1-1-2015

Behaviour of perforated GFRP tubes under axial compression

Weiqiang Wang
University of Wollongong, ww674@uowmail.edu.au

M Neaz Sheikh
University of Wollongong, msheikh@uow.edu.au

Muhammad N. S Hadi
University of Wollongong, mhadi@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/eispapers

Part of the Engineering Commons, and the Science and Technology Studies Commons

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Behaviour of perforated GFRP tubes under axial compression

Abstract
This study investigates the influences of various parameters on the behaviour of perforated Glass Fibre Reinforced Polymer (GFRP) tubes under axial compression. A total of 15 GFRP tubes with and without perforations were tested under axial compression. All the GFRP tubes were divided into two groups: 12 tubes with 89 mm outer diameter and 6 mm wall thickness and 3 tubes with 183 mm outer diameter and 8 mm wall thickness. The influences of hole diameter, vertical hole spacing, tube diameter, perforation pattern, transverse hole spacing, and hole reinforcement on the axial compressive behaviour of perforated GFRP tubes were experimentally investigated. Considerable decreases in the axial stiffness, axial critical load, and axial deformation capacity of perforated GFRP tubes have been observed. The hole diameter, tube diameter, perforation pattern, and transverse hole spacing significantly influence the axial compressive behaviour of perforated GFRP tubes. However, the influences of vertical hole spacing and hole reinforcement have been observed not significant. Design-oriented equations for the prediction of the axial stiffness, axial critical load and axial deformation capacity of perforated GFRP tubes under axial compression have been proposed. The proposed equations have been found to be in good agreement with experimental results and can be used for the reliable design of perforated GFRP tubes.

Disciplines
Engineering | Science and Technology Studies

Publication Details

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers/4935
Behaviour of perforated GFRP tubes under axial compression

Weiqiang Wang, M. Neaz Sheikh and Muhammad N.S. Hadi*
School of Civil, Mining and Environmental Engineering, University of Wollongong,
NSW 2522, Australia

Correspondence:
Muhammad N. S. Hadi
School of Civil, Mining & Environmental Engineering
University of Wollongong, Australia
E-mail: mhadi@uow.edu.au
Telephone: + 61 2 4221 4762
Facsimiles: + 61 2 4221 3238

* Corresponding author
Behaviour of perforated GFRP tubes under axial compression

Abstract: This study investigates the influences of various parameters on the behaviour of perforated Glass Fibre Reinforced Polymer (GFRP) tubes under axial compression. A total of 15 GFRP tubes with and without perforations were tested under axial compression. All the GFRP tubes were divided into two groups: 12 tubes with 89 mm outer diameter and 6 mm wall thickness and 3 tubes with 183 mm outer diameter and 8 mm wall thickness. The influences of hole diameter, vertical hole spacing, tube diameter, perforation pattern, transverse hole spacing, and hole reinforcement on the axial compressive behaviour of perforated GFRP tubes were experimentally investigated. Considerable decreases in the axial stiffness, axial critical load, and axial deformation capacity of perforated GFRP tubes have been observed. The hole diameter, tube diameter, perforation pattern, and transverse hole spacing significantly influence the axial compressive behaviour of perforated GFRP tubes. However, the influences of vertical hole spacing and hole reinforcement have been observed not significant. Design-oriented equations for the prediction of the axial stiffness, axial critical load and axial deformation capacity of perforated GFRP tubes under axial compression have been proposed. The proposed equations have been found to be in good agreement with experimental results and can be used for the reliable design of perforated GFRP tubes.

Keywords: GFRP; Tube; Perforation; Axial compression; Design-oriented equations.
Research Highlights

Perforated GFRP tubes with multiple holes have been tested under axial compression.

Influences of different parameters on behaviour of perforated GFRP are investigated.

Design equations are developed to predict the capacity of perforated GFRP tubes.
1. Introduction

Cylindrical shells are widely used in aircrafts, pipeline transportation systems, automobiles, civil engineering structures, and submarine structures. In many cases, holes need to be drilled on the cylindrical shells to meet design requirement (e.g., access port in an aircraft). Due to the presence of holes, the continuous distributions of stress and strain within the shells are interrupted, which leads to obvious stress concentrations around the holes. Therefore, significant performance deterioration of the perforated cylindrical shells can be expected under axial compressive loading. Few studies investigated the influence of perforation on the axial compressive behaviour of isotropic cylindrical shells [1-9]. Gupta et al. [4] performed axial compression tests on perforated mild steel and aluminium round tubes. The deformation of the perforated tubes was found to be initiated at the location of the perforation. Also, the peak load required for the collapse of perforated tubes under axial compression was found to be significantly less than that required for intact tubes. Starnes [5] experimentally and analytically investigated the effect of one circular hole on the buckling of thin seamless electroformed copper cylindrical shells under axial compression. Shell buckling was found to be dependent on a parameter proportional to the hole radius divided by the square root of the product of the shell radius and thickness. Jullien and Liman [6] investigated the effect of hole shapes (square, rectangular, and circular), hole dimensions (axial and circumferential sizes and diameter), and hole location on the buckling behaviour of cylindrical sheet metal shells under axial compression. The axial critical load was found to be sensitive to the circumferential size of the hole. The position of the hole along the longitudinal axis of the shell did not change the critical load. Han et al. [7] carried out numerical investigations to examine the influences of square holes with various sizes and locations on the response of thin and moderately thick aluminium cylindrical shells under axial compression. The location and the size of the square holes significantly influenced the performance of the shells. Few studies also investigated the axial compressive behaviour of perforated isotropic cylinders with reinforced holes [2, 3, 10].
Nowadays, fibre reinforced polymer (FRP) composites have been used to replace traditional isotropic materials in many engineering applications due to the advantages of high strength and stiffness to weight ratio and corrosion resistance. One such application is to use pultruded FRP tube in the construction of bridges and boardwalks [11] where holes are needed to be drilled onto the pultruded FRP tubes to assemble different components [12]. While the axial compressive behaviour of isotropic perforated cylindrical shell is well understood, the performance of perforated composite cylindrical shell under axial compression has not yet been adequately investigated. Only few studies were conducted on the perforated composite cylindrical shells [13-18]. Hilburger et al. [13] studied the behaviour of composite cylindrical shells with rectangular holes under axial compression. The effects of hole size and laminate properties on the axial compressive behaviour of perforated composite shell were investigated. The response under axial compression was found to be strongly influenced by the local displacements and internal load distribution near the holes. The local displacements and internal load distributions were affected by the size of the holes, material properties, and imperfections in the shell. Mark and James [17] studied the response of thin-walled composite cylindrical shells with unreinforced and reinforced square holes under axial compression. Local buckling occurred due to a localized nonlinear coupling between local deformations and in-plane destabilizing compression stresses near holes. The buckling load of the shell increased with the addition of reinforcement around the hole. Taheri-Behrooz et al. [18] experimentally and numerically studied the response of perforated composite tubes subjected to axial compressive loading. It was reported that the intact and perforated tubes showed similar instability mode shapes under axial compressive loading. However, the axial critical load and global stiffness of the perforated tubes were found to be significantly lower.

The use of FRP composites to strengthen reinforced concrete structures has been widely studied in the last two decades [19-23]. Recently, Wang et al. [24] and Hadi et al. [25] proposed a new reinforcing scheme named FRP tube reinforced concrete columns in which perforated Glass Fibre Reinforced Polymer (GFRP) tubes (\(R/t = 7.5 \); \(R \) is the radius and \(t \) is the thickness of the FRP tube) with multiple holes were placed into the concrete columns to provide reinforcement in both longitudinal
and transverse directions. For the successful and wide application of FRP tube reinforced concrete columns, axial compressive behaviour of perforated GFRP tubes needs to be extensively studied. However, most of previous studies only investigated perforated cylindrical shells with one or two holes [1-4, 7-10, 16, 17] and were mainly focused on the buckling behaviour of perforated thin cylindrical shells with $R/t > 20$ [1-4, 6, 13, 14, 16, 17]. None of the above-mentioned studies provided sufficient information on the performance of perforated GFRP tubes ($R/t < 20$) with multiple holes throughout the tubes under axial compression. Considering limited experimental investigation results, an experimental program was carried out to investigate the axial compressive behaviour of perforated GFRP tubes. The influences of different parameters on the performance of perforated GFRP tubes under axial compression have been investigated (Section 2 and Section 3). Moreover, design-oriented equations have been developed to predict the axial stiffness, axial critical load and axial deformation capacity of perforated GFRP tubes under axial compression (Section 4).

2. Experimental program

A total of 15 GFRP tubes with and without perforations were tested under axial compression in the High Bay Civil Engineering Laboratory at the University of Wollongong. All GFRP tubes were divided into two groups: Group A contains 12 GFRP tubes with 89 mm outer diameter and 6 mm wall thickness and Group B contains 3 GFRP tubes with 183 mm outer diameter and 8 mm wall thickness (Fig. 1). The height of Group A GFRP tubes was 260 mm, while the height of Group B GFRP tubes was 185 mm. For Group A GFRP tubes, the influences of hole diameter, vertical hole spacing, perforation pattern, transverse hole spacing, and hole reinforcement on the axial compressive behaviour of perforated GFRP tubes were investigated. For Group B GFRP tubes, the influence of hole diameter was investigated. The influence of tube diameter was investigated by comparing test results of Group A and Group B GFRP tubes.
2.1. Properties of test materials

Group A GFRP tubes were manufactured by Wagners Composite Fibre Technology (CFT) based in Toowoomba, Queensland, Australia [26]. Group B GFRP tubes were manufactured by Exel Composites Australia based in Boronia, Victoria, Australia [27]. The GFRP tubes were pultruded tubes made from vinyl ester resin systems with E-glass fibre. According to the information provided by the manufacturer, Type A pultruded GFRP tubes had an overall E-glass fibre content of 76%. Starting from the exterior of the tube wall, the stacking sequence of the laminates was in the form of \([0°/+45°/0°/-45°/0°/-45°/0°/45°/0°]\), where the 0° coincided with the longitudinal axis of the tube. The thickness of each ply was the same. The value of \(D_{11}\) in the bending stiffness matrix \([D]\) for Type A GFRP tubes’ laminates was 586 GPa-mm³. The laminate stacking sequence of Type B pultruded GFRP tube was not available due to commercial confidentiality of the manufacturer. The mechanical properties of GFRP tubes provided by the manufacturers are listed in Table 1. It can be seen from Table 1 that the ultimate tensile strength, ultimate compressive strength, and elastic modulus in the longitudinal direction are much higher than the ultimate tensile strength, ultimate compressive strength and elastic modulus in the transverse direction, respectively. The higher values in the longitudinal direction can be explained by the fact that a vast proportion of the glass fibres were aligned along the longitudinal direction of the GFRP tubes during the pultrusion process.

2.2. Test Parameters

The influences of hole diameter (15 mm and 25 mm), vertical hole spacing (40 mm, 60 mm and 100 mm), tube diameter (89 mm and 183 mm outer diameter), perforation patterns, transverse hole spacing, and hole reinforcement on the axial compressive behaviour of perforated GFRP tubes were investigated in this experimental program. Two different perforation patterns (axially perforated tubes have been designated as APT and diagonally perforated tubes have been designated as DPT) were investigated, as shown in Fig. 2 (a) and (b). The transverse hole spacing was varied by changing the number of holes around the transverse direction of the tubes (3 and 4 holes). For perforated GFRP
tubes with hole reinforcement, 3 layers of Carbon Fibre Reinforced Polymer (CFRP) sheet were wrapped around holes. Different reinforcement configurations were applied for APT and DPT tubes. The detailed configurations are shown in Fig. 2 (c) and (d).

2.3. Test specimens

2.3.1. Description of test specimens

The details of the GFRP tubes are given in Table 2. The labelling of GFRP tubes has been carried out as: (a) “A” and “B” are used to identify Group A GFRP tubes and Group B GFRP tubes, respectively; (b) “I” indicates intact GFRP tubes without perforation; (c) for perforated GFRP tubes, “D” and the number afterwards indicate the diameter of the hole in mm, “V” and the number afterwards indicate the vertical hole spacing in mm, “T” and the number afterwards indicate the number of holes around transverse direction; (d) “LW” represents that the GFRP tube was laterally wrapped with CFRP; (e) “APT” represents axially perforated GFRP tube and (f) “DPT” represents diagonally perforated GFRP tube.

2.3.2. Procedure of tube perforation

Before perforation, the exact locations of the holes were marked. Afterwards, a drill press machine with a circular drill bit was used to perforate the tubes. Gloves and mask were worn to get protected from harmful fibres during the perforation process. A water spray bottle was used to wash away any waste material. For GFRP tubes wrapped with CFRP, three layers of CFRP were laterally wrapped before tube perforation. Prior to the wrapping of CFRP, the surface of GFRP tube was cleaned to remove all the dust that may affect the wrapping quality. The 105 epoxy resin and 206 slow hardener manufactured by West System were used in this study [28]. A mixture of epoxy resin and hardener at a ratio of 5:1 was used as the adhesive. The CFRP was wrapped onto the GFRP tube manually using a wet lay-up method. No tension force was applied during the wrapping process. Before the wrapping of the first layer of CFRP, the adhesive was spread onto the surface of the GFRP tube. After the first
layer of CFRP was wrapped, the adhesive was spread onto the first layer of CFRP and the second
layer was continuously wrapped. The third layer of CFRP was wrapped in a similar manner. A 70 mm
overlap was maintained to prevent the premature debonding of CFRP. The epoxy resin was then left
to cure at room temperature for seven days.

2.4. Instrumentation and test procedure

Denison 5000 kN testing machine was used for testing all the GFRP tubes. Before testing, a
horizontal level was used to adjust the bottom steel plate to ensure that the surface of the bottom steel
plate was horizontal. Afterwards, the tube was placed onto the bottom steel plate to check whether
there was any misalignment between the tube end and the bottom steel plate. If no misalignment was
observed, then the tube end was considered to be horizontal and parallel to the bottom steel plate.
However, if a slight misalignment was observed, the tube end was slightly smoothed using a belt
sander until the misalignment was removed. The same procedure was applied to the other tube end.
Afterwards, a vertical level was used to ensure that both the tube ends were perpendicular to the
longitudinal axis of the tube. When the tube ends were horizontal and perpendicular to the
longitudinal axis of the tube, and the surfaces of steel plates were horizontal, then the load can be
considered to be applied in a purely axial manner. Axial deformations were measured using two
Linear Variable Differential Transducers (LVDTs) mounted at the opposite corners of the steel plate.
The load and deformation data were collected using an electronic data-logger at 2 second intervals.
The test (displacement controlled) was conducted at a rate of 0.3 mm/min. All GFRP tubes were
tested until failure. The test setup and instrumentation are shown in Fig. 3.

In order to prevent the premature failure at the tube end, a specially designed test fixture was
manufactured and used. The test fixture was composed of a steel flange and a steel sleeve, as shown
in Fig. 4 (a) and (b). By combining these two components together, a groove can be developed to
constrain the tube ends (Fig. 4(c)). In order to prevent the upper steel sleeve from slippage, the upper
steel sleeve was fixed onto the upper steel flange using three bolts (Fig. 4 (d)). The engineering
drawings of these two components are shown in Fig. 5. After the test fixture was capped onto the tube
ends, the same procedures mentioned above were followed to ensure that the load was applied in a
purely axial manner.

3. Experimental results and analysis

3.1. Failure modes of GFRP tubes

All tested GFRP tubes failed in a brittle manner because of the non-ductile characteristics of the fibres
and epoxy resin. For intact Group A GFRP tube “A-I” without capping the test fixture, failure was
due to the stress concentration phenomenon at the tube end, which resulted in a lower
compressive strength than the actual compressive strength (Fig. 6 (a)). However, by capping the test
fixture onto the tube ends, a global collapse was observed for Tube “A-I” (Fig. 6 (b)). Therefore, it is
evident that by using the developed test fixture, the stress concentration at the tube ends can be
effectively eliminated and the actual compressive strength can be obtained. For intact Group B GFRP
tube “B-I”, global collapse was observed after the axial compressive strength was reached. The failure
of perforated GFRP tubes was initiated with crack formation around the holes due to severe local
stress concentration. Initially cracking noise was heard. The cracking noise increased with the
increase of axial compressive load. The crack formation was followed by a sudden drop of the axial
compressive load, with the splitting of the fibres around holes accompanied by a loud noise. After
splitting, the fibres were bent and curled outwards, extensively delaminated, and fractured
transversely and longitudinally around the holes. It is noted that longitudinal rupture are more serious
than transverse rupture. This is mainly because GFRP tubes were manufactured by pultrusion with
majority of fibres aligned in the longitudinal direction. The failure modes of perforated GFRP tubes
depend largely on the perforation patterns. For axially perforated GFRP tubes, rupture was observed
around holes at the same height (Fig. 6 (c)). For diagonally perforated GFRP tubes, the tubes failed
due to crack development in the middle of three neighbouring holes (Fig. 6 (d)). For perforated GFRP
tubes with reinforced holes, the failure modes were similar to those of perforated GFRP tubes without
hole reinforcement (Fig. 6 (e)).

3.2. Axial load-axial deformation behaviour of GFRP tubes

A summary of the test results which include axial stiffness ratio (axial stiffness ratio between
perforated tubes and intact tubes), axial critical load ratio (axial critical load ratio between perforated
tubes and intact tubes), and axial deformation ratio (axial deformation ratio between perforated tubes
and intact tubes) are given in Table 3. The axial stiffness for intact Group A GFRP tube was 166
kN/mm, while the axial stiffness for intact Group B GFRP tube was 700 kN/mm. The axial load-axial
deformation diagrams of both intact and perforated GFRP tubes are presented in the following
sections. Both intact and perforated GFRP tubes show linear axial load-axial deformation behaviour
until the sudden collapse of the tubes. Considerable decreases in the axial stiffness, axial critical load,
and axial deformation capacity were observed due to the perforation, as explained below.

3.2.1. Influence of hole diameter

Fig. 7 illustrates the axial load-axial deformation behaviour of intact GFRP tube and perforated GFRP
tubes with different hole diameters. The effect of hole diameter was investigated by drilling 15 mm
and 25 mm diameter holes while keeping the other parameters constant. In Fig. 7(a), for perforated
GFRP tube “A-D25-V60-T4 (APT)” (with 25 mm diameter holes), 29.1%, 49.1%, and 27.8%
reductions in the axial stiffness, axial critical load, and corresponding deformation, respectively, are
observed compared to those of intact GFRP tube. For perforated GFRP tube “A-D15-V60-T4 (APT)”
(with 15 mm diameter holes), 18.2%, 36.1%, and 21.6% reductions are observed in the axial stiffness,
axial critical load, and corresponding deformation, respectively, compared to those of intact GFRP
tube. In Fig. 7 (b), the reductions of axial stiffness, axial critical load, and corresponding deformation
are 13.6%, 28.2%, and 17.1%, respectively, for perforated GFRP tube “B-D25-V60-T3 (APT)” (with
25 mm diameter holes), while the corresponding reductions are 9.1%, 14.8%, and 6.3%, respectively, for perforated GFRP tube “B-D15-V60-T3 (APT)” (with 15 mm diameter holes). Therefore, by reducing the hole diameter, the axial stiffness, axial critical load, and axial deformation capacity could be significantly increased. These results are slightly different from the results reported in Taheri-Behrooz et al. [18]. In Ref. [18], hole diameters of 2.5 mm, 10 mm, and 15 mm were used to numerically investigate the influence of hole diameter on the load carrying capacity of perforated tubes. Since the hole diameters in Ref. [18] were relatively small compared to the diameter of the tubes (107.3 mm inner diameter), the influence of the hole diameter was not significant. However, the influence of hole diameter on the performance of perforated GFRP tubes under axial compression cannot be neglected especially for perforated GFRP tubes with larger holes.

The variation of local deformation was analysed by investigating the strain distributions at representative locations for perforated GFRP tube “A-D25-V60-T4 (APT)”. In this study, the strain gauges were attached onto locations away from the perforations to investigate how perforation can influence the strain distributions at locations away from the perforations. Two representative locations were selected. The first location (Point A) was in the middle of two vertical neighbouring holes and the second location (Point B) was in the intact part of GFRP tube, as shown in Fig. 8 (a). Fig. 8 (b) shows the distribution of strains. It can be seen from Fig. 8 (b) that the axial strain at intact part was two times of hoop strain at intact part (Point B). The axial and hoop strains obtained at the intact part (Point B) were 10 and 5 times of those of axial and hoop strains obtained in between two vertical neighbouring holes (Point A), respectively. Therefore, it is evident that the major part of the tubes that carries the axial compressive load is the intact vertical segment of the tube without any holes. This observation can be used to explain that perforated tubes with smaller hole diameter have higher axial critical load under axial compression. Moreover, it is reasonable to expect that when the perforated tubes were subject to internal pressure, the major parts in resisting the hoop tensile load are the intact segments in the hoop direction of the tube.
3.2.2. Influence of vertical hole spacing

The axial load-axial deformation diagrams shown in Fig. 9 are used to illustrate the influence of vertical hole spacing on the axial compressive behaviour of perforated GFRP tubes. Vertical hole spacing of 60 mm and 100 mm were investigated. All other parameters were kept constant. In Fig. 9 (a), the increases in the axial stiffness, axial critical load, and corresponding axial deformation with the increase in the vertical hole spacing from 60 mm (A-D25-V60-T4 (APT)) to 100 mm (A-D25-V100-T4 (APT)) are 6.8%, 6.3%, and 6.2%, respectively. Similarly, in Fig. 9 (b), the increases in the axial stiffness, axial critical load, and corresponding deformation with the increase in the vertical spacing from 60 mm (A-D15-V60-T3 (APT)) to 100 mm (A-D15-V100-T3 (APT)) are 4.1%, 4.8%, and 5.6%, respectively. Therefore, by increasing the vertical hole spacing, the axial stiffness, axial critical load, and axial deformation capacity can be increased. However, the increase is not highly significant (within 4%-7%).

The strain distributions between two vertical holes as well as at the intact part were investigated for perforated GFRP tube “A-D25-V100-T4 (APT)”. Fig. 10 (a) shows the layout of strain gauge and Fig. 10 (b) shows the axial strain distributions. It can be seen from Fig. 10 (b) that the axial strain at Point B is only one third of the axial strain at Point A. This indicates that the closer the distance between holes, the less the axial strain can be obtained. Both the axial strains between two vertical holes (Point A and Point B) are much less than the axial strain at the intact part (Point C). Therefore, the vertical part between two neighbouring vertical holes contributes little to the performance of perforated GFRP tube under axial compression. It is noted that the axial strains obtained between two vertical holes increase nonlinearly with the axial load. This nonlinear behaviour is more obvious for Point B which is closer to the holes. It might be due to the fact that the fibres around holes were cut and damaged because of the perforation, which disturbed the linear properties of fibre bundles. Therefore, it can be reasonably argued that perforated GFRP tubes with a relatively small vertical hole spacing may not
cause significant performance degradation under axial compression. However, this argument may not be applicable for perforated GFRP tubes with very small vertical hole spacing because the minor cracks around closely spaced neighbouring vertical holes can easily develop into a fatal crack, which may result in an earlier tube failure.

3.2.3. Influence of tube diameter

The influence of tube diameter is investigated by comparing test results obtained from Group A and Group B GFRP tubes. The major difference between Group A and Group B tubes was the tube diameter (89 mm and 183 mm outer diameter). Fig. 11 (a) and (b) illustrate axial load-axial deformation diagrams of perforated GFRP tubes with different tube diameters. For comparison purpose, the axial load and axial deformation of GFRP tubes are normalized with respect to the axial critical load and corresponding deformation of intact GFRP tubes, respectively. In Fig. 11 (a), for Tube “A-D25-V60-T3 (APT)”, the perforation leads to the reductions of 23.3%, 43.4%, and 25.9% in the axial stiffness, axial critical load, and corresponding deformation, respectively. However, the reductions are 13.6%, 28.2%, and 17.1%, respectively, for Tube “B-D25-V60-T3 (APT)”. Similarly, in Fig. 11 (b), reductions of 11.5%, 30.1%, and 20.6% in the axial stiffness, axial critical load, and corresponding deformation are observed for Tube “A-D15-V60-T3 (APT)”, and the corresponding reductions for Tube “B-D15-V60-T3 (APT)” are 9.1%, 14.8%, and 5.3%. Therefore, it is clear that when other parameters are kept constant, increasing the tube diameter can improve the performance of perforated GFRP tubes under axial compression.

3.2.4. Influence of perforation pattern

Fig. 12 compares axial load-axial deformation behaviour between axially perforated GFRP tube (APT) and diagonally perforated GFRP tube (DPT). In Fig. 12 (a), for diagonally perforated tube “A-D25-V60-T3 (DPT)”, the axial stiffness, axial critical load, and corresponding deformation are 93.3%, 73.4%, and 78.6%, respectively, of those of axially perforated tube “A-D25-V60-T3 (APT)”.

14
Furthermore, for tube “A-D25-V40-T4 (DPT)” in Fig. 12 (b), the axial stiffness, axial critical load, and corresponding deformation are 108.6%, 89.9%, and 83.2%, respectively, compared to those of tube “A-D25-V40-T4 (APT)”. Interestingly, even though more holes were perforated on axially perforated tubes, better performance than diagonally perforated tubes under axial compression is observed. This may be explained that for diagonally perforated GFRP tubes, the cracks between neighbouring holes are easier to develop into a fatal crack, and hence the rupture is more likely to occur at an early stage. Based on the above investigation, it is recommended that perforated GFRP tubes with axial perforation pattern should be selected in order to improve the axial compressive behaviour.

3.2.5. Influence of transverse hole spacing

Fig. 13 illustrates the influence of transverse hole spacing on the axial compressive behaviour of perforated GFRP tubes. The variation of transverse hole spacing was investigated by changing the number of holes around tube transverse direction. The less the hole numbers around tube transverse direction, the larger the transverse spacing between holes. The perforated tubes with three and four holes around tube transverse direction were tested under axial compression while the other parameters were kept constant. Fig. 13 (a) and (b) illustrate that the axial stiffness and the axial critical load increases significantly with the increase of transverse hole spacing. However, the corresponding deformations at axial critical load do not show significant differences. Compared to the test results presented in Sections 3.2.1-3.2.5, it can be inferred that increase of perforation around tube transverse direction can lead to a significant decrease in the performance of perforated GFRP tube under axial compression. However, increase of perforation around tube longitudinal direction may not significantly influence the performance. Therefore, it is recommended that with a fixed perforation area throughout the tube, the perforation along transverse direction can be reduced while the perforation along the longitudinal direction can be increased in order to improve the axial compressive behaviour of perforated GFRP tubes.
3.2.6. Influence of hole reinforcement

Reinforcement can be applied around holes so that the axial compressive behaviour of perforated cylindrical shells may be improved [2, 3, 10, 19, 20]. In this study, 3 layers of CFRP sheet were wrapped around the holes to investigate whether this type of reinforcement could be effective in improving the performance of perforated GFRP tubes under axial compression. Fig. 2 (c) and (d) provide the specific layout of reinforcement for both axially and diagonally perforated GFRP tubes.

Fig. 14 shows the axial load-axial deformation behaviour of perforated tubes with reinforced or unreinforced holes. Both reinforced and unreinforced perforated tubes show similar behaviour under axial compression. The performance improvement is not significant for perforated tubes with reinforced holes. By wrapping CFRP sheet in this manner cannot contribute to increase the value of D_{11} in the bending stiffness matrix $[D]$ for the laminates of the tube. Nevertheless, it may be reasonable to expect that CFRP wrapping around holes would be effective for perforated GFRP tubes subjected to internal pressure for which significant transverse tensile strain may occur.

4. Development of design-oriented equations

This section aims to develop design-oriented equations to characterise the axial stiffness, axial critical load, and axial deformation capacity of perforated GFRP tubes under axial compression. The equations contain the main parameters that influence the axial compressive behaviour of perforated GFRP tubes. The reliability of the proposed equations has been verified by the experimental test. For the development of design-oriented equations, few basic assumptions are adopted: (1) the major parts in resisting the axial compressive load are the vertical intact segment of the perforated GFRP tubes; (2) the influence of vertical hole spacing on the axial compressive behaviour is not significant; and (3) the axial deformation capacity is decreased because of the perforation. All the assumptions are in accordance with the experimental observations presented in Section 3.
4.1. Definitions of model parameters

Two parameters are introduced herein. The first parameter is perforation ratio, which is defined as the ratio between the sum of perforation length around tube transverse direction and the perimeter of the GFRP tube:

\[\nu = \frac{nd}{\pi(D_i + t)} \]

(1)

where \(\nu \) is perforation ratio; \(D_i, d, \) and \(t \) are the inner diameter, hole diameter, tube thickness of GFRP tube, respectively; and \(n \) is the number of holes around tube transverse direction. The less is the perforation ratio \(\nu \), the more is the intact vertical segment without holes for perforated GFRP tubes.

A parameter \(\mu \) has been used to characterise the behaviour of perforated cylindrical shells under axial compression [2, 4]. In this study, the parameter \(\mu \) is used to investigate the axial compressive behaviour of perforated GFRP tubes. Since \(\mu \) is only suitable for perforated tubes with one hole, in order to make \(\mu \) suitable for perforated tubes with multiple holes, Equation (2) has been proposed herein:

\[\mu = \frac{n \cdot a}{\sqrt{R t}} \]

(2)

where \(a \) is the radius of the hole and \(R \) is the radius of the tube.

4.2. Available experimental data

Taheri-Behrooz et al. [18] investigated the axial compressive behaviour of perforated GFRP tubes. Details of the test data in Taheri-Behrooz et al. [18] can be found in Table 4. The parameters in the database include the radius of GFRP tubes \(R \), tube thickness \(t \), perforation ratio \(\nu \), parameter \(\mu \), axial
stiffness ratio κ, axial critical load ratio η, and axial deformation ratio λ. It should be noted that all perforated tubes were diagonally perforated GFRP tubes in Taheri-Behrooz et al. [18].

4.3. Proposal for axial stiffness ratio, κ

Based on Assumption (1), the axial stiffness of perforated GFRP tube is equal to the axial stiffness of intact vertical segment of perforated GFRP tube without holes. Therefore, the axial stiffness ratio κ between perforated GFRP tube and intact GFRP tube can be estimated according to Equation (3):

$$\kappa = 1 - \nu = \frac{\pi(D_e + t) - nd}{\pi(D_e + t)}$$

Fig. 15 shows the axial stiffness ratio versus the perforation ratio from this study and Taheri-Behrooz et al. [18]. A linear relationship exists between the axial stiffness ratio and perforation ratio. Close agreements between the test data and prediction results can be observed in Fig. 15. In addition, by using the proposed equation, a conservative prediction of axial stiffness ratio can be obtained. This may be due to the assumption that only the vertical intact part of the perforated GFRP tube carries the load. Therefore, the contribution from the vertical perforated part of GFRP tube is neglected.

The accuracy of the prediction is quantified using two statistical indicators: mean square error (MSE) and average absolute error (AAE). These two indicators are determined by Equation (4) and Equation (5), respectively:

$$MSE = \frac{\sum_{i=1}^{N} \left(\frac{\text{pre}_i - \text{exp}_i}{\text{exp}_i} \right)^2}{N}$$

$$AAE = \frac{\sum_{i=1}^{N} \left| \frac{\text{pre}_i - \text{exp}_i}{\text{exp}_i} \right|}{N}$$

where pre is the prediction result, exp is the experimental result, and N is the total number of dataset.
The values of mean square error (MSE) and average absolute error (AAE) are only 0.4% and 4.7%, respectively. Hence, the proposed equation can predict the experimental behaviour with very good accuracy.

Axially perforated GFRP tubes and diagonally perforated GFRP tubes performed differently under axial compression. Therefore, it is not appropriate to adopt the same equations to predict the axial critical load as well as axial deformation capacity of perforated GFRP tubes with different perforation patterns. It has been proved in this study that axially perforated GFRP tubes performed better than diagonally perforated GFRP tubes under axial compression. Therefore, experimental results on axially perforated GFRP tubes are used for the prediction of axial critical load as well as axial deformation capacity of the perforated GFRP tubes. Experimental results on diagonally perforated GFRP tubes (DPT) are excluded in the following section.

4.4. Proposal for axial critical load ratio, η

Due to the complex mechanism caused by perforation, few theoretical analyses have been conducted to predict the axial critical load of perforated cylindrical shells under axial compression [3, 5, 6]. Based on the analysis of available experimental results, it can be found that both the perforation ratio and parameter μ will significantly affect the axial critical load of perforated GFRP tubes. The following equations are proposed based on the regression of existing experimental data to predict the axial critical load ratio of axially perforated GFRP tubes (APT) using perforation ratio and parameter μ:

$$\eta = 0.953 - 1.226\nu$$

(6)

$$\eta = 0.967 - 0.158\mu$$

(7)

Fig. 16 shows the axial critical load ratio versus the perforation ratio ν and Fig. 17 shows the axial critical load ratio versus the parameter μ. It can be seen that the axial critical load decreased with the
increase of perforation ratio ν (parameter μ). Hence, a linear relationship can be established. The comparison of mean square error (MSE) and average absolute error (AAE) for Equations (6-7) has been shown in Fig. 18. It can be seen that the equations show good agreement with experimental results. Both the mean square error (MSE) and average absolute error (AAE) of Equation (6) were higher than those of Equation (7), which indicates that it is necessary to take the tube thickness into consideration for the more accurate prediction of the axial critical load of perforated GFRP tubes. Nevertheless, for simplicity, Equation (6) can also be used with a satisfactory accuracy.

4.5. Proposal for axial deformation ratio, λ

Previously, attention was focused on the prediction of axial critical load of perforated cylindrical shells under axial compression, and none of the previous studies provided information for the prediction of axial deformation capacity of perforated cylindrical shells. Equations (8) and (9) are proposed to predict the axial deformation capacity for the axially perforated GFRP tubes (APT) based on a regression analysis of experimental results using perforation ratio ν and parameter μ:

$$\lambda = 0.954 - 0.590\nu$$

$$\lambda = 0.961 - 0.076\mu$$

Fig. 19 shows the axial deformation ratio versus perforation ratio, and Fig. 20 shows the axial deformation ratio versus parameter μ. A good correlation has been obtained between the predictions and experimental results. The comparison of mean square error (MSE) and average absolute error (AAE) for Equations (8-9) can be seen in Fig. 18. Similar to the prediction of axial critical load, the prediction accuracy of axial deformation ratio is higher for equation developed based on parameter μ (Equation 9). As a result, in order to get more accurate prediction, the influence of tube thickness should be taken into consideration.
In general, even though satisfactory prediction can be obtained by these equations, more test data is needed for perforated GFRP tubes with larger perforation ratio as well as with different tube thicknesses before proposing more general equations to predict the axial compressive behaviour of perforated GFRP tubes. Such experimental and analytical ingestions are the part of ongoing research projects of the authors.

5. Conclusions

This study presents a comprehensive assessment of the parameters that may influence the axial compressive behaviour of perforated Glass Fibre Reinforced Polymer (GFRP) tubes. Based on the experimental investigation, design-oriented equations are developed to predict the axial compressive behaviour of perforated GFRP tubes. The following conclusions can be drawn:

The key parameters controlling the axial compressive behaviour of perforated GFRP tubes are the hole diameter, tube diameter, perforation pattern, transverse hole spacing. By reducing the hole diameter or increasing the tube diameter as well as transverse hole spacing, the axial compressive behaviour of perforated GFRP tubes can be significantly improved. Axially perforated tubes (APT) perform better than diagonally perforated tubes (DPT) under axial compression.

The influences of vertical hole spacing and hole reinforcement on the performance of perforated GFRP tubes under axial compression have been found not significant.

Design-oriented equations are developed for the prediction of axial stiffness, axial critical load and axial deformation capacity of perforated GFRP tubes under axial compression. The accuracies of the equations are verified by two statistical methods: average absolute error (AAE) and mean square error (MSE). The developed design-oriented equations can predict the axial compressive behaviour of perforated GFRP tubes with satisfactory accuracies.
Acknowledgments

The authors acknowledge the technical officer Mr. Ritchie Mclean, who constructed the test fixture used in the experimental program. The contribution of Mr. Alan Grant for his help in carrying out the experiment is appreciated. The authors also thank Wagners CFT for providing GFRP tubes. The first author acknowledges the China Scholarship Council and the University of Wollongong for supporting his PhD scholarship.

References:

List of Tables

Table 1. Mechanical properties of GFRP tubes.
Table 2. Test matrix.
Table 3. Experimental results.
Table 4. Summary of test results.
List of Figures

608 Fig. 1. Intact GFRP tubes
609 Fig. 2. Perforated GFRP tubes
610 Fig. 3. Test set-up and instrumentation
611 Fig. 4. Details of test fixture
612 Fig. 5. Engineering drawings of test fixture
613 Fig. 6. Failure modes of GFRP tubes
614 Fig. 7. Influence of hole diameter on the axial compressive behaviour of perforated GFRP tubes
615 Fig. 8. Strain distribution at different locations of GFRP tube “A-D25-V60-T4 (APT)”
616 Fig. 9. Influence of vertical hole spacing on the axial compressive behaviour of perforated GFRP tubes
618 Fig. 10. Axial strain distribution at different locations of GFRP tube “A-D25-V100-T4 (APT)”
619 Fig. 11. Influence of tube diameter on the axial compressive behaviour of perforated GFRP tubes
620 Fig. 12. Influence of perforation pattern on the axial compressive behaviour of perforated GFRP tubes
621 Fig. 13. Influence of transverse hole spacing on the axial compressive behaviour of perforated GFRP tubes
623 Fig. 14. Influence of hole reinforcement on the axial compressive behaviour of perforated GFRP tubes
624 Fig. 15. Prediction of axial stiffness ratio from perforation ratio
625 Fig. 16. Prediction of axial critical load ratio from perforation ratio (Axially perforated GFRP tubes)
626 Fig. 17. Prediction of axial critical load ratio from parameter μ (Axially perforated GFRP tubes)
627 Fig. 18. Error estimates of the proposed design-oriented equations
628 Fig. 19. Prediction of axial deformation ratio from perforation ratio (Axially perforated GFRP tubes)
629 Fig. 20. Prediction of axial deformation ratio from parameter μ (Axially perforated GFRP tubes)
Table 1.
Mechanical properties of GFRP tubes.

<table>
<thead>
<tr>
<th>Group</th>
<th>Ultimate Tensile Strength (MPa)</th>
<th>Ultimate Compressive Strength (MPa)</th>
<th>Shear Strength (MPa)</th>
<th>Modulus of Elasticity (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Longitudinal</td>
<td>Transverse</td>
<td>Longitudinal</td>
<td>Transverse</td>
</tr>
<tr>
<td>A</td>
<td>650</td>
<td>41</td>
<td>550</td>
<td>104</td>
</tr>
<tr>
<td>B</td>
<td>450</td>
<td>50</td>
<td>450</td>
<td>80</td>
</tr>
</tbody>
</table>
Table 2. Test matrix.

<table>
<thead>
<tr>
<th>GFRP tube</th>
<th>Hole diameter (mm)</th>
<th>Vertical hole spacing (mm)</th>
<th>Number of holes around transverse direction</th>
<th>Reinforcement</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-I</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>A-D25-V40-T4(APT)</td>
<td>25</td>
<td>40</td>
<td>4</td>
<td>None</td>
</tr>
<tr>
<td>A-D25-V40-T4 (DPT)</td>
<td>25</td>
<td>40</td>
<td>4</td>
<td>None</td>
</tr>
<tr>
<td>A-D25-V40-T4-LW (DPT)</td>
<td>25</td>
<td>40</td>
<td>4</td>
<td>Yes</td>
</tr>
<tr>
<td>A-D25-V60-T4 (APT)</td>
<td>25</td>
<td>60</td>
<td>4</td>
<td>None</td>
</tr>
<tr>
<td>A-D25-V60-T4-LW (APT)</td>
<td>25</td>
<td>60</td>
<td>4</td>
<td>Yes</td>
</tr>
<tr>
<td>A-D25-V100-T4 (APT)</td>
<td>25</td>
<td>100</td>
<td>4</td>
<td>None</td>
</tr>
<tr>
<td>A-D25-V60-T3 (APT)</td>
<td>25</td>
<td>60</td>
<td>3</td>
<td>None</td>
</tr>
<tr>
<td>A-D25-V60-T3 (DPT)</td>
<td>25</td>
<td>60</td>
<td>3</td>
<td>None</td>
</tr>
<tr>
<td>A-D15-V60-T4 (APT)</td>
<td>15</td>
<td>60</td>
<td>4</td>
<td>None</td>
</tr>
<tr>
<td>A-D15-V60-T3 (APT)</td>
<td>15</td>
<td>60</td>
<td>3</td>
<td>None</td>
</tr>
<tr>
<td>A-D15-V100-T3 (APT)</td>
<td>15</td>
<td>100</td>
<td>3</td>
<td>None</td>
</tr>
<tr>
<td>B-I</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>B-D25-V60-T3 (APT)</td>
<td>25</td>
<td>60</td>
<td>3</td>
<td>None</td>
</tr>
<tr>
<td>B-D15-V60-T3 (APT)</td>
<td>15</td>
<td>60</td>
<td>3</td>
<td>None</td>
</tr>
</tbody>
</table>
(Note: “A” and “B” are used to identify Group A GFRP tubes and Group B GFRP tubes, respectively; “I” indicates intact GFRP tubes without perforation; for perforated GFRP tubes, “D” and the number afterwards indicate the diameter of the hole in mm; “V” and the number afterwards indicate the vertical hole spacing in mm; “T” and the number afterwards indicate the number of holes around transverse direction; “LW” represents that the GFRP tube was laterally wrapped with CFRP sheet; “APT” indicates axially perforated GFRP tube; and “DPT” represents diagonally perforated GFRP tube.

Table 3.

<table>
<thead>
<tr>
<th>GFRP tube</th>
<th>Perforation ratio ν</th>
<th>μ</th>
<th>Axial stiffness ratio κ</th>
<th>Axial deformation ratio λ</th>
<th>Axial critical load ratio η</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-I</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>A-D25-V40-T4 (DPT)</td>
<td>0.384</td>
<td>3.06</td>
<td>0.652</td>
<td>0.665</td>
<td>0.431</td>
</tr>
<tr>
<td>A-D25-V40-T4-LW (DPT)</td>
<td>0.384</td>
<td>3.06</td>
<td>0.652</td>
<td>0.694</td>
<td>0.452</td>
</tr>
<tr>
<td>A-D25-V40-T4 (APT)</td>
<td>0.384</td>
<td>3.06</td>
<td>0.6</td>
<td>0.799</td>
<td>0.479</td>
</tr>
<tr>
<td>A-D25-V40-T4-LW (APT)</td>
<td>0.384</td>
<td>3.06</td>
<td>0.6</td>
<td>0.779</td>
<td>0.469</td>
</tr>
<tr>
<td>A-D25-V60-T4 (APT)</td>
<td>0.384</td>
<td>3.06</td>
<td>0.709</td>
<td>0.722</td>
<td>0.509</td>
</tr>
<tr>
<td>A-D25-V60-T4-LW (APT)</td>
<td>0.384</td>
<td>3.06</td>
<td>0.688</td>
<td>0.734</td>
<td>0.504</td>
</tr>
<tr>
<td>A-D25-V100-T4 (APT)</td>
<td>0.384</td>
<td>3.06</td>
<td>0.758</td>
<td>0.717</td>
<td>0.541</td>
</tr>
<tr>
<td>Description</td>
<td>Value1</td>
<td>Value2</td>
<td>Value3</td>
<td>Value4</td>
<td>Value5</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>A-D25-V60-T3 (APT)</td>
<td>0.288</td>
<td>2.295</td>
<td>0.767</td>
<td>0.741</td>
<td>0.566</td>
</tr>
<tr>
<td>A-D25-V60-T3 (DPT)</td>
<td>0.288</td>
<td>2.295</td>
<td>0.715</td>
<td>0.583</td>
<td>0.416</td>
</tr>
<tr>
<td>A-D15-V60-T4 (APT)</td>
<td>0.230</td>
<td>1.836</td>
<td>0.818</td>
<td>0.784</td>
<td>0.639</td>
</tr>
<tr>
<td>A-D15-V60-T3 (APT)</td>
<td>0.173</td>
<td>1.377</td>
<td>0.885</td>
<td>0.794</td>
<td>0.699</td>
</tr>
<tr>
<td>A-D15-V100-T3 (APT)</td>
<td>0.173</td>
<td>1.377</td>
<td>0.921</td>
<td>0.799</td>
<td>0.733</td>
</tr>
<tr>
<td>B-I</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B-D15-V60-T3 (APT)</td>
<td>0.082</td>
<td>0.832</td>
<td>0.909</td>
<td>0.937</td>
<td>0.852</td>
</tr>
<tr>
<td>B-D25-V60-T3 (APT)</td>
<td>0.136</td>
<td>1.386</td>
<td>0.864</td>
<td>0.829</td>
<td>0.718</td>
</tr>
</tbody>
</table>
Table 4.

Summary of test results in Ref. [16].

<table>
<thead>
<tr>
<th>No.</th>
<th>Radius of tubes R (mm)</th>
<th>Thickness t (mm)</th>
<th>Perforation ratio ν</th>
<th>μ</th>
<th>Axial stiffness ratio κ</th>
<th>Axial deformation ratio λ</th>
<th>Axial critical load ratio η</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>53.15</td>
<td>2.2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>53.15</td>
<td>2.2</td>
<td>0.174</td>
<td>0.462</td>
<td>0.874</td>
<td>0.742</td>
<td>0.650</td>
</tr>
<tr>
<td>3</td>
<td>53.15</td>
<td>1.5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>53.15</td>
<td>1.5</td>
<td>0.175</td>
<td>0.560</td>
<td>0.816</td>
<td>0.741</td>
<td>0.642</td>
</tr>
<tr>
<td>5</td>
<td>30.2</td>
<td>2.2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>30.2</td>
<td>2.2</td>
<td>0.316</td>
<td>0.613</td>
<td>0.919</td>
<td>0.825</td>
<td>0.760</td>
</tr>
</tbody>
</table>
Fig. 1. Intact GFRP tubes

Fig. 2. Perforated GFRP tubes
Fig. 3. Test setup and instrumentation

(a) steel flange (b) steel sleeve (c) combination (d) upper test fixture with bolts

Fig. 4. Details of test fixture
(a) steel flange

<table>
<thead>
<tr>
<th>(i) plan view</th>
<th>(ii) side view</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b) steel sleeve

<table>
<thead>
<tr>
<th>(i) plan view</th>
<th>(ii) side view</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 5. Engineering drawings of test fixture
<table>
<thead>
<tr>
<th>(a) A-I (without capping test fixture)</th>
<th>(b) A-I (with capping test fixture)</th>
<th>(c) A-D15-V100-T3 (APT)</th>
<th>(d) A-D25-V60-T3 (DPT)</th>
<th>(e) A-D25-V60-T4-LW (APT)</th>
</tr>
</thead>
</table>

Fig. 6. Failure modes of GFRP tubes
(a) Axial load-axial deformation behaviour of A-I, A-D15-V60-T4 (APT) and A-D25-V60-T4 (APT)

(b) Axial load-axial deformation behaviour of B-I, B-D15-V60-T3 (APT) and B-D25-V60-T3 (APT)

Fig. 7. Influence of hole diameter on the axial compressive behaviour of perforated GFRP tubes
Fig. 8. Strain distributions at different locations of GFRP tube “A-D25-V60-T4 (APT)”
(a) Axial load-axial deformation behaviour of A-I, A-D25-V60-T4 (APT) and A-D25-V100-T4 (APT)

(b) Axial load-axial deformation behaviour of A-I, A-D15-V60-T3 (APT) and A-D15-V100-T3 (APT)

Fig. 9. Influence of vertical hole spacing on the axial compressive behaviour of perforated GFRP tubes
Fig. 10. Axial strains distributions at different locations of GFRP tube “A-D25-V100-T4 (APT)”
(a) Normalised axial load-axial deformation behaviour of A-I, B-I, A-D25-V60-T3 (APT) and B-D25-V60-T3 (APT)

(b) Normalised axial load-axial deformation behaviour of A-I, B-I, A-D15-V60-T3 (APT) and B-D15-V60-T3 (APT)

Fig. 11. Influence of tube diameter on the axial compressive behaviour of perforated GFRP tubes
(a) Axial load-axial deformation behaviour of A-I, A-D25-V60-T3 (APT) and A-D25-V60-T3 (APT)

(b) Axial load-axial deformation behaviour of A-I, A-D25-V40-T4 (APT) and A-D25-V40-T4 (APT)

Fig. 12. Influence of perforation pattern on the axial compressive behaviour of perforated GFRP tubes
Fig. 13. Influence of transverse hole spacing on the axial compressive behaviour of perforated GFRP tubes

(a) Axial load-axial deformation behaviour of A-I, A-D25-V60-T3 (APT) and A-D25-V60-T4 (APT)

(b) Axial load-axial deformation behaviour of A-I, A-D15-V60-T3 (APT) and A-D15-V60-T4 (APT)
(a) Axial load-axial deformation behaviour of A-I, A-D25-V60-T4 (APT) and A-D25-V60-T4-LW (APT)

(b) Axial load-axial deformation behaviour of A-I, A-D25-V40-T4 (DPT) and A-D25-V40-T4-LW (DPT)

Fig. 14. Influence of hole reinforcement on the axial compressive behaviour of perforated GFRP tubes
Fig. 15. Prediction of axial stiffness ratio from perforation ratio

$$\kappa = 0.953 - 1.226n$$

$R^2 = 0.95$

Fig. 16. Prediction of axial critical load ratio from perforation ratio (axially perforated GFRP tubes)
Fig. 17. Prediction of axial critical load ratio from parameter μ (axially perforated GFRP tubes)

$$\eta = 0.967 - 0.158\mu$$

$R^2 = 0.96$

Fig. 18. Error estimates of the proposed design-oriented equations
Fig. 19. Prediction of axial deformation ratio from perforation ratio (axially perforated GFRP tubes)

\[\lambda = 0.954 - 0.590n \]
\[R^2 = 0.77 \]

Fig. 20. Prediction of axial deformation ratio from parameter \(\mu \) (axially perforated GFRP tubes)

\[\lambda = 0.961 - 0.076\mu \]
\[R^2 = 0.78 \]