitigation.

B. Optimization algorithm

Since the signals reflected from the front wall are similar across the

antenna array and the number of target pixels is far fewer than the

total number of image pixels, the target scene reconstruction can

be formulated into a similar optimization problem. In compressed

sensing TWR imaging, a reduced data set of K measurements is

acquired (K ≪ N×M ). Let Φ denote a sensing matrix in which each

row has only one non-zero element indicating the selected frequency

for a particular antenna. Let V(Z) denote the vector obtained by

stacking the columns of the matrix Z. We can express the relation

between the compressed measurement vector y ∈ C
K and the full

matrix Z ∈ C
N×M as

y = Φ V(Z). (9)

It follows from (7) that

y = Φ V(Z) = Φ V(Zw) +Φ V(Zt) +Φ V(Υ). (10)

Based on the relation between the collected measurements and the

formed image given in (6), the formed image can be obtained by

solving the following optimization problem:

minimize
Zw, s

‖Zw‖∗ + λ ‖s‖
1

subject to ‖y −Φ (V(Zw) +Ψ s)‖2
2
≤ ǫ.

(11)

In Equation (11), the sparsity constraint is now imposed on the scene

image s, instead of on the target signal matrix Zt. In implemen-

tation, the constrained optimization problem can be written into a

Lagrangian regularization form:

min
Zw,s
‖y −Φ (V(Zw) +Ψ s)‖2

2
+ λw ‖Z

w‖∗ + λs ‖s‖1 , (12)

where λw and λs are the regularization parameters for the low-rank

and sparse components, respectively.

Next, we introduce an iterative algorithm for solving Problem (12)

that comprises a singular value soft-thresholding (SVT) operator used

to estimate the low-rank component and an ℓ1-norm minimization

step employed to estimate the sparse vector. Defining a shrinkage

operator as Tτ (x) =
x
|x|

max(|x| − τ, 0), in which τ is a real value,

we express the singular value soft-thresholding operator as

Sτ (Z
w) = U Tτ (Λ)VH

, (13)

where Zw = UΛVH is the singular value decomposition of Zw. In

the ℓ1-norm minimization step, a matching pursuit technique is used

to obtain a sparse vector for s. The iterative algorithm for solving

(12) can be summarized by the following steps:

1) Initialization: Set Z0 = V∗(Φ† y), where V∗(·) denotes

the adjoint operator reshaping an NM × 1 column vector

to an N ×M matrix, † denotes the pseudo-inverse operator,

Zw
0 = Z0, s0 = 0, and i = 1.

2) Singular-value soft thresholding:

Z
w
i = Sτ (Zi−1 − V

∗(Ψ si−1))



3) Estimating the sparse vector:

si = min
s

‖Φ V(Zi−1 − Z
w
i )−ΦΨ s‖2

2
+ λs ‖s‖1

4) Data consistency and iteration:

If

‖Zw
i + V∗(Ψsi)− (Zw

i−1 + V
∗(Ψsi−1))‖F

∥

∥Zw
i−1

+ V∗(Ψsi−1)
∥

∥

F

< δ

terminate the algorithm,

Else,

compute residual: r = ΦV(Zw
i ) +ΦΨsi − y,

update data: Zi = Zw
i + V∗(Ψsi −Φ† r),

i← i+ 1.

go to Step 2.

After the iterative algorithm converges to the desired solution, we

rearrange the sparse vector s into a two-dimensional map representing

the formed image of the behind-the-wall target scene. The next

section evaluates the proposed approach using real radar data and

compares it with several existing imaging techniques.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we present the experimental results obtained using

real radar data collected from a monostatic stepped-frequency TWR

imaging system. Subsection IV-A describes the scene layout and

the parameters of the radar system employed for data collection.

Subsection IV-B provides results and performance analysis by several

imaging methods.

A. Experimental setup

The proposed approach is evaluated on real radar data acquired with a

radar system placed in front of a concrete wall of thickness 0.14 m.

A transceiver is moved along the wall to synthesize a 57-element

linear array. At each antenna location, a set of 801 monochromatic

signals are transmitted, covering a frequency range of [0.7, 3.1] GHz.

A wide dihedral of height 0.39 m and width 0.28 m is placed behind

the wall at a standoff distance of 2.1 m. The imaged scene extends

from [0, 4] m in downrange and [-2, 2] m in crossrange. Using the

TWR system, a full set of 45,657 space-frequency measurements,

i.e., (801 frequencies × 57 antennas) can be acquired. Note that for

compressed sensing TWR, only a reduced data set is collected by

randomly selecting subset of frequencies and antennas.

In the proposed method, the regularization parameters τ and λs

are both set to 0.001, and the iterative algorithm is terminated when

the relative change of the solution is smaller than δ = 10−6, see Step

4. The quality of the formed image is measured using the target-to-

clutter ratio (in dB):

TCR = 10 log
10
(

1

Nt

∑

q∈At
|Iq|

2

1

Nc

∑

q∈Ac
|Iq|2

), (14)

where At is the target region, Ac is the clutter region defined as the

entire image excluding the target region, Nt and Nc are the number

of pixels in the target and clutter regions, respectively.

B. Experimental results

Two experiments are conducted using 10% of the full data volume.

In the first experiment, the same frequencies are selected at each

antenna, and spatial filtering [16] and the subspace projection method

[5] are applied directly to the reduced data set for wall clutter

mitigation. In the second experiment, different frequencies are chosen

along the antenna array. To apply the wall clutter mitigation methods,

an ℓ1-norm minimization technique is used to recover the missing

frequency samples. For comparison, the two-stage CS-based method

proposed by Lagunas et al. [13] is tested on the same reduced data

sets. In the two-stage CS-based method, the image formation is

formulated as an ℓ1-norm minimization problem, and the compressive

sampling matching pursuit (CoSaMP) algorithm [22] is used to obtain

the solution.

Figure 1 shows the formed images obtained from the first experi-

ment. Figure 1(a) illustrates the image formed using CoSaMP, without

wall clutter mitigation. This image consists of strong wall clutter,

rendering the target detection very difficult. Figures 1(b) and (c)

present images obtained from the two-stage CS-based method using

spatial filtering and subspace projection for wall clutter mitigation,

respectively. We can observe that the target is detected though

clutter is still present. Figure 1(d) shows the image obtained from

the proposed method. This image has less wall clutter than those

produced by the two-stage CS-based method.
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Fig. 1. Images formed using the same set of frequencies along the antenna
array using different image reconstruction and wall clutter mitigation methods:
(a) the CoSaMP algorithm without wall clutter mitigation, (b) the two-stage
CS-based method in conjunction with spatial filtering, (c) the two-stage CS-
based method in conjunction with the subspace projection method, and (d) the
proposed joint low-rank and sparsity-based method. Target region is indicated
with a solid rectangle.

Figure 2 depicts images obtained from the second experiment. In

this experiment, the two-stage CS-based image formation method

cannot reveal the target, see Figs. 2(b)–(c). This is due to the low

accuracy of the signal recovery technique in estimating the missing

frequency measurements. By contrast, the proposed method detects

the target well, as illustrated in Fig. 2(d). The reason is that the

proposed approach jointly segregates the target signal from the wall

reflections and guarantees the sparsity of the scene reconstruction.

In terms of TCR, Table I shows that the proposed method

achieves better reconstruction performance than the two-stage CS-

based method. The proposed method obtains a TCR of 29.45 dB for

the first experiment and 22.83 dB for the second experiment. The two-

stage CS-based method achieves TCRs of 15.51 dB and 18.50 dB,

respectively, when using spatial filtering and subspace projection for

removing the wall clutter in the first experiment. It fails to detect the

targets in the second experiment.
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Fig. 2. Images formed using different sets of frequencies along the antenna
array by applying different image reconstruction and wall clutter mitigation
methods: (a) the CoSaMP algorithm without wall clutter mitigation, (b) the
two-stage CS-based method in conjunction with spatial filtering, (c) the two-
stage CS-based method in conjunction with the subspace projection method,
and (d) the proposed joint low-rank and sparsity-based method.

TABLE I
TARGET-TO-CLUTTER RATIO TCR OF THE SCENE IMAGES FORMED BY

DIFFERENT IMAGE FORMATION METHODS.

Scene reconstruction methods Exp. 1 Exp. 2

Proposed joint low-rank and sparsity constraints 29.45 22.83

CS-based method with spatial filtering 15.51 0.0

CS-based method with subspace projection 18.50 0.0

V. CONCLUSION

This paper presented a joint low-rank and sparsity-based method for

removing wall clutter and forming the image of an indoor scene, using

through-the-wall radar imaging. A constrained optimization model

is formulated where the nuclear-norm is used to capture the wall

returns as a low-rank matrix and the sparsity constraint is imposed

to reconstruct the scene as a sparse matrix. An iterative algorithm

is developed to jointly estimate the low-rank and sparse matrices.

Experimental results show that the proposed approach enhances the

target-to-clutter ratio and improves target detection even when the

number of measurements is significantly reduced.
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