Electrocatalytic reduction of carbon dioxide by cobalt-phthalocyanine-incorporated polypyrrole

Jun Chen
University of Wollongong, junc@uow.edu.au

Gordon G. Wallace
University of Wollongong, gwallace@uow.edu.au

Jiaxing Lu
University of Wollongong

Aijian Zhang
University of Wollongong

Weimin Zhang
University of Wollongong, weimin@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/scipapers

Part of the Life Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Electrocatalytic reduction of carbon dioxide by cobalt-phthalocyanine-incorporated polypyrrole

Abstract
In the quest for catalysts for the electrocatalytic reduction of \(\text{CO}_2 \), a cobalt phthalocyanine/polypyrrole (CoPc/PPy) composite electrode has been developed. The electrode is prepared by drop casting CoPc onto the PPy film from the CoPc/tetrahydrofuran solution (1 mg/mL). The onset potential for reduction occurred at potentials 160 mV more positive than observed with a simple PPy electrode. Furthermore, in the potentiostatic electrolysis, the catalytic current for reduction at CoPc/PPy was very stable, with a higher current density and current efficiency when compared to the PPy electrode.

Keywords
Electrocatalytic, reduction, carbon, dioxide, cobalt, phthalocyanine, incorporated, polypyrrole

Disciplines
Life Sciences | Physical Sciences and Mathematics | Social and Behavioral Sciences

Publication Details

This journal article is available at Research Online: https://ro.uow.edu.au/scipapers/3381
Electrochemical Reduction of Carbon Dioxide by Cobalt-Pthalocyanine-Incorporated Polyppyrole

Aijian Zhang,a,b Weimin Zhang,a Jiaxing Lu,b Gordon G. Wallace,a,* and Jun Chen,a,*,†

aAustralian Research Council Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, New South Wales 2522, Australia
bShanghai Key Laboratory of Green Chemistry and Chemical Process, Department of Chemistry, East China Normal University, Shanghai 200062, China

In the quest for catalysts for the electrocatalytic reduction of CO2, a cobalt phthalocyanine/polyppyrole (CoPc/PPy) composite electrode has been developed. The electrode is prepared by drop casting CoPc onto the PPy film from the CoPc/tetrahydrofuran solution (1 mg/mL). The onset potential for CO2 reduction occurred at potentials 160 mV more positive than observed with a simple PPy electrode. Furthermore, in the potentiostatic electrolysis, the catalytic current for CO2 reduction at CoPc/PPy was very stable, with a higher current density and current efficiency when compared to the PPy electrode.

© 2009 The Electrochemical Society. [DOI: 10.1149/1.3139529] All rights reserved.

The advent of global warming, associated with increasing atmospheric carbon dioxide (CO2) concentrations, has stimulated research into the utilization of CO2. The transformation of CO2 to carbon monoxide or alcohols is a promising long-term objective. For the past decade, methods of reducing CO2 to CO, formaldehyde, methanol, methane, or oxalate, using electrochemical methods which consume less energy than traditional chemical reduction processes and can proceed at a moderate temperature and atmospheric pressure, have been developed.1-5

The direct electrochemical reduction of CO2 on various metal electrodes requires large overpotentials (more negative than −2 V vs saturated calomel electrode).6-10 It is therefore important to search for active electrocatalysts which can mediate the electrochemical reduction of CO2 at lower potentials. Numerous transition-metal (mainly Co and Ni) complexes, such as macrocyclic cobalt or nickel, cobalt phthalocyanine (CoPc), or porphyrin, have been reported to have such catalytic effects.11-13 The use of these catalysts, however, has generally been limited by their degradation during electrolysis. It is thus necessary to investigate the electrochemical reduction of CO2 at a modified electrode, on which the complex is more stable. Both Lieber and Lewis14 and Meshitsuka et al.15 reported the electroreduction of CO2 at a CoPc-modified graphite electrode in citrate buffer and obtained CO as the main product. The electrochemical reduction of CO2 at cobalt-octabutoxyphthalocyanine-coated graphite electrodes was investigated by Abe et al.16 The reduction of CO2 at a cobalt(II) tetrphenyldiporphyrin-pyridine-modified glassy carbon (GC) electrode showed a high catalytic activity for CO2 reduction to CO.17

In recent years, the combination of polymer and metal complex catalysts has provided an alternative route to the electrochemical reduction of CO2. The reduction of CO2 at Prussian blue/polymer/metal complex-based electrodes in the aqueous solution18-21 was investigated. CO2 was reduced at −0.8 V (vs Ag/AgCl) and the reaction products were formic acid, lactic acid, acetic acid, methanol, and ethanol. The electrocatalytic conversion of CO2 on polyppyrole (PPy)- or polyaniline-modified electrodes under high pressure in methanol resulted in the formation of CH3COOH as the main product.22-24

In this article, we present the study of electrocatalytic CO2 reduction at the CoPc/PPy-modified GC electrode in the 0.1 M LiClO4/ACN–H2O solution. The CoPc/PPy composite electrode was then investigated via a potentiostatic method and showed the enhanced electrocatalytic activity and stability for CO2 reduction.

* Electrochemical Society Active Member.
† E-mail: junc@uow.edu.au

© 2009 The Electrochemical Society. [DOI: 10.1149/1.3139529] All rights reserved.
trocatalytic CO₂ reduction was observed in the CO₂-saturated non-
aqueous ACN solution, and the presence of H₂O is necessary and critical for the
indirect reduction of CO₂. We assume that the reduction adsorption
may be the adsorption of the substrate molecules via hydrogen
bonding, so the transfer of a H_ads atom to the CO₂ molecule would
be much easier and faster.

The inset of Fig. 1 shows the cyclic voltammograms obtained
using the PPy-modified electrode in the nonaqueous 0.1 M
LiClO₄/ACN electrolyte saturated with either N₂ or CO₂. No elec-
trocatalytic CO₂ reduction was observed in the CO₂-saturated electrolyte (vs Ag/AgCl). The inset shows CVs of the CoPc/PPy electrode in 0.1 M LiClO₄/ACN–H₂O under N₂ and CO₂, v = 50 mV/s.

Electrocatalytic CO₂ reduction at CoPc/PPy electrode.— To im-
prove the catalytic performance of PPy, the CoPc-modified PPy film was prepared by coating with the CoPc/THF material. The scanning electron microscopy (SEM) images of the PPy film with/without CoPc are shown in Fig. 2. The pure PPy displays a very smooth
surface morphology (Fig. 2a), while the CoPc-modified PPy film
(Fig. 2b) has a crystalline porous structure due to the CoPc coating.

After the preparation of the CoPc/PPy electrode, it was investi-
gated for electrocatalytic CO₂ reduction under identical conditions
used for the pure PPy electrode. The CVs using either PPy or CoPc/
PPy as working electrodes were obtained in a CO₂-saturated 0.1 M
electrolyte (Fig. 3). The electrocatalytic reduction of CO₂ took place
at −0.18 V using the CoPc/PPy electrode, which showed a positive
160 mV shift in the onset of the reduction potential compared to that
of pure PPy electrode (−0.34 V). This illustrates that the CoPc/PPy
has a much better catalytic influence on CO₂ reduction than pure
PPy. Furthermore, a higher catalytic peak current of CO₂ reduction
is observed at −0.45 V using the CoPc/PPy electrode, which is
probably caused by the increase in the number of active centers
where the reduction of CO₂ takes place.20

Compared to the CV of the CoPc/PPy electrode in the
N₂-saturated 0.1 M LiClO₄/ACN–H₂O solution, the inset of Fig. 3
shows that the oxidation peak of Co(I)Pc to Co(II)Pc disappeared in the
presence of CO₂. The corresponding reduction peak of Co(II)Pc to
Co(I)Pc under N₂ coincides less with that under CO₂ so that it is
unclear whether the corresponding reduction peak is present in the
CV under the CO₂ peak or not at all. The possible mechanism for
this is that when H⁺ is reduced to H_ads and H_ads is continuously
consumed to reduce CO₂, it causes the oxidation of Co(I)Pc to
Co(II)Pc.20 It also suggests that a much stronger generation of H_ads
occurred at the PPy and CoPc interfaces; therefore the CoPc/PPy
composite electrode promoted the electrocatalytic reduction of CO₂
with enhanced catalytic activity compared to PPy alone.

Potentiostatic CO₂ reduction at PPy and CoPc/PPy elec-
trodes.— CO₂ reduction was performed at a constant potential −0.8
V (vs Ag/AgCl) at both PPy and CoPc/PPy electrodes in the
CO₂-saturated 0.1 M LiClO₄/ACN–H₂O (v:v = 1:1) solution. Fig-
ure 4 shows the I-t curve for catalytic CO₂ reduction at the CoPc/
PPy electrode normalized from the pure PPy electrode with a stable
current density of 20 mA/g. The higher catalytic current observed at
the CoPc/PPy electrode again confirms that the PPy incorporated
with CoPc has a better catalytic performance for CO₂ reduction than
the PPy electrode itself (see inset of Fig. 4).

The product detected by HPLC was formic acid. No evolution of
gaseous products was observed during the controlled potential elec-
trolysis. This is consistent with the mechanism described in the first
subsection for electrocatalyzed CO₂ reduction. This is possibly due
Figure 4. (Color online) (a) I-t curve for CO\textsubscript{2} reduction at the CoPc/PPy electrode normalized from the PPy electrode in 0.1 M LiClO\textsubscript{4}/ACN–H\textsubscript{2}O (vs Ag/AgCl). The inset is the I-t curve of the PPy- and CoPc/PPy-modified electrodes under CO\textsubscript{2}, \(E = -1.0\) V (vs Ag/AgCl). (b) Current efficiency–time diagrams of CO\textsubscript{2} reduction at PPy and CoPc/PPy electrodes.

The inset is the I-t curve for CO\textsubscript{2} reduction at the CoPc/PPy composite electrode from \(-0.34\) (PPy) to \(-0.18\) V. Furthermore, during potentiostatic electrolysis, the catalytic current for CO\textsubscript{2} reduction at CoPc/PPy was very stable with a higher current efficiency when compared to a single PPy electrode.

Acknowledgment

The authors gratefully acknowledge the Australian Research Council, the National Natural Science Foundation of China (no. 20573037), and China Scholarship Council for the financial support for this work.

University of Wollongong assisted in meeting the publication costs of this article.

References