January 2013

Semi-linear degenerate backward stochastic partial differential equations and associated forward backward stochastic differential equations

Kai Du
University of Wollongong, kaid@uow.edu.au

Qi Zhang
Fudan University, qzh@fudan.edu.cn

Follow this and additional works at: https://ro.uow.edu.au/eispapers
Semi-linear degenerate backward stochastic partial differential equations and associated forward backward stochastic differential equations

Abstract
In this paper, we consider the Cauchy problem of semi-linear degenerate backward stochastic partial differential equations (BSPDEs) under general settings without technical assumptions on the coefficients. For the solution of semi-linear degenerate BSPDE, we first give a proof for its existence and uniqueness, as well as regularity. Then the connection between semi-linear degenerate BSPDEs and forward-backward stochastic differential equations (FBSDEs) is established, which can be regarded as an extension of the Feynman-Kac formula to the non-Markovian framework.

Keywords
stochastic, partial, associated, forward, differential, equations, semi, linear, degenerate, backward, equa

Publication Details
Semi-linear Degenerate Backward Stochastic Partial Differential Equations and Associated Forward Backward Stochastic Differential Equations✩

Kai Du, Qi Zhang

Department of Finance and Control Sciences, School of Mathematical Sciences, Fudan University, Shanghai 200433, China.

Abstract

In this paper, we consider the Cauchy problem of semi-linear degenerate backward stochastic partial differential equations (BSPDEs in short) under general settings without technical assumptions on the coefficients. For the solution of semi-linear degenerate BSPDE, we first give a proof for its existence and uniqueness, as well as regularity. Then the connection between semi-linear degenerate BSPDEs and forward backward stochastic differential equations (FBSDEs in short) is established, which can be regarded as an extension of Feynman-Kac formula to non-Markov frame.

Keywords: backward stochastic partial differential equations, semi-linear degenerate equations, forward backward stochastic differential equations, Feynman-Kac formula

1. Introduction

BSPDEs were introduced by Bensoussan as the adjoint equation of SPDE control systems. Since then BSPDEs have been applied to control theory and many other research fields. For example, in the study of stochastic maximum principle for stochastic parabolic PDEs or stochastic differential equations (SDEs in short) with partial information, the adjoint equations of Duncan-Mortensen-Zakai filtering equations are needed to solve, which are actually BSPDEs. For this kind of application, one can refer to [7, 15, 19, 22], to name but a few. Moreover, by means of the classical duality argument, the controllability of stochastic parabolic equations can be reduced to the observability estimate for BSPDEs, and this duality relation was utilized in e.g. [2, 20]. Besides the application in control theory, BSPDEs are also used in the stochastic process theory and mathematical finance, and we recommend the reader to see [3, 6, 11, 12] for more details.

However, the solvability and the regularity of BSPDE, even for linear BSPDE, are tough problems due to the differential operators in the form and its non-Markov characteristic. The recent work [5] by Du, Tang and Zhang made some progress and lifted

✩This paper is supported by the National Basic Research Program of China (973 Program) with grant No. 2007CB814904, National Natural Science Foundation of China with grant No. 10771122 and 11101090, the Doctoral Program of Higher Education of China with grant No. 2009007110001 and the Specialized Research Fund for the Doctoral Program of Higher Education of China with grant No. 20090071120002.

Email addresses: kdu@fudan.edu.cn (Kai Du), qzh@fudan.edu.cn (Qi Zhang)
the restrictions on the technical conditions for the Cauchy problem of linear degenerate BSPDEs. This work motivates us to consider the Cauchy problem of semi-linear degenerate BSPDEs under general settings. Actually, non-linear stochastic equations bear more application backgrounds without the exception of non-linear BSPDEs. For instance, Peng [18] discussed the Bellman dynamic principle for non-Markov processes, whose corresponding backward stochastic Hamilton-Jacobi-Bellman equation is a fully non-linear BSPDE. Moreover, in many subjects of mathematical finance, such as imperfect hedging, portfolio choice, etc., non-linear BSPDEs appear as an important role and one can consult [13, 14] for this aspect if interested.

Needless to say, more difficulties lay on the solvability of non-linear BSPDEs. In fact, the solvability of solution to the fully non-linear BSPDE put forward in [18] is still an open problem, under general settings. Even for semi-linear BSPDE below we consider in this paper, only few work studied on it:

\[
\begin{align*}
\left\{
\begin{array}{l}
du = -[Lu + Mq + f(t, x, u, q + u_x\sigma)]dt + q^k dW^k_t \\
u(T, x) = \varphi(x), \quad x \in \mathbb{R}^d,
\end{array}
\right.
\end{align*}
\]

(1.1)

where

\[
Lu := a^{ij}u_{x^i x^j} + b^i u_{x^i} + cu \quad \text{and} \quad Mq := \sigma^{ik}q^k_{x^i} + \nu^k q^k.
\]

In 2002, Hu, Ma and Yong considered semi-linear BSPDE of above form, under some specific settings and technical conditions in [8]. For instance, they only considered one-dimensional equation and the coefficients σ, ν were independent of x. One of our goal in this paper is to lift these restrictions and derive the existence, uniqueness and regularity of semi-linear degenerate BSPDE without technical assumptions. Also we would like to indicate that the similar regularity of solutions are obtained in this paper, but much weaker regularity requirements on the coefficients are needed in comparison with [8].

Our another motivation is to establish the correspondence between semi-linear degenerate BSPDE and FBSDE. It is well known that, in Markov frame, the Feynman-Kac formula for semi-linear equations was established by Peng [17] and Pardoux-Peng [16]. This Feynman-Kac formula demonstrates a correspondence between semi-linear PDE and FBSDE whose coefficients are all Markov processes. But in the non-Markov frame, FBSDE does not correspond to a deterministic PDE any more, but a BSPDE instead, by stochastic calculus. Certainly, as an extension of Feynman-Kac formula, this kind of correspondence is basically important, whether in Mathematical finance research field or in a potential application to numerical calculus of BSPDE. To get the correspondence, one necessary step is to derive the continuity of solution to FBSDE. Similar to [16], we utilize the Kolmogorov continuity theorem to prove it. But in our settings, no uniform Lipschitz conditions for $\varphi(x)$ and $f(s, x, 0)$ with respect to x are assumed. Instead we suppose that $\varphi(\cdot)$ and $f(s, \cdot, 0)$ belong to $W^{1,p}$ space and use the Sobolev embedding theorem to get the desired continuity.

Although [8, 11] discussed the correspondence between BSPDE and FBSDE, our conditions are weaker but results are stronger in the solvable case, and thus can be applied to more equations. We expect that this kind of correspondence under our settings has independent interest in the areas of both SPDEs and backward stochastic differential equations (BSDEs in short).
The rest of this paper is organized as follows. In Section 2, we clarify all necessary notations and state the existing results used in this paper. In Section 3, we prove the existence, uniqueness and regularity of solution to semi-linear degenerate BSPDE. The correspondence between semi-linear degenerate BSPDEs and FBSDEs is established in Section 4.

2. Preliminaries

Let \((\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \geq 0}, \mathbb{P})\) be a complete filtered probability space, among which the filtration \(\{\mathcal{F}_t\}_{t \geq 0}\) is generated by a \(d'\)-dimensional Wiener process \(W = \{W_t; t \geq 0\}\) and all the \(\mathbb{P}\)-null sets in \(\mathcal{F}\). Denote by \(\mathcal{P}\) the predictable \(\sigma\)-algebra associated with \(\{\mathcal{F}_t\}_{t \geq 0}\).

The following notations will be used in this paper:

- For any multi-index \(\gamma = (\gamma_1, \ldots, \gamma_d)\), we denote
 \[D_\gamma = D_\gamma^x := \left(\frac{\partial}{\partial x^1} \right)^{\gamma_1} \left(\frac{\partial}{\partial x^2} \right)^{\gamma_2} \cdots \left(\frac{\partial}{\partial x^d} \right)^{\gamma_d} \]
 and \(|\gamma| = \gamma_1 + \cdots + \gamma_d\).

- For \(n \in \mathbb{Z}^+, 0 < \alpha < 1\), denote by \(C_0^\infty = C_0^\infty(\mathbb{R}^d)\) the set of infinitely differentiable real functions of compact support on \(\mathbb{R}^d\), by \(C^n = C^n(\mathbb{R}^d)\) the set of \(n\) times continuously differentiable functions on \(\mathbb{R}^d\) such that
 \[\|u\|_{C^n} := \sum_{|\gamma| \leq n} \sup_{x \in \mathbb{R}^d} |D_\gamma u(x)| < \infty, \]
 and by \(C^{n, \alpha} = C^{n, \alpha}(\mathbb{R}^d)\) the set of Hölder continuity functions on \(\mathbb{R}^d\) such that
 \[\|u\|_{C^{n, \alpha}} := \|u\|_{C^n} + \sum_{|\gamma| = n} \sup_{x, y \in \mathbb{R}^d, x \neq y} \frac{|D_\gamma u(x) - D_\gamma u(y)|}{|x - y|^\alpha} < \infty. \]

- For \(p > 1\) and integer \(m \geq 0\), we denote by \(W^{m, p} = W^{m, p}(\mathbb{R}^d)\) the Sobolev space of real functions on \(\mathbb{R}^d\) with a finite norm
 \[\|u\|_{m, p} := \left(\sum_{|\gamma| \leq m} \int_{\mathbb{R}^d} |D_\gamma u|^p dx \right)^{1/p}, \]
 where \(\gamma\) is a multi-index. In particular, \(W^{0, p} = L^p\). It is well known that \(W^{m, 2}\) is a Hilbert space and its inner product is denoted by \(\langle \cdot, \cdot \rangle_m\).

- For \(p > 1\) and integer \(m \geq 0\), we denote by \(W^{m, p}(d') = W^{m, p}(\mathbb{R}^{d'}; \mathbb{R}^d)\) the Sobolev space of \(d'\) dimensional vector-valued functions on \(\mathbb{R}^d\) with the norm \(\|v\|_{m, p} = (\sum_{k=1}^{d'} \|v_k\|_{m, p}^p)^{1/p}\).

- Denote by \(L^p_{\mathcal{P}}W^{m, p}\) (resp. \(L^p_{\mathcal{P}}W^{m, p}(d')\)) the space of all predictable process \(u : \Omega \times [0, T] \rightarrow L^p\) (resp. \(u : \Omega \times [0, T] \rightarrow L^p(\mathbb{R}^{d'})\)) such that \(u(\omega, t) \in W^{m, p}\) (resp. \(u(\omega, t) \in W^{m, p}(d')\)) for a.e. \((\omega, t)\) and
 \[\mathbb{E} \int_0^T \|u(t)\|_{m, p}^p dt < \infty. \]
• Denote by $L_{\mathcal{P}}^p C_{\omega} W^{m,p}$ (resp. $L_{\mathcal{P}}^p C_{\omega} W^{m,p}$) the space of all predictable process $u : \Omega \times [0, T] \rightarrow W^{m,p}$ strongly (resp. weakly) continuous with respect to t on $[0, T]$ for a.s. ω, such that

$$E \sup_{t \in [0, T]} \|u(t)\|_{m,p}^p < \infty.$$

Moreover, throughout this paper the summation convention is in force for repeated indices.

For the coefficients in the semi-linear BSPDE (1.1), we always assume that $a = (a^{ij})_{i \times d}$, $b = (b^1, \ldots, b^d)$, c, $\sigma = (\sigma^{ik})_{d \times d}$ and $\nu = (\nu^1, \ldots, \nu^d)$ are $\mathcal{P} \times \mathcal{B}(\mathbb{R}^d)$-measurable with values on the set of real symmetric $d \times d$ matrices, \mathbb{R}^d, \mathbb{R}^1, $\mathbb{R}^{d \times d}$ and \mathbb{R}^d, respectively; the real function $f(t, x, v, r)$ defined on $\Omega \times [0, T] \times \mathbb{R} \times \mathbb{R}^1 \times \mathbb{R}^d$ is $\mathcal{P} \times \mathcal{B}(\mathbb{R}^d)$-measurable for each (v, r) and continuous in (v, r) for each (ω, t, x); the real function φ is $\mathcal{T}_T \times \mathcal{B}(\mathbb{R}^d)$-measurable. Moreover, the following conditions are needed.

Hypotheses. For a given constant $K_m \geq 0$ and a given integer $m \geq 0$,

(\mathbb{A}_m) the functions b^i, c, ν^k and their derivatives with respect to x up to the order m, as well as a^{ij}, σ^{ik} and their derivatives up to the order m; $\max\{2, m\}$, are bounded by K_m;

(\mathbb{P}) (parabolicity) for each $(\omega, t, x) \in \Omega \times [0, T] \times \mathbb{R}^d$,

$$[2a^{ij}(t, x) - \sigma^{ik}\sigma^{jk}(t, x)]\xi^i\xi^j \geq 0, \text{ for arbitrary } \xi \in \mathbb{R}^d.$$

Definition 2.1. We call a pair functions $(u, q) \in L_{\mathcal{P}}^p C_{\omega} W^{1,2} \times L_{\mathcal{P}}^p C_{\omega} W^{0,2}(d^r)$ a (generalized) solution of BSPDE (1.1) if for each $\eta \in C_0^\infty$ and a.e. (ω, t),

$$\langle u(t), \eta \rangle_0 = \langle \varphi, \eta \rangle_0 + \int_t^T \langle \mathcal{L}u + \mathcal{M}q + f(s, x, u, q + u_x\sigma), \eta \rangle_0 ds$$

$$- \int_t^T \langle q(s), \eta \rangle_0 dW_s \quad \mathbb{P} \text{- a.s.}$$

(2.1)

Remark 2.1. In (2.1), the term $\langle a^{ij} u_{x^i x^j}, \eta \rangle_0$ is understood as

$$-\langle a^{ij} u_{x^i}, \eta_x \rangle_0 - \langle a^{ij} u_{x^j}, \eta \rangle_0.$$

For convenience, we do a transform in equation (1.1) by setting

$$\tilde{\eta} = q + u_x\sigma.$$

(2.2)

Define $\alpha^{ij} = \frac{1}{2} \sigma^{ik}\sigma^{jk}$. Then equation (1.1) can be rewritten as the following form:

$$\begin{cases}
\quad \quad du = -[\hat{\mathcal{L}}u + \mathcal{M}\tilde{q} + f(t, x, u, \tilde{q})] dt + (\tilde{q} - u_x\sigma)dW_t \\
\quad u(T, x) = \varphi(x), \quad x \in \mathbb{R}^d,
\end{cases}$$

(2.3)

where

$$\hat{\mathcal{L}}u = (a^{ij} - 2\alpha^{ij})u_{x^i x^j} + \tilde{b}^iu_{x^i} + cu$$

and

$$\tilde{b}^i = b^i - \sigma^{ik}\sigma^{jk} - \nu^k\sigma^{ik}.$$

It is clear that a function pair (u, \tilde{q}) satisfies (2.1) if and only if (u, \tilde{q}) satisfies the following

$$\langle u(t), \eta \rangle_0 = \langle \varphi, \eta \rangle_0 + \int_t^T \langle \tilde{\mathcal{L}}u(s) + \mathcal{M}\tilde{q}(s) + f(s, x, u(s), \tilde{q}(s)), \eta \rangle_0 ds$$

$$- \int_t^T \langle \tilde{q}(s) - u_x\sigma(s), \eta \rangle_0 dW_s.$$

(2.4)
To investigate semi-linear BSPDEs, we need some results about linear equations. In the linear case, \(f \) in equation (1.1) is taken to be independent of the last two variables, i.e.
\[
f(t, x, v, r) = F(t, x),
\]
where the real function \(F \) is \(\mathcal{P} \times B(\mathbb{R}^d) \)-measurable. Then we have

Theorem 2.1. (Theorem 2.1 in [5]) Let conditions \(\text{Theorem 2.1.} \) be satisfied for given \(m \geq 1 \). If \(f \in L^2_{\mathcal{P}}W^{m,2} \) and \(\varphi \in L^2_{\mathcal{P}}T(\Omega; W^{m,2}) \), then BSPDE (1.1) has a unique generalized solution \((u, q)\) such that
\[
u \in L^2_{\mathcal{P}}CW^{m,2} \quad \text{and} \quad q + \nabla u \sigma \in L^2_{\mathcal{P}}W^{m,2}(d'),
\]
and for any integer \(m_1 \in [0, m] \), we have the estimates
\[
\mathbb{E} \sup_{t \leq T} \| u(t) \|^2_{m_1,2} + \mathbb{E} \int_0^T \| (q + \nabla u \sigma)(t) \|^2_{m_1,2} dt \\
\leq C\mathbb{E} \left(\| \varphi \|^2_{m_1,2} + \int_0^T \| f(t) \|^2_{m_1,2} dt \right),
\]
(2.5)
\[C\] is a generic constant which depends only on \(d, d', K_m, m \) and \(T \).

In addition, if \(f \in L^p_{\mathcal{P}}W^{m,p} \) and \(\varphi \in L^p_{\mathcal{P}}T(\Omega; W^{m,p}) \) for \(p \geq 2 \), then \(u \in L^p_{\mathcal{P}}CW^{m,p} \), and for any integer \(m_1 \in [0, m] \),
\[
\mathbb{E} \sup_{t \leq T} \| u(t) \|^p_{m_1,p} \leq Ce^{Cp}\mathbb{E} \left(\| \varphi \|^p_{m_1,p} + \int_0^T \| f(t) \|^p_{m_1,p} dt \right).
\]

In the remaining of this paper, we still use \(C > 0 \) as a generic constant only depending on given parameters, and when needed, a bracket will follow immediately after \(C \) to indicate what parameters \(C \) depends on.

However, (2.5) is not enough to obtain the estimates of the solution to the semi-linear equation, and we need more preparations. First let’s see a lemma below.

Lemma 2.2. Let conditions \(\text{(A}_1) \) and \(\text{(P)} \) be satisfied. Then there exists a positive constant \(C(d, d', K_1, T) \) such that for any positive number \(\lambda > C + 1 \),
\[
\mathbb{E} \int_0^T e^{\lambda t} \left(\| u \|^2_{1,2} + \| q + u \sigma \|^2_{1,2} \right) dt \leq 2e^{\lambda T}\mathbb{E}\| \varphi \|^2_{1,2} + \frac{2}{\lambda - C - 1} \mathbb{E} \int_0^T e^{\lambda t} \| F(t) \|^2_{1,2} dt.
\]
(2.6)

Proof. Take a small number \(\varepsilon > 0 \). Consider the following BSPDE with super-parabolic condition:
\[
\begin{cases}
du^\varepsilon = -\left[(\varepsilon \Delta + \mathcal{L}) u^\varepsilon + \mathcal{M}q^\varepsilon + F \right] dt + q^\varepsilon dW_t \\
u^\varepsilon(T) = \varphi.
\end{cases}
\]
(2.7)

In view of Theorem 2.3 in Du-Meng [4], equation (2.7) has a unique solution \((u^\varepsilon, q^\varepsilon)\) satisfying
\[
u^\varepsilon \in L^2_{\mathcal{P}}W^{2,2} \cap L^2_{\mathcal{P}}CW^{1,2}, \quad q^\varepsilon \in L^2_{\mathcal{P}}W^{1,2}(d').
\]
Doing a similar transformation as in (2.2) with \(\tilde{q} = q^{\varepsilon} + u^{\varepsilon} \sigma \) and applying Itô formula (c.f. [9]) to \(e^{\lambda t}(\sum_{|\alpha| \leq 1} |D^\alpha u^\varepsilon|^2) \), we have

\[
\mathbb{E}\|u^\varepsilon(0)\|_{1,2}^2 - e^{\lambda T}\mathbb{E}\|\varphi\|_{1,2}^2 + \lambda \mathbb{E}\int_0^T e^{\lambda t}\|u^\varepsilon(t)\|_{1,2}^2 dt = 2 \sum_{|\alpha| \leq 1} \mathbb{E}\int_0^T e^{\lambda t}\langle D^\alpha u^\varepsilon, D^\alpha [(\varepsilon \Delta + \widehat{\mathcal{L}})u^\varepsilon + M\tilde{q}^\varepsilon + f]\rangle_0 dt - \mathbb{E}\int_0^T e^{\lambda t}\|\tilde{q}^\varepsilon - u^\varepsilon \sigma\|_{1,2}^2 dt. \tag{2.8}
\]

From Lemma 3.1 in Du-Tang-Zhang [5], we know that there exists a constant \(C \) depending only on \(d, d', K_1, T \), but not \(\varepsilon \), such that

\[
2 \sum_{|\alpha| \leq 1} \langle D^\alpha u^\varepsilon, D^\alpha [(\varepsilon \Delta + \widehat{\mathcal{L}})u^\varepsilon + M\tilde{q}^\varepsilon + f]\rangle_0 - \|\tilde{q}^\varepsilon - u^\varepsilon \sigma\|_{1,2}^2 \\
\leq -\frac{1}{2}\|\tilde{q}^\varepsilon(t)\|_{1,2}^2 + C\|u^\varepsilon(t)\|_{1,2}^2 + 2\langle u^\varepsilon, F\rangle_1.
\]

This along with (2.8) yields that

\[
\frac{1}{2} \mathbb{E}\int_0^T e^{\lambda t}\left(\|u^\varepsilon(t)\|_{1,2}^2 + \|\tilde{q}^\varepsilon(t)\|_{1,2}^2\right) dt \\
\leq e^{\lambda T}\mathbb{E}\|\varphi\|_{1,2}^2 + (C - \lambda + 1)\mathbb{E}\int_0^T e^{\lambda t}\|u^\varepsilon(t)\|_{1,2}^2 dt + 2\mathbb{E}\int_0^T e^{\lambda t}\langle u^\varepsilon, F\rangle_1(t) dt. \tag{2.9}
\]

Then taking \(\lambda > C + 1 \) and noting that

\[
2\langle u^\varepsilon, F\rangle_1(t) \leq (\lambda - C - 1)\|u^\varepsilon(t)\|_{1,2}^2 + \frac{1}{\lambda - C - 1}\|F(t)\|_{1,2}^2,
\]

we obtain estimate (2.6) for \((u^\varepsilon, q^\varepsilon) \).

In view of the proof of Theorem 2.1 in Du-Tang-Zhang [5], we know that there exists a subsequence \(\{\varepsilon_n\} \downarrow 0 \) such that \((u^\varepsilon, \tilde{q}^\varepsilon) \) converges weakly to \((u, \tilde{q}) \) in \(L^2_{\omega}W^{1,2} \times L^2_{\omega}W^{1,2}(d') \) as \(n \to \infty \). Hence estimate (2.6) follows from the resonance theorem and the proof is complete.

Remark 2.2. (i) Following the proof of Lemma 2.2, we can easily prove

\[
\mathbb{E}\int_0^T e^{\lambda t}\left(\|u\|_{0,2}^2 + \|q + u^{\varepsilon} \sigma\|_{0,2}^2\right) dt \leq 2e^{\lambda T}\mathbb{E}\|\varphi\|_{0,2}^2 + \frac{2}{\lambda - C - 1}\mathbb{E}\int_0^T e^{\lambda t}\|F(t)\|_{0,2}^2 dt \tag{2.10}
\]

with the identical constant \(C \) in Lemma 2.2.

(ii) If we further assume that \((A_2) \) holds, \(f \in L^2_{\omega}W^{2,2} \) and \(\varphi \in L^2_{\omega}(\Omega; W^{2,2}) \), then we can similarly deduce that there exists a positive constant \(C(d, d', K_2, T) \) such that for any positive number \(\lambda > C + 1 \),

\[
\mathbb{E}\int_0^T e^{\lambda t}\left(\|u\|_{2,2}^2 + \|q + u^{\varepsilon} \sigma\|_{2,2}^2\right) dt \\
\leq 2e^{\lambda T}\mathbb{E}\|\varphi\|_{2,2}^2 + \frac{2}{\lambda - C - 1}\mathbb{E}\int_0^T e^{\lambda t}\|f(t)\|_{2,2}^2 dt. \tag{2.11}
\]
3. Existence, uniqueness and regularity of solutions to semi-linear BSPDEs

We make a further hypothesis on the function f in BSPDE (1.1):

(F) the function $f(t, x, v, r)$ satisfies

(1) for arbitrary (ω, t, x, v, r), f_x, f_v and f_r exist;
(2) $f(\cdot, \cdot, 0, 0) \in L^2_{\mathcal{F}}W^{1,2}$;
(3) there exists a constant $L > 0$ such that for each (ω, t, x),

$$|f(t, x, v_1, r_1) - f(t, x, v_2, r_2)| + \|f_x(t, x, v_1, r_1) - f_x(t, x, v_2, r_2)\|$$

$$\leq L(|v_1 - v_2| + \|r_1 - r_2\|), \quad \text{for arbitrary } v_1, v_2 \in \mathbb{R}, \ r_1, r_2 \in \mathbb{R}^{d'}.
$$

Obviously, f_v and f_r are bounded by the constant L.

First we give the proof for the existence and uniqueness of solutions to semi-linear BSPDEs.

Theorem 3.1. Let conditions (A$_1$), (P) and (F) be satisfied. Suppose $\varphi \in L^2_{\mathcal{F}_T}(\Omega; W^{1,2})$, then BSPDE (1.1) has a unique solution (u, q) such that

$$u \in L^2_{\mathcal{F}}C_wW^{1,2}, \quad q + u_x\sigma \in L^2_{\mathcal{F}}W^{1,2}(d').$$

Moreover, there exists a constant $C(d, d', K_1, T, L)$ such that

$$\mathbb{E} \sup_{t \in [0,T]} \|u(t)\|_{1,2} + \mathbb{E} \int_0^T \|q + u_x\sigma\|_{1,2}^2(t)dt \leq C\mathbb{E} \left(\|\varphi\|_{1,2}^2 + \int_0^T \|f(t, \cdot, 0, 0)\|_{1,2}^2dt \right). \quad (3.1)$$

Proof. We mainly use the Picard iteration in the proof of this theorem.

Step 1. Define a successive sequence by setting

$$(u_0, q_0) = (0, 0)$$

and $\{(u_n, q_n)\}_{n \geq 1}$ to be the unique solution of the following equations:

$$\begin{cases}
 du_n = -[L u_n + M q_n + f(t, x, u_{n-1}, q_{n-1} + u_{n-1, x}\sigma)]dt + q^k_{n-1}dW_t^k \\
 u_n(T) = \varphi.
\end{cases} \quad (3.2)$$

The solvability of equation (3.2) is indicated by Theorem 2.1 since one can easily check that

$$f(\cdot, \cdot, u_{n-1}, q_{n-1} + u_{n-1, x}\sigma) \in L^2_{\mathcal{F}}W^{1,2}$$

by virtue of condition (F). Then we obtain a sequence $\{(u_n, \hat{q}_n)\}_{n \geq 0} \subset L^2_{\mathcal{F}}C_wW^{1,2} \times L^2_{\mathcal{F}}W^{1,2}(d')$, where

$$\hat{q}_n = q_n + u_{n, x}\sigma.$$

Step 2. For the sequence $\{(u_n, \hat{q}_n)\}_{n \geq 0}$ defined in Step 1, we prove that a subsequence converges weakly in $L^2_{\mathcal{F}}W^{1,2} \times L^2_{\mathcal{F}}W^{1,2}(d')$. First noticing condition (F), we have that for each integer $n \geq 1$, there exists a positive constant \bar{C} depending only on L such that

$$\mathbb{E} \int_0^T e^{\lambda t} \|f(t, \cdot, u_{n-1}, \hat{q}_{n-1})\|_{1,2}^2 dt \leq \bar{C} \mathbb{E} \left[\int_0^T e^{\lambda t} \|f(t, \cdot, 0, 0)\|_{1,2}^2 dt + \int_0^T e^{\lambda t} (\|u_{n-1}\|_{1,2}^2 + \|\hat{q}_{n-1}\|_{1,2}^2) dt \right]. \quad (3.3)$$
If we denote the constant C in (2.10) by C_1, then taking $\lambda_0 = 4\tilde{C} + C_1 + 1$, we can prove a claim that for each $n \geq 0$,

$$
\mathbb{E} \int_0^T e^{\lambda_0 t} \left(\|u_n\|_{1,2}^2 + \|\tilde{g}_n\|_{1,2}^2 \right) dt \leq 4 \mathbb{E} \left(e^{\lambda_0 T} \|\varphi\|_{1,2}^2 + \int_0^T e^{\lambda_0 t} \|f(t, \cdot, 0, 0)\|_{1,2}^2 dt \right). \tag{3.4}
$$

To prove it, the mathematical induction is used. Assume that (3.4) is true for $n - 1$. Applying Lemma 2.2 to equation (3.2), by (3.3) we have

$$
\mathbb{E} \int_0^T e^{\lambda_0 t} \left(\|u_n\|_{1,2}^2 + \|\tilde{g}_n\|_{1,2}^2 \right) dt \\
\leq 2e^{\lambda_0 T} \mathbb{E} \|\varphi\|_{1,2}^2 + \frac{2}{\lambda_0 - C_1 - 1} \mathbb{E} \int_0^T e^{\lambda_0 t} \|f(t, \cdot, u_{n-1}, \tilde{g}_{n-1})\|_{1,2}^2 dt \\
\leq 2e^{\lambda_0 T} \mathbb{E} \|\varphi\|_{1,2}^2 \\
+ \frac{2\tilde{C}}{\lambda_0 - C_1 - 1} \left[\int_0^T e^{\lambda_0 t} \|f(t, \cdot, 0, 0)\|_{1,2}^2 dt + \int_0^T e^{\lambda_0 t} \left(\|u_{n-1}\|_{1,2}^2 + \|\tilde{g}_{n-1}\|_{1,2}^2 \right) dt \right] \\
\leq 4 \mathbb{E} \left(e^{\lambda_0 T} \|\varphi\|_{1,2}^2 + \int_0^T e^{\lambda_0 t} \|f(t, \cdot, 0, 0)\|_{1,2}^2 dt \right).
$$

By (3.4), we immediately know that $\{(u_n, \tilde{g}_n)\}_{n \geq 0}$ is uniformly bounded with the norm of $L^2_{\mathcal{D}} W^{1,2} \times L^2_{\mathcal{D}} W^{1,2}(d')$. Hence there exist a subsequence $\{n'\}$ and a function pair

$$(\tilde{u}, \tilde{q}) \in L^2_{\mathcal{D}} W^{1,2} \times L^2_{\mathcal{D}} W^{1,2}(d')$$

such that as $n' \to \infty$,

$$(u_{n'}, \tilde{g}_{n'}) \rightharpoonup (\tilde{u}, \tilde{q}) \text{ weakly in } L^2_{\mathcal{D}} W^{1,2} \times L^2_{\mathcal{D}} W^{1,2}(d').$$

Step 3. We then prove the strong convergence of $\{(u_n, \tilde{g}_n)\}_{n \geq 0}$ in $L^2_{\mathcal{D}} W^{0,2} \times L^2_{\mathcal{D}} W^{0,2}(d')$. In view of (2.10) and condition (F), taking $\lambda = \lambda_1 = 8\tilde{L}^2 + C_1 + 1$ and $n \geq 1$ we have

$$
\mathbb{E} \int_0^T e^{\lambda t} \left(\|u_{n+1} - u_n\|_{0,2}^2 + \|\tilde{q}_{n+1} - \tilde{q}_n\|_{0,2}^2 \right) dt \\
\leq \frac{2}{\lambda_1 - C_1 - 1} \mathbb{E} \int_0^T e^{\lambda t} \|f(t, \cdot, u_n, \tilde{g}_n) - f(t, \cdot, u_{n-1}, \tilde{g}_{n-1})\|_{0,2}^2 dt \\
\leq \frac{1}{2} \mathbb{E} \int_0^T e^{\lambda t} \left(\|u_n - u_{n-1}\|_{0,2}^2 + \|\tilde{q}_n - \tilde{q}_{n-1}\|_{0,2}^2 \right) dt,
$$

which implies that $\{(u_n, \tilde{g}_n)\}_{n \geq 0}$ is a Cauchy sequence in the space $L^2_{\mathcal{D}} W^{0,2} \times L^2_{\mathcal{D}} W^{0,2}(d')$. Actually $\{(u_n, \tilde{g}_n) : n \geq 1\}$ is also a Cauchy sequence with the norm $\mathbb{E} \int_0^T \| \cdot \|_{0,2}^2 dt$ due to the norm equivalence between $\sqrt{\mathbb{E} \int_0^T e^{\lambda t} \| \cdot \|_{0,2}^2 dt}$ and $\mathbb{E} \int_0^T \| \cdot \|_{0,2}^2 dt$ in $L^2_{\mathcal{D}} W^{0,2} \times L^2_{\mathcal{D}} W^{0,2}(d')$. We denote the strong limit of $\{(u_n, \tilde{g}_n)\}_{n \geq 0}$ by (u, \tilde{q}). Recalling the subsequence $\{n'\}$ in step 2, we know that $\{(u_{n'}, \tilde{g}_{n'})\}$ converges strongly to (u, \tilde{q}) in $L^2_{\mathcal{D}} W^{0,2} \times L^2_{\mathcal{D}} W^{0,2}(d')$. By the uniqueness of the limit, we have

$$(u, \tilde{q}) = (\tilde{u}, \tilde{q}) \in L^2_{\mathcal{D}} W^{1,2} \times L^2_{\mathcal{D}} W^{1,2}(d').$$
Step 4. Next we prove that \((u, \hat{q})\) is a solution of BSPDE (1.1) to complete the existence proof. For this, we need verify that \((u, \hat{q})\) satisfies (2.4). First we know that
\[
\langle u_n(t), \eta \rangle_0 = \langle \varphi, \eta \rangle_0 + \int_t^T \langle \hat{L} u_n(s) + \mathcal{M} \hat{q}_n(s) + f(s, x, u_{n'-1}(s), \hat{q}_{n'-1}(s)), \eta \rangle_0 ds
\]
\[
- \int_t^T \langle \hat{q}_n(s) - u_n\sigma(s), \eta \rangle_0 dW_s.
\]
(3.5)

Since \((u_{n'-1}, \hat{q}_{n'-1})\) converges strongly to \((u, \hat{q})\) in \(L^2_{\mathcal{F}} W^{0.2} \times L^2_{\mathcal{F}} W^{0.2}(d')\) as \(n' \to \infty\), by condition (F) it follows that, as \(n' \to \infty\),
\[
\mathbb{E} \int_0^T \|f(t, \cdot, u_n(t), \hat{q}_n(t)) - f(t, \cdot, u(q, \hat{q}))\|_{\mathcal{F}}^2 dt \to 0.
\]

Hence, for any \(\eta \in C_0^\infty\), all terms of (3.5) converge weakly to the corresponding terms of (2.4) in \(L^2_{\mathcal{F}}(\Omega \times [0, T])\) since the operators of Lebesgue integration and stochastic integration are continuous in \(L^2_{\mathcal{F}}(\Omega \times [0, T])\). Therefore, \((u, \hat{q})\) is a generalized solution of (2.3). Setting \(q = \hat{q} - u_x\sigma\), we know that \((u, q)\) is a generalized solution of BSPDE (1.1).

Moreover, since \((u, \hat{q})\) is obtained, we regard \(f(t, x, u, q + u_x\sigma)\) as the known coefficient and \((u, \hat{q})\) as the solution of linear BSPDE with given \(f(t, x, u, q + u_x\sigma)\). By condition (F), \(f(t, x, u, q + u_x\sigma) \in L^2_{\mathcal{F}} W^{n.2}\). Then we get from Theorem 2.1 that \(u \in L^2_{\mathcal{F}} C_w W^{1.2}\) and (3.1) follows.

Step 5. We finally deduce the uniqueness of solution to semi-linear BSPDE. Assume that \((u_1, q_1)\) and \((u_2, q_2)\) are two generalized solutions to BSPDE (1.1). Set \(\hat{q}_i = q_i + u_i x\sigma\), \(i = 1, 2\). Noticing (2.10) and taking \(\lambda = \lambda_1\) again, by condition (F) we have
\[
\mathbb{E} \int_0^T e^{\lambda t} \left(\|u_1 - u_2\|_{\mathcal{F}}^2 + \|\hat{q}_1 - \hat{q}_2\|_{\mathcal{F}}^2\right) dt \leq \frac{1}{2} \mathbb{E} \int_0^T e^{\lambda t} \left(\|u_1 - u_2\|_{\mathcal{F}}^2 + \|\hat{q}_1 - \hat{q}_2\|_{\mathcal{F}}^2\right) dt.
\]

The uniqueness of solution immediately follows, which completes the proof of Theorem 3.1.

In the remaining part of this section, the regularity of solution to semi-linear BSPDE is explored. We consider a simpler form of BSPDE (1.1) with \(f(t, x, v, r)\) independent of \(r\):
\[
\begin{cases}
du = -[Lu + \mathcal{M} q + f(t, x, u)] dt + q dW_t \\
u(T, x) = \varphi(x), \quad x \in \mathbb{R}^d.
\end{cases}
\]
(3.6)

For BSPDE (3.6), condition (F) is simplified as follows:

(F') the function \(f(t, x, v)\) satisfies
(1) for arbitrary \((\omega, t, x, v)\), \(f_x\) and \(f_v\) exist;
(2) \(f(\cdot, \cdot, 0) \in L^2_{\mathcal{F}} W^{1.2}\);
(3) there exists a constant \(L > 0\) such that for each \((\omega, t, x)\),
\[
|f(t, x, v_1) - f(t, x, v_2)| + |f_x(t, x, v_1) - f_x(t, x, v_2)| \leq L|v_1 - v_2|, \quad \text{for arbitrary } v_1, v_2 \in \mathbb{R}.
\]

Obviously, \(f_v\) is bounded by the constant \(L\).

We know from Theorem 3.1 that under conditions (A1), (P) and (F'), if \(\varphi \in L^2_{\mathcal{F}} \Omega; W^{1.2}\), BSPDE (3.6) has a unique solution \((u, q) \in L^2_{\mathcal{F}} C_w W^{1.2} \times L^2_{\mathcal{F}} W^{0.2}(d')\). Moreover, some regularity results for BSPDE (3.6) can be obtained.
We assume that conditions (A₁), (P) and (F') are satisfied, and for \(p \geq 2 \), \(f(\cdot, \cdot, 0) \in L^p_\rho W^{1,p} \) and \(\varphi \in L^p_\mathcal{F}(\Omega; W^{1,p}) \), then \(u \in L^p_\rho C_u W^{1,p} \) and there exists a constant \(C(d, d', K_1, T, L, p) \) such that

\[
\mathbb{E} \sup_{t \leq T} \| u(t) \|_{1,p}^p \leq C e^{CT} \mathbb{E} \left(\| \varphi \|_{1,p}^p + \int_0^T \| f(t, \cdot, 0) \|_{1,p}^p \, dt \right). \tag{3.7}
\]

Proof. By condition (F'), it is easy to see that for arbitrary \(v \in W^{1,p} \)

\[
\| f(t, \cdot, v) \|_{1,p}^p = \| f(t, \cdot, v) \|_{0,p}^p + \| f_x(t, \cdot, v) \|_{0,p}^p \leq C(p)(\| f(t, \cdot, 0) \|_{1,p}^p + L^p \| v \|_{1,p}^p). \tag{3.8}
\]

To avoid heavy notation, we set

\[
M_1 = \mathbb{E} \left(\| \varphi \|_{1,p}^p + \int_0^T \| f(t, \cdot, 0) \|_{1,p}^p \, dt \right).
\]

Similar to arguments in Theorem 3.1, we define a recursive sequence \(\{ (u_n, q_n) \}_{n \geq 1} \) as follows:

\[
\begin{cases}
 du_n = -[\mathcal{L} u_n + \mathcal{M} q_n + f(t, x, u_{n-1})] \, dt + q_n \, dW_t \\
u_n(T) = \varphi.
\end{cases}
\]

If \(u_{n-1} \in L^p_\rho W^{1,p} \), by (3.8) \(f(\cdot, \cdot, u_{n-1}) \in L^p_\rho W^{1,p} \), thus \(u_n \in L^p_\rho C_u W^{1,p} \) follows immediately from Theorem 2.1. By setting \(u_0 = 0 \), we know from mathematical induction that \(\{ u_n \}_{n \geq 0} \subset L^p_\rho C_u W^{1,p} \). Furthermore, by the estimate in Theorem 2.1 and (3.8), we have for arbitrary \(t \in [0, T] \), \(n \geq 1 \),

\[
\mathbb{E} \| u_n(t) \|_{1,p}^p \leq C \mathbb{E} \left(\| \varphi \|_{1,p}^p + \int_t^T \| f(s, \cdot, u_{n-1}) \|_{1,p}^p \, ds \right) \leq C \int_t^T \mathbb{E} \| u_{n-1}(s) \|_{1,p}^p \, ds + CM_1,
\]

where \(C \) is independent of \(n \). A simple calculation leads to

\[
\mathbb{E} \| u_n(t) \|_{1,p}^p \leq CM_1 \sum_{k=0}^{n-1} \frac{1}{k!} C^k(T-t)^k \leq CM_1 e^{C(T-t)}. \tag{3.9}
\]

Hence there exist a subsequence \(\{ n' \} \) and a function \(u \in L^2_\rho W^{1,2} \) such that as \(n' \to \infty \), \(u_{n'} \) converges weakly to \(u \) in \(L^2_\rho W^{1,2} \). By Banach-Saks Theorem, we can construct a sequence \(u^k \) from finite convex combinations of \(u_{n'} \) such that \(u^k \) and \(u^k_x \) converges to \(u \) and \(u_x \) for a.e. \(t \in [0, T] \) \(x \in \mathbb{R}^d \) a.s., respectively. Due to the norm itself is convex, (3.9) implies

\[
\mathbb{E} \int_0^T \| u^k(t) \|_{1,p}^p \, dt \leq CM_1 (e^{CT} - 1).
\]

By Fatou Lemma, it turns out that

\[
\mathbb{E} \int_0^T \| u(t) \|_{1,p}^p \, dt \leq CM_1 (e^{CT} - 1).
\]

Regarding \(u \) as the solution of linear BSPDE with given coefficient \(f(t, x, u) \), by (3.8) and Theorem 2.1 we obtain (3.7).
Form the proof of Theorem 3.2 and Corollary 2.3 in [3], it is not hard to derive the following corollary.

Corollary 3.3. Let conditions (A1), (P) and (F') be satisfied. If \(f(\cdot, \cdot, 0) \in L^\infty_\mathcal{F} W^{1,\infty}, \varphi \in L^\infty_\mathcal{F}_T(\Omega; W^{1,\infty}) \), then \(u \in L^\infty_\mathcal{F} W^{1,\infty} \), i.e.

\[
\| u \|_{L^\infty_\mathcal{F} W^{1,\infty}} \leq C(d, d_0, K_1, T, L, f(\cdot, \cdot, 0), \varphi) \triangleq C_\infty.
\]

With the help of Sobolev’s embedding theorem, it is not hard to deduce the corollary below.

Corollary 3.4. Under the conditions in Theorem 3.2 with \(p > 2 \) replaced by \(p > d \), \(u(t, x) \) is jointly continuous on \((t, x)\) a.s.

Based on Theorem 3.2, we explore the regularity of solution to BSPDE (3.6).

Theorem 3.5. We assume that

1. conditions (A2) and (P) hold, and \(\varphi \in L^2_\mathcal{F}_T(\Omega; W^{2,2}) \cap L^\infty_\mathcal{F}_T(\Omega; W^{1,\infty}) \);
2. for arbitrary \((\omega, t, x, v)\), \(f_x, f_v, f_{xx}, f_{xv}, f_{vv} \) exist;
3. \(f(\cdot, \cdot, 0) \in L^2_\mathcal{F} W^{2,2} \cap L^\infty_\mathcal{F} W^{1,\infty} \);
4. \(f_x, f_{xx}, f_{vv} \) are bounded by \(L \);
5. for arbitrary \((\omega, t, x, v)\), \(|f_{xx}(t, x, v)| \leq |f_{xx}(t, x, 0)| + L|v| \).

Then (3.6) has a unique generalized solution \((u, q)\) satisfying

\[
u \in L^2_\mathcal{F} C_w W^{2,2} \cap L^\infty_\mathcal{F} W^{1,\infty} \text{ and } q + u_x \sigma \in L^2_\mathcal{F} W^{2,2}.
\]

Proof. First of all, our assumptions satisfy the conditions in Theorem 3.2 and Corollary 3.3; thus (3.6) has a unique solution \((u, q)\) satisfying

\[
u \in L^2_\mathcal{F} C_w W^{1,2} \cap L^\infty_\mathcal{F} W^{1,\infty} \text{ and } q + u_x \sigma \in L^2_\mathcal{F} W^{1,2}.
\]

To get a better regularity, for arbitrary \(\delta > 0 \), we consider the non-degenerate BSPDE below:

\[
\begin{cases}
 du^\delta = \left[(\delta \Delta + \mathcal{L}) u^\delta + \mathcal{M} q^\delta + f(t, x, u^\delta) \right] dt + q^\delta dW_t \\
u^\delta(T) = \varphi.
\end{cases}
\]

By Theorem 3.1, we know that above BSPDE has a unique solution \((u^\delta, q^\delta) \in L^2_\mathcal{F} W^{1,2} \times L^2_\mathcal{F} W^{1,2} \), which together with condition (4) leads to a fact that \(f(t, x, u^\delta) \in L^2_\mathcal{F} W^{1,2} \).

Regarding \(f(t, x, u^\delta) \) as a given coefficient and using Theorem 2.3 in [4] for non-degenerate linear BSPDE, we can get a better regularity of solution, i.e. \((u^\delta, q^\delta) \in L^2_\mathcal{F} W^{3,2} \times L^2_\mathcal{F} W^{2,2} \). Then \(q^\delta + u^\delta_x \sigma \in L^2_\mathcal{F} W^{2,2} \), and by (2.11) there exists a positive constant \(C_2(d, d', K_2, T) \) such that for any positive number \(\lambda > C_2 + 1 \),

\[
\mathbb{E} \int_0^T e^{\lambda t} \left(\| u^\delta \|_{2,2}^2 + \| q^\delta + u^\delta_x \sigma \|_{2,2}^2 \right) dt \\
\leq 2 e^{\lambda T} \mathbb{E} \| \varphi \|_{2,2}^2 + \frac{2}{\lambda - C_2 - 1} \mathbb{E} \int_0^T e^{\lambda t} \| f(t, \cdot, u^\delta) \|_{2,2}^2 dt.
\]
Also, by Corollary 3.3 we have \(|u_x| \leq C_\infty \), so it follows from conditions (2)(4)(5) that

\[
|f(t, x, u^\delta) - f(t, x, 0)| + L|u^\delta|,
\]

\[
\{f(t, x, u^\delta)\}_x \leq |f_x(t, x, 0)| + L(|u^\delta| + |u_x^\delta|),
\]

\[
\{f(t, x, u^\delta)\}_{xx} \leq |f_{xx}(t, x, u^\delta)| + 2|f_{xv}(t, x, u^\delta)| \cdot |u_x^\delta| + |f_{vv}(t, x, u^\delta)| \cdot |u_x^\delta|^2 + |f_x(t, x, u^\delta)| \cdot |u_{xx}^\delta|
\]

\[
\leq |f_{xx}(t, x, 0)| + L|u^\delta| + (2 + C_\infty)L|u_x^\delta| + L|u_{xx}^\delta|.
\]

Hence,

\[
\|f(t, \cdot, u^\delta)\|_{2, 2}^2 \leq C(L, C_\infty)\left(\|f(t, \cdot, 0)\|_{2, 2}^2 + \|u^\delta\|_{2, 2}^2\right).
\]

Putting this estimate into (3.10), we immediately get

\[
\mathbb{E}\int_0^T e^{\lambda t}\left(\|\varphi\|_{2, 2}^2 + \|q^\delta + u_x^\delta\sigma\|_{2, 2}^2\right) dt
\]

\[
\leq 2e^{\lambda T}\mathbb{E}\|\varphi\|_{2, 2}^2 + \frac{2C(L, C_\infty)}{\lambda - C_2 - 1}\int_0^T e^{\lambda t}\left(\|f(t, \cdot, 0)\|_{2, 2}^2 + \|u^\delta\|_{2, 2}^2\right) dt.
\]

Then taking \(\lambda = 4C(L, C_\infty) + C_2 + 1 \) in above and setting

\[
M_2 = \mathbb{E}\left(\|\varphi\|_{2, 2}^2 + \int_0^T \|f(t, \cdot, 0)\|_{2, 2}^2 dt\right),
\]

we obtain the uniformly bounded estimate for \((u^\delta, q^\delta + u_x^\delta\sigma)\) in \(L^2 W^{2, 2}\), i.e.

\[
\mathbb{E}\int_0^T \left(\|u^\delta\|_{2, 2}^2 + \|q^\delta + u_x^\delta\sigma\|_{2, 2}^2\right) dt \leq 4e^{\lambda T}M_2,
\]

(3.11)

where \(\lambda \) is independent of \(\delta \). So we can get a sequence \(\{\delta_n\} \downarrow 0 \) and \((\hat{u}, \hat{\sigma}) \in L^2 W^{2, 2} \times L^2 W^{2, 2}\) such that \((u^n, r^n) \triangleq (u_x^n, q^n + u_x^n\sigma)\) converges weakly to \((\hat{u}, \hat{\sigma})\) in \(L^2 W^{2, 2} \times L^2 W^{2, 2}\). The weak convergence of \(u_x^n\) to \(\hat{u}\) in \(L^2 W^{2, 2}\) also implies the weak convergence of \(u_x^n\sigma\) to \(\hat{u}\sigma\) in \(L^2 W^{1, 2}\). Hence \(q^n = r^n - u_x^n\sigma\) converges weakly to \(\hat{q} \triangleq \hat{r} - \hat{u}\sigma\) in \(L^2 W^{1, 2}\).

Next we show that \(\{u^\delta_n\}\) is a Cauchy sequence in \(L^2 W^{0, 2}\). If so, the strong convergence of \(u_x^\delta\) to \(\hat{u}\) in \(L^2 W^{0, 2}\) follows and it is easy to see that \((\hat{u}, \hat{q})\) is the unique solution to (3.6) referring to the arguments as in Theorem 3.1.

To prove that \(\{u^\delta_n\}\) is a Cauchy sequence in \(L^2 W^{0, 2}\), we set

\[
u^{n, m} = u^{\delta_n} - u^{\delta_m}, \quad q^{n, m} = q^{\delta_n} - q^{\delta_m}.
\]

Obviously, \((u^{n, m}, q^{n, m})\) satisfies equations as follows:

\[
\left\{
\begin{array}{l}
du^{n, m} = -\{(\delta_n \Delta + \mathcal{L}) u^{n, m} + Mq^{n, m} + f(t, x, u^{\delta_n}) - f(t, x, u^{\delta_m}) \\
\quad + (\delta_n - \delta_m) \Delta u^{\delta_n}\} dt + q^{n, m} dW_t \\
u^{n, m}(T) = 0.
\end{array}
\right.
\]
Remark 3.1. (i) Theorems 3.2 and 3.5 improve much in many aspects in comparison with Theorems 3.2 and 5.1 in Hu-Ma-Yong [8]. For example, our result includes multidimensional equation and the coefficients with Theorems 3.2 and 5.1 in Hu-Ma-Yong [8]. For example, our result includes multi-

(ii) Denote by $D^i_x D^j_v f$, $i, j \in \mathbb{Z}^+$ the derivative of f which is i order with respect to x and j order with respect to v. For $m \geq 1$, if we assume

1. conditions (A_m) and (P) hold, and $\varphi \in L^2_{\mathcal{F}_T}(\Omega; W^{m,2}) \cap L^\infty_{\mathcal{F}_T}(\Omega; W^{m-1,\infty});$

2. for arbitrary (ω, t, x, v), all $D^i_x D^j_v f$ exist, where $0 \leq i, j \leq m$ and $i + j > 0$;

3. $f(\cdot, \cdot, 0) \in L^2_{\mathcal{F}} W^{m,2} \cap L^\infty_{\mathcal{F}} W^{m-1,\infty};$

4. all $D^i_x D^j_v f$ are bounded by L, where $0 \leq i \leq m - 1, 0 \leq j \leq m$ and $i + j > 0$;

5. for arbitrary (ω, t, x, v), $|D^m_x f(t, x, v)| \leq |D^m_x f(t, x, 0)| + L|v|.$

Then from the argument of Theorem 3.5, it is not hard to prove that (3.6) has a unique generalized solution (u, q) satisfying

$$u \in L^2_{\mathcal{F}} C_w W^{m,2} \cap L^\infty_{\mathcal{F}} W^{m-1,\infty}$$

and $q + u_x \sigma \in L^2_{\mathcal{F}} W^{m,2}.$

4. Connection between BSPDEs and FBSDEs

In this section, we study the connection between semi-linear BSPDEs and FBSDEs. This kind of connection is established in a non-Markov frame and can be regarded as an extension of Feynman-Kac formula for semi-linear PDEs and BSDEs (c.f. [16, 17]).

First give a BSDE whose coefficients may be non-Markovian:

$$\begin{align*}
X^t_x &= x + \int_t^s b(r, X^r_x) dr + \int_t^s \sigma(r, X^r_x) dW_r, \quad s \geq t, \\
X^t_x &= x, \quad 0 \leq s < t.
\end{align*}$$

(4.1)

where $W_s = (W^1_s, \cdots, W^d_s)^*$. We always assume that b, σ satisfy (A_1). The BSDE coupled with above forward SDE is usually called FBSDE:

$$Y^t_x = \varphi(X^T_T) + \int_t^T f(r, X^r_x, Y^r_x) dr - \int_t^T Z^r_x dW_r.$$ (4.2)
Remark 4.1. (i) Given $p > d$, note that

$$\mathbb{E} \int_0^T |f(s, X_s^{t,x}, 0)|^p ds \leq \mathbb{E} \int_0^T \|f(s, \cdot, 0)\|^p_{L^p} ds \leq C \mathbb{E} \int_0^T \|f(s, \cdot, 0)\|^p_{W^{1,p}} ds.$$

Hence, if $f(\cdot, \cdot, 0) \in L^p_{\mathbb{P}} W^{1,p}$, $\varphi \in L^p_{\mathbb{F}}(\Omega ; W^{1,p})$, and for any $\omega \in \Omega$, $s \in [0, T]$, $f(s, x, y)$ satisfies the uniformly Lipschitz condition with respect to y save the space we leave out the localization procedure arguments in this section. One can refer to e.g. Lemma 4.3 in [21] for the localization procedure, and in order to this case FBSDE has a form like below:

$$\text{as stated in (i), in view of } Y^{t,x}_s \in L^p_{\mathbb{F}}(\Omega ; L^p), \text{the above equation has a unique solution } (Y^{t,x}_s, Z^{t,x}_s)_{s \in [0, t]} \text{ when } s \in [0, t]. \text{ To unify the notation, we define } (Y^{t,x}_s, Z^{t,x}_s) = (Y^{x}_s, Z^{x}_s) \text{ when } s \in [0, t].$$

Our purpose is to investigate the connection between FBSDE (4.2) and the following BSPDE:

$$Y^{t,x}_s = Y^{t,x}_t + \int_t^s f(r, x, Y^x_r)dr - \int_t^s Z^x_r dW_r.$$

As stated in (i), in view of $Y^{t,x}_s \in L^p_{\mathbb{F}}(\Omega ; L^p)$, the above equation has a unique solution $(Y^{t,x}_s, Z^{t,x}_s)_{s \in [0, t]}$. To unify the notation, we define $(Y^{t,x}_s, Z^{t,x}_s) = (Y^{x}_s, Z^{x}_s)$ when $s \in [0, t]$.

Our purpose is to investigate the connection between FBSDE (4.2) and the following BSPDE:

$$\begin{cases} du = -[\alpha^{ij} u_x^{x^i} + b^i u_x^i + \sigma^{ik} q_x^k + f(t, x, u)]dt + q^k dW_t^k \\ u(T, x) = \varphi(x), \quad x \in \mathbb{R}^d, \end{cases}$$

where $\alpha^{ij} = \frac{1}{2} \sigma^{ik} \sigma^{jk}$.

We begin with the linear case that $f(t, x, y, z) = c(t, x)y + \nu^k(t, x)z^k + F(t, x)$ and in this case FBSDE has a form like below:

$$Y^{t,x}_s = \varphi(X^{t,x}_T) + \int_s^T [c(r, X^{t,x}_r) Y^{t,x}_r + \nu(r, X^{t,x}_r) Z^{t,x}_r + F(r, X^{t,x}_r)]dr - \int_s^T Z^{t,x}_r dW_r.$$

The corresponding linear BSPDE is as follows:

$$\begin{cases} du = -[\mathcal{L} u + \mathcal{M} q + F]dt + q^k dW_t^k \\ u(T, x) = \varphi(x), \quad x \in \mathbb{R}^d. \end{cases}$$

Referring to Lemma 4.5.6 in [10], we first give a useful lemma.

Lemma 4.1. Under condition (A1), for $p \geq 1$, $t', t \in [0, T]$, the stochastic flow defined by (4.1) satisfies

$$\mathbb{E} \sup_{s \in [0, T]} |X^{t',x'}_s - X^{t,x}_s|^{2p} \leq C(p, T) \left(1 + |x|^2 + |x'|^2 \right) \left(|x' - x|^{2p} + |t' - t|^p \right) \text{ a.s.}$$
The following proposition borrows ideas from [16, 21]. Although $F(s, x)$ is not Lipschitz continuous on x, we still can derive the continuity of $Y_{t,x}$ since the Hölder continuity of $F(s, x)$ on x.

Proposition 4.2. Let conditions (A₁) be satisfied. For a given $p > 2d + 2$, suppose $F \in L^p_{\mathcal{F}}W^{1,p}$ and $\varphi \in L^p_{\mathcal{F}}(\Omega; W^{1,p})$. If $(Y_{s,x}^t, Z_{s,x}^t)_{s \in [0,T]}$ is the solution of FBSDE (4.7), then for $t \in [0, T]$, $x \in \mathbb{R}^d$, $(t, x) \rightarrow Y_{t,x}$ is a.s. continuous.

Proof. By Remark 4.1 we know that FBSDE (4.3) has a unique solution $(Y_{s,x}^t, Z_{s,x}^t)_{s \in [0,T]}$ and it satisfies (4.3). For $t, t' \in [0, T], x, x' \in \mathbb{R}^d, s \geq 0, 0 < \beta < 1$, assuming without loss of any generality that $\beta p > 2d + 2$ and $|x - x'| \leq 1$, we have

$$
\mathbb{E} \int_t^T e^{\beta p|Kr|} |t,x' - t,x|^2 |c(s, X_{s},x') - c(s, X_{s}^t,x)|^2 ds
\leq 2\mathbb{E} \int_t^T e^{\beta p|Kr|} |t,x' - t,x|^2 |c(s, X_{s},x')|^2 |Y_{s}^t,x' - Y_{s}^t,x|^2 + |c(s, X_{s}^t,x') - c(s, X_{s}^t,x)|^2 |Y_{s}^t,x'|^2) ds
\leq 2K^2_e \mathbb{E} \int_t^T e^{\beta p|Kr|} |t,x' - t,x|^2 ds
+ 2K^2_1 \mathbb{E} \int_t^T e^{\beta p|Kr|} |t,x' - t,x|^2 |X_{s}^t,x| - |X_{s}^t,x|^2 |Y_{s}^t,x|^2) ds
\leq 2K^2_e \mathbb{E} \int_t^T e^{\beta p|Kr|} |t,x' - t,x|^2 ds + \varepsilon \mathbb{E} \int_t^T e^{\beta p|Kr|} |t,x' - t,x|^2 ds + C \left(\mathbb{E} \int_t^T |t,x' - t,x|^2 ds \right) \beta \left(\mathbb{E} \int_t^T |X_{s}^t,x|^{\beta p} ds \right)^{1-\beta}, \tag{4.7}
$$

where $\varepsilon > 0$ is a generic constant which can be taken sufficiently small. Similarly, it follows that

$$
\mathbb{E} \int_t^T e^{\beta p|Kr|} |t,x' - t,x|^2 |\nu(s, X_{s},x') - \nu(s, X_{s}^t,x')|^2 |Z_{s}^t,x' - Z_{s}^t,x|^2 ds
\leq 2K^2_1 \mathbb{E} \int_t^T e^{\beta p|Kr|} |t,x' - t,x|^2 |Z_{s}^t,x'| - |Z_{s}^t,x|^2) ds
+ 2K^2_1 \mathbb{E} \int_t^T e^{\beta p|Kr|} |t,x' - t,x|^2 |X_{s}^t,x| - |X_{s}^t,x|^2 |Z_{s}^t,x|^2) ds. \tag{4.8}
$$

Noticing the $C^{0,\alpha}$ norm is controlled by the $W^{1,p}$ norm in view of Sobolev embedding theorem, where $\alpha = 1 - \frac{2}{p} < 1$, we have

$$
\mathbb{E} \int_t^T e^{\beta p|Kr|} |F(s, x_{s}^t,x') - F(s, x_{s}^t,x)|^2 ds
\leq \mathbb{E} \int_t^T e^{\beta p|Kr|} \|F(s, \omega)\|_{C^{0,\alpha}} |X_{s}^t,x' - X_{s}^t,x|^2 ds
\leq \left(\mathbb{E} \int_t^T e^{\beta p|Kr|} |F(s, \omega)|^{2p} ds \right)^{\beta} \left(\mathbb{E} \int_t^T e^{\beta p|Kr|} |X_{s}^t,x'|^{2p} ds \right)^{1-\beta}
\leq C \left(\mathbb{E} \int_t^T |X_{s}^t,x'|^{2p} ds \right)^{1-\beta}. \tag{4.9}
$$
Now applying Itô's formula to $e^{\beta p K_t} |\varphi(X_T^{t',x'}) - \varphi(X_T^{t,x})|^{\beta_p}$, we have

$$
\mathbb{E} e^{\beta p K_T} |\varphi(X_T^{t',x'}) - \varphi(X_T^{t,x})|^{\beta_p} \leq C \left(\mathbb{E} |X_T^{t',x'} - X_T^{t,x}|^{\frac{\alpha_{\beta_p} \beta_p}{2}} \right)^{1-\beta}. \quad (4.10)
$$

Now applying Itô’s formula to $e^{\beta p K_s} |Y_s^{t',x'} - Y_s^{t,x}|^{\beta_p}$, we have

$$
e^{\beta p K_s} |Y_s^{t',x'} - Y_s^{t,x}|^{\beta_p} + \beta p K \int_s^T e^{\beta p K_r} |Y_r^{t',x'} - Y_r^{t,x}|^{\beta_p} dr
+ \frac{\beta p (\beta p - 1)}{2} \int_s^T e^{\beta p K_r} |Y_r^{t',x'} - Y_r^{t,x}|^{\beta_p-2} |Z_r^{t',x'} - Z_r^{t,x}|^2 dr
\leq e^{\beta p K_T} |\varphi(X_T^{t',x'}) - \varphi(X_T^{t,x})|^{\beta_p} \quad (4.11)
$$

Taking expectation on both sides of (4.11), by (4.7)-(4.10), we have

$$
(\beta p K - \beta p - 3K_1^2 \beta p - \varepsilon) \mathbb{E} \int_s^T e^{\beta p K_r} |Y_r^{t',x'} - Y_r^{t,x}|^{\beta_p} dr
+ \frac{\beta p (2\beta p - 3)}{4} \mathbb{E} \int_s^T e^{\beta p K_r} |Y_r^{t',x'} - Y_r^{t,x}|^{\beta_p-2} |Z_r^{t',x'} - Z_r^{t,x}|^2 dr
\leq C \left(\mathbb{E} |X_T^{t',x'} - X_T^{t,x}|^{\frac{\alpha_{\beta_p} \beta_p}{2}} \right)^{1-\beta} + C \mathbb{E} \left(\int_s^T |X_r^{t',x'} - X_r^{t,x}|^{\frac{\beta_p}{1-\beta}} dr \right)^{1-\beta}
+ \frac{\beta p}{4} \mathbb{E} \int_s^T e^{\beta p K_r} |Y_r^{t',x'} - Y_r^{t,x}|^{\beta_p-2} |X_r^{t',x'} - X_r^{t,x}|^2 |Z_r^{t,x}|^2 dr
+ C \left(\mathbb{E} \int_s^T |X_r^{t',x'} - X_r^{t,x}|^{\frac{\alpha_{\beta_p} \beta_p}{2}} dr \right)^{1-\beta}. \quad (4.12)
$$

Then applying B-D-G inequality to (4.11) and using (4.12) with a sufficiently large K,
we have
\[
\mathbb{E} \sup_{s \in [0,T]} |Y_{s}^{t',x'} - Y_{s}^{t,x}|^{\beta p} \\
\leq C \mathbb{E} \int_{0}^{T} |Y_{s}^{t',x'} - Y_{s}^{t,x}|^{\beta p} ds + C \mathbb{E} \int_{0}^{T} |Y_{s}^{t',x'} - Y_{s}^{t,x}|^{\beta p - 2} |Z_{s}^{t',x'} - Z_{s}^{t,x}|^2 ds \\
+ C \left(\mathbb{E} |X_{T}^{t',x'} - X_{T}^{t,x}|^{\frac{\beta p}{1-\beta}} \right)^{1-\beta} + C \left(\mathbb{E} \left(\int_{0}^{T} |X_{s}^{t',x'} - X_{s}^{t,x}|^{\frac{\beta p}{1-\beta}} ds \right)^{1-\beta} \right)^{1-\beta} \\
+ C \mathbb{E} \int_{0}^{T} |Y_{s}^{t',x'} - Y_{s}^{t,x}|^{\beta p - 2} |X_{s}^{t',x'} - X_{s}^{t,x}|^2 ds + C \left(\mathbb{E} \int_{0}^{T} |X_{s}^{t',x'} - X_{s}^{t,x}|^{\frac{\beta p}{1-\beta}} ds \right)^{1-\beta} \\
\leq C \left(\mathbb{E} |X_{T}^{t',x'} - X_{T}^{t,x}|^{\frac{\beta p}{1-\beta}} \right)^{1-\beta} + C \left(\mathbb{E} \left(\int_{0}^{T} |X_{s}^{t',x'} - X_{s}^{t,x}|^{\frac{\beta p}{1-\beta}} ds \right)^{1-\beta} \right)^{1-\beta} \\
+ \varepsilon \mathbb{E} \sup_{s \in [0,T]} |Y_{s}^{t',x'} - Y_{s}^{t,x}|^{\beta p} + C \mathbb{E} \sup_{s \in [0,T]} |X_{s}^{t',x'} - X_{s}^{t,x}|^{\beta p} \left(\mathbb{E} \left(\int_{0}^{T} |Z_{s}^{t,x}|^2 ds \right)^{\frac{\beta}{2}} \right) \\
+ C \left(\mathbb{E} \int_{0}^{T} |X_{s}^{t',x'} - X_{s}^{t,x}|^{\frac{\beta p}{1-\beta}} ds \right)^{1-\beta}.
\]

Hence,
\[
(1 - \varepsilon) \mathbb{E} \sup_{s \in [0,T]} |Y_{s}^{t',x'} - Y_{s}^{t,x}|^{\beta p} \\
\leq C \left(\mathbb{E} \sup_{s \in [0,T]} |X_{s}^{t',x'} - X_{s}^{t,x}|^{\frac{\beta p}{1-\beta}} \right)^{1-\beta} + C \left(\mathbb{E} \left(\int_{0}^{T} |X_{s}^{t',x'} - X_{s}^{t,x}|^{\frac{\beta p}{1-\beta}} ds \right)^{1-\beta} \right)^{1-\beta} \\
+ \varepsilon \mathbb{E} \sup_{s \in [0,T]} |Y_{s}^{t',x'} - Y_{s}^{t,x}|^{\beta p} + C \left(\mathbb{E} \left(\int_{0}^{T} |Z_{s}^{t,x}|^2 ds \right)^{\frac{\beta}{2}} \right) \\
+ C \left(\mathbb{E} \int_{0}^{T} |X_{s}^{t',x'} - X_{s}^{t,x}|^{\frac{\beta p}{1-\beta}} ds \right)^{1-\beta}.
\]

By Lemma 4.11 it yields that
\[
\mathbb{E} \sup_{s \in [0,T]} |Y_{s}^{t',x'} - Y_{s}^{t,x}|^{\beta p} \leq C(p, T) \left(1 + |x|^{p} + |x'|^{p} \right) \left(|x'| - x|^{\alpha \beta p} + |t' - t|^{\frac{\alpha \beta p}{2}} \right) \text{ a.s.}
\]

Since \(\beta p > 2d + 2 \), by Kolmogorov continuity theorem (see e.g. Theorem 1.4.1 in [10]) we know that \(Y_{s}^{\cdot} \) has a continuous modification for \(t \in [0, T] \) and \(x \in \overline{B}(0, R) \) with the norm \(\sup_{s \in [0,T]} |Y_{s}^{\cdot} | \), where \(\overline{B}(0, R) \) is the closed ball in \(\mathbb{R}^{d} \) with the center 0 and the radius \(R \in \mathbb{Z}^{+} \). In particular,
\[
\lim_{t' \rightarrow t, x' \rightarrow x} |Y_{t'}^{t',x'} - Y_{t'}^{t,x}| = 0.
\]

Thus we have
\[
\lim_{t' \rightarrow t, x' \rightarrow x} |Y_{t'}^{t',x'} - Y_{t'}^{t,x}| \leq \lim_{t' \rightarrow t, x' \rightarrow x} \left(|Y_{t'}^{t',x'} - Y_{t'}^{t,x}| + |Y_{t'}^{t,x} - Y_{t}^{t,x}| \right) = 0 \text{ a.s.}
\]

The convergence of the second term follows from the continuity of \(Y_{t}^{t,x} \) in \(s \). That is to say \(Y_{t}^{t,x} \) is a.s. continuous, therefore \(Y_{t}^{t,x} \) is continuous with respect to \(t \in [0, T] \) and
Theorem 4.3. Let conditions \(F \in X_t \omega \) on the other hand. For any \(x \in h \Omega \), moreover, if \(a \) mapping \(h \), then the continuity with respect to \(t \in [0, T] \) and \(x \in \mathbb{R}^d \) on \(\Omega \). Proposition 4.2 is proved.

Then we can get the correspondence between BSPDE and FBSDE in the linear case.

Theorem 4.3. Let conditions \((A_1)\) and \((P)\) be satisfied. For a given \(p > 2d + 2 \), suppose \(F \in L_{\mathcal{G}}^p \mathcal{W}^{1,p} \) and \(\varphi \in L_{\mathcal{G}^{\omega}}^p (\Omega; \mathcal{W}^{1,p}) \), then the solution \((u, q)\) to BSPDE \((4.6)\) satisfies
\[
u(s, X_s^x) = Y_s^t \quad \text{for all } s \in [t, T], \quad x \in \mathbb{R}^d \text{ a.s.},
\]
where \(X \) and \((Y, Z)\) are the solutions of SDE \((4.1)\) and FBSDE \((4.5)\), respectively.

Proof. Step 1. First we smootherize all the coefficients in \((4.5)\) and \((4.6)\). For this, take a nonnegative function \(\rho \) such that \(h \), we define \(h^\varepsilon \) by
\[
h^\varepsilon(x) = \varepsilon^{-d} \rho \left(\frac{x}{\varepsilon} \right) \ast h(x) \quad \text{for } x \in \mathbb{R}^d.
\]
Moreover, if \(h \) is a vector or matrix, we get the smootherized \(h^\varepsilon \) by smootherizing each element in \(h \). In this way, we can smootherize all the coefficients and get two equations with smootherized coefficients:
\[
Y_s^{t,x,\varepsilon} = \varphi^\varepsilon(X_T^{t,x,\varepsilon}) + \int_s^T \left[\psi^\varepsilon(r, X_r^{t,x,\varepsilon})Y_r^{t,x,\varepsilon} + \nu^\varepsilon(r, X_r^{t,x,\varepsilon})Z_r^{t,x,\varepsilon} + F^\varepsilon(r, X_r^{t,x,\varepsilon}) \right] dr
- \int_s^T Z_r^{t,x,\varepsilon} dW_r
\]
\[
(4.14)
\]
and
\[
\left\{
\begin{aligned}
\frac{du^\varepsilon(t, x)}{dt} &= -[\mathcal{L}^\varepsilon u^\varepsilon(t, x) + \mathcal{M}^\varepsilon q^\varepsilon(t, x) + F^\varepsilon(t, x)] dt + q^\varepsilon(t, x) dW_t \\
u^\varepsilon(T, x) &= \varphi^\varepsilon(x), \quad x \in \mathbb{R}^d,
\end{aligned}
\right.
\]
\[
(4.15)
\]
where \((Y^\varepsilon, Z^\varepsilon)\) and \((u^\varepsilon, q^\varepsilon)\) are the unique solutions of \((4.14)\) and \((4.15)\), respectively. Due to the smooth coefficients, we know that all \(X_s^{t,x,\varepsilon}, Y_s^{t,x,\varepsilon}\) and \(u^\varepsilon(t, x) \) have a high regularity on variable \(x \) such that \(u^\varepsilon(s, X_s^{t,x,\varepsilon}), Y_s^{t,x,\varepsilon} \in C^{1,2}([0, T] \times \mathbb{R}^d) \). By Itô-Wentzell formula it is not hard to deduce that \(u^\varepsilon(s, X_s^{t,x,\varepsilon}) \) is also a solution to FBSDE \((4.14)\). Due to the uniqueness of solution, we have \(u^\varepsilon(s, X_s^{t,x,\varepsilon}) = Y_s^{t,x,\varepsilon} \) for a.e. \(t \in [0, T] \), \(x \in \mathbb{R}^d \) a.s., then the continuity with respect to \(t, x \) ensures that this equality is true for all \(t \in [0, T], x \in \mathbb{R}^d \) in a full measure set in \(\Omega \).

Step 2. We then prove that as for a.e. \(x \in \mathbb{R}^d \),
\[
\mathbb{E} \sup_{s \in [t, T]} |Y_s^{t,x,\varepsilon} - Y_s^{t,x}|^2 \longrightarrow 0, \quad \text{as } \varepsilon \rightarrow 0.
\]
\[
(4.16)
\]
First noting condition (A₁) and the construction of convolution we have

\[
\lim_{\varepsilon \to 0} \mathbb{E} \int_t^T |b^\varepsilon(s, X_{s,t,x}^\varepsilon) - b(s, X_{s,t,x}^\varepsilon)|^2 ds
\]

\[
\leq \lim_{\varepsilon \to 0} 2\mathbb{E} \int_t^T \left(|b^\varepsilon(s, X_{s,t,x}^\varepsilon) - b(s, X_{s,t,x}^\varepsilon)|^2 + |b(s, X_{s,t,x}^\varepsilon) - b(s, X_{s,t,x}^\varepsilon)|^2 \right) ds
\]

\[
\leq \lim_{\varepsilon \to 0} 2\mathbb{E} \int_t^T \left(\sup_{y \in \mathbb{R}^d} |b^\varepsilon(s, y) - b(s, y)|^2 + K_1^2 |X_{s,t,x}^\varepsilon - X_{s,t,x}^\varepsilon|^2 \right) ds
\]

\[
= \lim_{\varepsilon \to 0} 2K_1^2 \mathbb{E} \int_t^T |X_{s,t,x}^\varepsilon - X_{s,t,x}^\varepsilon|^2 ds.
\]

A similar calculation leads to

\[
\lim_{\varepsilon \to 0} \mathbb{E} \int_t^T |\sigma^\varepsilon(s, X_{s,t,x}^\varepsilon) - \sigma(s, X_{s,t,x}^\varepsilon)|^2 ds \leq \lim_{\varepsilon \to 0} 2K_1^2 \mathbb{E} \int_t^T |X_{s,t,x}^\varepsilon - X_{s,t,x}^\varepsilon|^2 ds.
\]

Hence applying Itô’s formula and B-D-G inequality we have

\[
\lim_{\varepsilon \to 0} \mathbb{E} \sup_{s \in [t,T]} |X_{s,t,x}^\varepsilon - X_{s,t,x}^\varepsilon|^2 ds = 0,
\]

and there exists a subsequence of \(\{X_{s,t,x}^\varepsilon\} \), still denoted by \(\{X_{s,t,x}^\varepsilon\} \), which satisfies

\[
\lim_{\varepsilon \to 0} \sup_{s \in [t,T]} |X_{s,t,x}^\varepsilon - X_{s,t,x}^\varepsilon|^2 ds = 0 \quad \text{a.s.}
\]

In the rest of arguments, we always consider this a.s. continuous subsequence.

In order to get (4.16), we need to deal with the following convergence:

\[
\lim_{\varepsilon \to 0} \mathbb{E} \int_t^T |c^\varepsilon(s, X_{s,t,x}^\varepsilon)Y_{s,t,x}^\varepsilon - c(s, X_{s,t,x}^\varepsilon)Y_{s,t,x}^\varepsilon|^2 ds
\]

\[
\leq \lim_{\varepsilon \to 0} 2\mathbb{E} \int_t^T \left(|c^\varepsilon(s, X_{s,t,x}^\varepsilon)|^2 |Y_{s,t,x}^\varepsilon - Y_{s,t,x}^\varepsilon|^2 + |c^\varepsilon(s, X_{s,t,x}^\varepsilon) - c(s, X_{s,t,x}^\varepsilon)|^2 |Y_{s,t,x}^\varepsilon|^2 \right) ds
\]

\[
\leq \lim_{\varepsilon \to 0} 2K_1^2 \mathbb{E} \int_t^T |Y_{s,t,x}^\varepsilon - Y_{s,t,x}^\varepsilon|^2 ds
\]

\[
+ 4\mathbb{E} \int_t^T \lim_{\varepsilon \to 0} \sup_{y \in \mathbb{R}^d} |c^\varepsilon(s, y) - c(s, y)|^2 + K_1^2 |X_{s,t,x}^\varepsilon - X_{s,t,x}^\varepsilon|^2 |Y_{s,t,x}^\varepsilon|^2 ds
\]

\[
= \lim_{\varepsilon \to 0} 2K_1^2 \mathbb{E} \int_t^T |Y_{s,t,x}^\varepsilon - Y_{s,t,x}^\varepsilon|^2 ds. \quad (4.17)
\]

Similarly, we have

\[
\lim_{\varepsilon \to 0} \mathbb{E} \int_t^T |\nu^\varepsilon(s, X_{s,t,x}^\varepsilon)Z_{s,t,x}^\varepsilon - \nu(s, X_{s,t,x}^\varepsilon)Z_{s,t,x}^\varepsilon|^2 ds \leq \lim_{\varepsilon \to 0} 2K_2^2 \mathbb{E} \int_t^T |Z_{s,t,x}^\varepsilon - Z_{s,t,x}^\varepsilon|^2 ds. \quad (4.18)
\]
By Sobolev embedding theorem again, it yields that
\[
\lim_{\varepsilon \to 0} \mathbb{E} \int_t^T |F^\varepsilon(s, X_s^{t,x,\varepsilon}) - F(s, X_s^{t,x})|^2 ds \\
\leq \lim_{\varepsilon \to 0} 2 \mathbb{E} \int_t^T \|F(s, \omega)\|_{W^{1,p}} X_s^{t,x,\varepsilon} - X_s^{t,x} |^p ds \\
\leq \lim_{\varepsilon \to 0} 2 \left(\mathbb{E} \int_t^T \|F(s, \omega)\|_{W^{1,p}}^2 ds \right)^{\frac{p}{2}} \left(\mathbb{E} \int_t^T |X_s^{t,x,\varepsilon} - X_s^{t,x}|^{2p} ds \right)^{\frac{1}{p}} \\
\leq \lim_{\varepsilon \to 0} C \left(\mathbb{E} \int_t^T |X_s^{t,x,\varepsilon} - X_s^{t,x}|^2 ds \right)^{\frac{p}{2}} = 0. \tag{4.19}
\]

Similarly, we also obtain
\[
\lim_{\varepsilon \to 0} \mathbb{E} |\varphi^\varepsilon(X_T^{t,x,\varepsilon}) - \varphi(X_T^{t,x})|^2 \leq \lim_{\varepsilon \to 0} C \left(\mathbb{E} |X_T^{t,x,\varepsilon} - X_T^{t,x}|^2 \right)^{\frac{p}{2}} = 0. \tag{4.20}
\]

Then applying Itô formula to \(e^{Kt} |Y^{t,x,\varepsilon}_s - Y^{t,x}_s|^2\) for \(K \in \mathbb{R}_1\), we have
\[
\mathbb{E} e^{Ks} |Y^{t,x,\varepsilon}_s - Y^{t,x}_s|^2 + K \mathbb{E} \int_s^T e^{Kr} |Y^{t,x,\varepsilon}_r - Y^{t,x}_r|^2 dr + \mathbb{E} \int_s^T e^{Kr} |Z^{t,x,\varepsilon}_r - Z^{t,x}_r|^2 dr \\
\leq \mathbb{E} e^{Kt} |\varphi^\varepsilon(X_T^{t,x,\varepsilon}) - \varphi(X_T^{t,x})|^2 + (2 + 4K^2) \mathbb{E} \int_s^T e^{Kr} |Y^{t,x,\varepsilon}_r - Y^{t,x}_r|^2 dr \\
+ \mathbb{E} \int_s^T e^{Kr} |c^\varepsilon(s, X_s^{t,x,\varepsilon}) Y_r^{t,x,\varepsilon} - c(s, X_r^{t,x}) Y_r^{t,x}|^2 dr \\
+ \frac{1}{2K^2} \mathbb{E} \int_s^T e^{Kr} |\nu^\varepsilon(s, X_r^{t,x,\varepsilon}) Z_r^{t,x,\varepsilon} - \nu(s, X_r^{t,x}) Z_r^{t,x}|^2 dr \\
+ \mathbb{E} \int_s^T e^{Kr} |F^\varepsilon(s, X_s^{t,x,\varepsilon}) - F(s, X_s^{t,x})|^2 ds.
\]

Hence, using (4.17) - (4.20) we have
\[
\lim_{\varepsilon \to 0} (K - 2 - 6K^2) \mathbb{E} \int_s^T e^{Kr} |Y^{t,x,\varepsilon}_r - Y^{t,x}_r|^2 dr + \frac{1}{2} \mathbb{E} \int_s^T e^{Kr} |Z^{t,x,\varepsilon}_r - Z^{t,x}_r|^2 dr = 0.
\]

Taking \(K\) sufficiently large we immediately get
\[
\lim_{\varepsilon \to 0} \mathbb{E} \int_t^T \left(|Y^{t,x,\varepsilon}_s - Y^{t,x}_s|^2 + |Z^{t,x,\varepsilon}_s - Z^{t,x}_s|^2 \right) ds = 0.
\]

Then (4.16) follows by a standard method of B-D-G inequality.

Step 3. On the other hand, we can further prove
\[
\mathbb{E} \int_0^T \|u^\varepsilon(t) - u(t)\|_{0,2}^2 dt \longrightarrow 0.
\]
Indeed, similar to inequality (2.9), it is not hard to prove
\[\mathbb{E} \int_0^T e^{\lambda t} \| u(t)^\varepsilon - u(t) \|_{0,2}^2 dt \]
\[\leq C e^{\lambda T} \mathbb{E} \| \varphi^\varepsilon - \varphi \|_{0,2}^2 + C \mathbb{E} \int_0^T e^{\lambda t} \| F(t)^\varepsilon - F(t) \|_{0,2}^2 dt \]
\[+ C \mathbb{E} \int_0^T \int_{\mathbb{R}^d} e^{\lambda t} (u^\varepsilon - u)((\alpha^{\varepsilon,ij} - \alpha^{ij})u_{x^i x^j} + (\sigma^{\varepsilon,ik} - \sigma^{ik})q_{x^i}^\varepsilon \]
\[+ (b^{\varepsilon,i} - b^i)u_{x^i} + (c^\varepsilon - c)u + (\nu^\varepsilon - \nu)q) dxdt, \]
where \(\alpha^{\varepsilon,ij} = \frac{1}{2} \sigma^{\varepsilon,ik} \sigma^{\varepsilon,jk}, \alpha^{ij} = \frac{1}{2} \sigma^{ik} \sigma^{jk} \) and \(\lambda \) is a sufficiently large number. By condition (A1) and constructions of smootherized coefficients, we can deduce for each \((t, x, \omega)\),
\[|D(\alpha^{\varepsilon,ij} - \alpha^{ij})| + |D(\sigma^{\varepsilon,ik} - \sigma^{ik})| + |\alpha^{\varepsilon,ij} - \alpha^{ij}| + |\sigma^{\varepsilon,ik} - \sigma^{ik}| \]
\[+ |b^{\varepsilon,i} - b^i| + |c^\varepsilon - c| + |\nu^\varepsilon - \nu| \leq C\varepsilon. \]
Thus, by integration by parts, it turns out that
\[\lim_{\varepsilon \to 0} \mathbb{E} \int_0^T e^{\lambda t} \| u^\varepsilon(t) - u(t) \|_{0,2}^2 dt \]
\[\leq \lim_{\varepsilon \to 0} \varepsilon C e^{\lambda T} \int_0^T \int_{\mathbb{R}^d} \left[|D(u^\varepsilon - u)| (|Du| + |q|) + |u^\varepsilon - u| (|Du| + |u| + |q|) \right] dxdt \]
\[\leq \lim_{\varepsilon \to 0} \varepsilon C e^{\lambda T} \int_0^T \left(\|u^\varepsilon - u\|_{1,2}^2 + \|u\|_{1,2}^2 + \|q\|_{0,2}^2 \right) dt \]
\[\leq \lim_{\varepsilon \to 0} \varepsilon C e^{\lambda T} \left[\|\varphi\|_{1,2}^2 + \|\varphi\|_{1,2}^2 + \int_0^T \left(\|F^\varepsilon(t)\|_{1,2}^2 + \|F(t)\|_{1,2}^2 \right) dt \right] = 0. \]
Therefore, there exists a subsequence of \(\{u^\varepsilon\} \), still denoted by \(\{u^\varepsilon\} \), such that \(u^\varepsilon(t, x) \to u(t, x) \) as \(\varepsilon \to 0 \) for a.e. \(t \in [0, T], x \in \mathbb{R}^d \) a.s., which implies that \(Y^{t,x}_t = u(t, x) \) for a.e. \(t \in [0, T], x \in \mathbb{R}^d \) a.s. in view of (4.16). Noticing Corollary 3.4 we know that \(u(t, x) \) is continuous with respect to \((t, x) \), which together with Proposition 4.2 leads to
\[u(t, x) = Y^{t,x}_t \text{ for all } t \in [0, T], \ x \in \mathbb{R}^d \text{ a.s.} \]
In particular,
\[u(s, X^{t,x}_s) = Y^{s,x}_s \text{ for all } s \in [t, T], \ x \in \mathbb{R}^d \text{ a.s.} \]
By the uniqueness of solution of FBSDE (4.14), (4.13) follows. \(\square \)

Utilizing the connection between FBSDE and BSPDE in the linear case, we further study the same kind of connection in the semi-linear case.

Theorem 4.4. Suppose that the conditions in Theorem 3.2 are satisfied, then we have a same kind of connection as (4.13) between the solution \(u \) to BSPDE (4.1) and the solution \(Y \) to FBSDE (4.2).
Proof. Let u be the solution of BSPDE (4.4) and $\hat{F}(t,x) = f(t,x,u(t,x))$. Obviously, $\hat{F}(t,x) \in L^p_{\mathcal{F}} W^{1,p}$ and we regard BSPDE (4.4) as a linear equation with generator \hat{F}. By Theorem 4.3 we know

$$u(s,X_{s}^{t,x}) = \hat{Y}_{s}^{t,x} \quad \text{for all} \quad s \in [t,T], \quad x \in \mathbb{R}^d \text{ a.s.},$$

where $(\hat{Y}_{s}^{t,x}, \hat{Z}_{s}^{t,x})_{s \in [t,T]}$ is the solution of FBSDE with generator \hat{F} as follows:

$$\hat{Y}_{s}^{t,x} = \varphi(X_{T}^{t,x}) + \int_{s}^{T} \hat{F}(r,X_{r}^{t,x})dr - \int_{s}^{T} \hat{Z}_{r}^{t,x}dW_{r}.$$

By the definition of \hat{F}, we know that $(\hat{Y}_{s}^{t,x}, \hat{Z}_{s}^{t,x})$ is also the solution of FBSDE (4.2). Since Remark 4.1, the solution of FBSDE (4.2) is unique. Then Theorem 4.4 follows immediately.

References

