Preparation of MgB$_2$ with excessive Mg environment sintering and two-step sintering approach

S X. Dou
University of Wollongong, shi@uow.edu.au

Sihai Zhou
University of Wollongong, sihai@uow.edu.au

Alexey V. Pan
University of Wollongong, pan@uow.edu.au

Jaimoo Yoo
University of Wollongong, jaimoo@uow.edu.au

Yun Zhang
University of Wollongong, yunz@uow.edu.au

See next page for additional authors

http://ro.uow.edu.au/engpapers/3004

Publication Details
Authors
S X. Dou, Sihai Zhou, Alexey V. Pan, Jaimoo Yoo, Yun Zhang, and Kookchae Chung

This journal article is available at Research Online: http://ro.uow.edu.au/engpapers/3004
Preparing MgB$_2$ With Excessive Mg Environment Sintering and Two-Step Sintering Approach

Sihai Zhou, Yun Zhang, Alexey V. Pan, Shixue Dou, Koochae Chung, and Jaimoo Yoo

Abstract—MgB$_2$ superconductors were made with two processes in this work. In one case, the SiC doped MgB$_2$ pellets were sintered in excessive Mg medium. It is found that the samples sintered in excessive Mg medium present Mg-rich composition comparing with the ones sintered in Ar gas. The density is higher and the resistance is lower due to the penetration of the Mg into the pores and grain boundary of MgB$_2$, which is beneficial to the J_c improvement. In the other case, a two-step process was employed to make MgB$_2$. J_c of the sample with the composition of MgB$_2$ is very low after the first sintering. The J_c was dramatically improved after the second sintering, but J_c of the two-step made sample is still poorer than the MgB$_2$ made with general one step sintering due to the connectivity deterioration caused by the pulverization prior to the second sintering.

Index Terms—Critical current density, MgB$_2$, SiC doping, superconductor.

I. INTRODUCTION

SUPERCONDUCTIVITY of MgB$_2$ was found in 2001 [1]. MgB$_2$ has a T_c of 39 K, higher than that of low temperature superconductors. It presents no weaklink problem between grain boundaries in comparison with the high-temperature superconductor [2]. The raw materials of this superconductor are cheaper than Nb, Ti of low temperature superconductor. Fe can be used as sheath material, which is much cheaper than Ag that is used for Bi2223 tapes. Its relatively high T_c enables the applications at above 20 K with a cryogen-free cryo-cooler. Most of the MgB$_2$ superconductors are made with the so-called “in-situ” method. In this method, Mg and B powders are mixed, pressed and sintered at a temperature of 650–900°C [3]–[7].

The advantages of the “in-situ” method are cheap fabrication, high J_c and flexibility of doping the MgB$_2$ with other elements. However, this method has a disadvantage in that there are voids, cracks in the precursor pellets even before the sintering. During the sintering, the Mg will melt or evaporate and react with B, leaving holes after the reaction. The MgB$_2$ volume shrink and cause even more holes, the overall density of the resultant MgB$_2$ is only half of the theoretical density. The low density of the MgB$_2$ wire lead to less supercurrent flowing area, to improve the density is a possible way to improve the J_c [8].

When the Mg +2B precursor pellets are sintered under protective Ar, there is a possibility that the Mg evaporates into the environment and cause Mg insufficiency. There is also the other possibility that O$_2$ in the environment reacts with MgB$_2$ and form MgO or B$_2$O$_3$ impurities thus damages the superconductivity. It is expected that sintering MgB$_2$ in a Mg excessive medium can prevent Mg from evaporated away or oxidized, the excessive Mg from outside the pellets may penetrate into the MgB$_2$ and produce Mg-rich MgB$_2$ and improve the grain connectivity thus achieve higher J_c.

In the first part of this paper, SiC doped MgB$_2$ were sintered under the protection of excessive Mg environment. The microstructure and J_c were studied.

A two-step fabrication is another attempt to fabricate higher density MgB$_2$. In this fabrication, Mg +4B are prepared first, and more Mg is added into MgB$_2$, pressed and then sintered at a higher temperature as the second step. By this way, the holes resulting from the first step sintering can be erased, so the final density can be higher. The second task of this paper dealt with the effects of the two-step sintering on J_c.

II. EXPERIMENTAL DETAILS

A. Sample Preparation

1) SiC Doped MgB$_2$ Sintered in Excessive Mg Medium: In this experiment, 10 wt% SiC powder was added in Mg$_x$ (90%)+2B (99%) powder and mixed with mortar and pestle by hand for 0.5 h. The particle size for the SiC powder is 30 nm, boron powder is 100 nm and the Mg powder is 11 µm. The mixed powders were pressed into pellets of diameters of 13 mm with a pressure of 7.5 GPa. The pressed pellets were buried in Mg turnings and then sealed in iron tubes to prevent O$_2$ getting in during the sintering. The sintering temperature was 800°C, sintered for 1 h in flowing Ar. A reference sample was also made in the same time but sintered in high purity Ar gas.

2) Two-Step Sintering to Make MgB$_2$: In this case, Mg +4B powders were mixed, pressed, and sintered at 800°C as the first step. The obtained MgB$_4$ samples were pulverized and ground into fine powder. Mg powder was added to achieve the MgB$_2$ composition. The Mg added powders were then mixed, pressed, and sintered at 850°C under Ar protection.

B. Characterization

The obtained pellets were characterized with a PW1730 X-Ray Diffraction (XRD) with Cu Kα radiation being used. Scanning Electronic Microscopy (SEM) was used to study their...
phase composition and microstructure. All SEM pictures were obtained by using Secondary electron images.

For the superconducting property measurement, the pellets were cut and polished to be small pieces of size $1 \times 2 \times 3 \text{mm}^3$. A Physical Property Measurement System (PPMS) was used to measure the magnetization of the samples. J_c were calculated from the magnetization using the Bean critical state model as we did in our previous works [9].

III. RESULTS AND DISCUSSION

A. SiC-Doped MgB_2 Sintered in Excessive Mg Medium

The T_c of the SiC-doped samples is shown in Fig. 1 together with the T_c of an MgB_2 sample sintered in Ar gas with the same sintering procedure. The T_c of the SiC-doped sample is about 34.7 K. The drop of the T_c is caused by the carbon originating from SiC doping, which was discussed in our previous work [10]. The sample sintered in excessive Mg has wider transition breadth; this is understood to be caused by the composition variety of the excessive Mg treated sample.

Fig. 2 depicts the J_c of the two SiC-doped samples, an undoped MgB_2 was included as reference. Both SiC-doped samples have improved J_c at higher field than the undoped MgB_2. The sample sintered in Mg wrap has slightly higher J_c as comparing with the one sintered in Ar gas. The J_c improvement probably is due to the denser microstructure and better connectivity. The resistance of the two samples was measured and the results are shown in Table I, sintering in excessive Mg have decreased sample’s resistance at both 300 K and 40 K. It should be the result of Mg filtrating into the MgB_2, healing some cracks. The free Mg’s presence is also a factor for the resistance decrease. The effect of the sintering in Mg on H_{c2} can be seen in Fig. 3, the Mg-treated sample has higher H_{c2}.

XRD were used to analyze the phase composition. Fig. 4 is the XRD of the SiC doped MgB_2 samples sintered in different environment. In both samples, there were MgB_2, Mg_2Si and MgO. The sample sintered in Mg medium showed significant Mg peaks and weaker MgO peak comparing with the Ar sintered sample. The SEM pictures are depicted in Fig. 5. At lower magnification, there is no obvious difference between the Ar sintered sample and Mg sintered sample. However, at higher magnification, the Mg sintered samples show much dense microstructure, it seems that the Mg penetrated inside the small gaps between the MgB_2 grains. This result is in consistent with the lower resistance of this sample, and also confirmed by the XRD results. The mass density of the Mg sintered sample is 1.5 g/cm3, higher than that of the Ar sintered one (1.3 g/cm3). The density increased by 15%, the J_c was also improved modestly. The J_c improvement can be attributed to the connectivity improvement due to the Mg penetration.

B. MgB_2 Prepared Using the Two-Step Method

This method consists of two steps: firstly the pellets with Mg + dB composition were sintered at 800°C for 0.5 hrs. The obtained pellets were pulverized and Mg was added to reach MgB_2 composition. The XRD pattern for these two steps is presented in Fig. 6. The first step sintered sample presented MgB_2, MgB_4 and MgO phases. After the second step, MgB_2 phase become the dominating phase, only small percentage of MgB_4 and...
MgO remains. The ratio of MgO peak to MgB₂ peak decreased after the Mg addition, which is a hint that the MgO amount decreased after the Mg addition and second sintering.

The FESEM pictures for the first step and second step are shown in Fig. 7, an image for the one step made sample is also included for reference. It is seen that both the first step sintering and second sintering produced a porous structure. The second sintered sample shows denser structure comparing with the first sintered one. The mass density of the first sintered sample is 1.3 g/cm³, the density increase to 1.6 g/cm³ after the second sintering. The one step sintered sample shows similar porous structure, but its grain size is larger, and the connectivity between the grains looks better than that of the two-step sintered samples. It is obvious that the adding of Mg can improve the density, improve the J_c dramatically in the process of two-step sintering, comparing with the first step sintered sample.

The T_c for the first sintering and second sintering sample is shown in Fig. 8. The first sintering produced very wide transition width, a sign of multiple T_c phase existing or poor grain connectivity. After the second sintering, the T_c transition becomes very sharp, indicating better connectivity and more uniform phase composition. The J_c for the two samples is depicted in Fig. 9. It can be seen that the J_c of the second sintered sample increased dramatically in all fields both at 5 K and 20 K comparing with the one of the first sintered sample. However, even after the second sintering, the J_c of the two-step made sample is still one order of magnitude lower than the one of the one-step made samples. The possible reasons for the poor J_c is poor granular connectivity due to cracks and/or impurity at grain boundary.

The J_c result is consistent with the XRD and SEM result, indicates the two-step sintering method is not an effective way for improving J_c. In order to obtain high J_c, it is necessary to not only to increase the mass density of the sample but also to achieve good connectivity in the same time.

IV. CONCLUSIONS

Two methods have been used to make MgB₂ superconductors. One is to sinter the MgB₂ in an excessive Mg medium; the other one is to make MgB₂ with two-step method. To sinter MgB₂ in excessive Mg medium can improve connectivity indicated by the larger mass density, lower resistance of the sample both at 300 K and 40 K after sintering in Mg. The connectivity improvement has good effects on the J_c improvement evidenced by the higher J_c of the Mg medium treated sample. The two-step
sintering, however, has no improvement in J_c over the sample made with general one-step method.

ACKNOWLEDGMENT

The authors thank Dr. Horvat Joseph, Dr. Tania Silver for their contribution to this work.

REFERENCES

