Dietary fish oil, at intakes achievable in the human diet, reduces resting heart rate and ischaemia-induced cardiac arrhythmias in Sprague-Dawley rats

Michael Macartney
mmacart@uow.edu.au

Gregory E. Peoples
University of Wollongong, peoples@uow.edu.au

Peter L. McLennan
University of Wollongong, petermcl@uow.edu.au

Publication Details
Dietary fish oil, at intakes achievable in the human diet, reduces resting heart rate and ischaemia-induced cardiac arrhythmias in Sprague-Dawley rats

Abstract
High intakes of dietary fish oil increase myocardial membrane incorporation of the long chain omega-3 polyunsaturated fatty acid (n-3 PUFA) docosahexaenoic acid (DHA; 22:6n-3) and of physiological consequence, heart rate is slowed and cardiac arrhythmia's are reduced.(1,2,3) Myocardial muscle membrane composition is also responsive to very small dietary fish oil intakes,(1) equivalent to what could be achieved in the human dietary intake range through regular consumption of fish.

Keywords
diet, reduces, resting, heart, rate, ischaemia, induced, cardiac, arrhythmias, sprague, dawley, rats, fish, dietary, oil, intakes, achievable, human

Publication Details

This conference paper is available at Research Online: http://ro.uow.edu.au/smhpapers/4475
Dietary fish oil, at intakes achievable in the human diet, reduces resting heart rate and ischaemia-induced cardiac arrhythmia’s in Sprague-Dawley rats.

Michael J Macartney, Gregory E Peoples and Peter L McLennan.
School of Medicine, University of Wollongong, AUSTRALIA.

Background:
High intakes of dietary fish oil increase myocardial membrane incorporation of the long chain omega-3 polyunsaturated fatty acid (n-3 PUFA) docosahexaenoic acid (DHA; 22:6n-3) and of physiological consequence, heart rate is slowed and cardiac arrhythmia’s are reduced.\(^1\)\(^2\)\(^3\)
Myocardial muscle membrane composition is also responsive to very small dietary fish oil intakes,\(^1\) equivalent to what could be achieved in the human dietary intake range through regular consumption of fish.

Objective:
To test whether dietary achievable fish oil doses, relevant to human nutrition, can also provide protection against ischaemia-induced cardiac arrhythmia’s during in vivo physiological conditions in the rat.

Methods:
Male Sprague-Dawley rats were fed isoenergetic diets (ad libitum 4 weeks) containing 10% fat by weight (22% energy). The control diet contained a blend of beef tallow (5.5%), n-6PUFA sunflower seed oil (2.5%) and 2% olive oil. In the fish oil (FO) diets, High DHA Tuna FO (NuMega Lipids) was exchanged for olive oil to provide 0.3% FO (FO1 – Low Dose) and 1.25% (FO2 – Moderate Dose) diets. Anaesthetised rats were artificially ventilated and subjected to in vivo regional ischaemia by coronary artery occlusion for 15 minutes while cardiovascular measures were collected. Heart tissues was harvested following experiments and used to assess myocardial membrane phospholipid fatty acid relative composition via gas chromatography with comparison to known standards.

Table 1: Equivalence of the diets used in this project

<table>
<thead>
<tr>
<th>Rat Diet (Group)</th>
<th>Human* EPA+DHA per/day (g)</th>
<th>Human† Serve (100g) salmon/week</th>
<th>Human† Fish Oil Capsule/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Con)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(FO1)</td>
<td>0.31</td>
<td>0.57</td>
<td>2</td>
</tr>
<tr>
<td>(FO2)</td>
<td>1.25</td>
<td>2.3</td>
<td>8</td>
</tr>
</tbody>
</table>

\(^*\)Based on human energy intake of 8700 kJ per day. \(^†\)Based on salmon n-3 content of 1.9g/100g. \(^‡\)Based on typical fish oil capsule content of 330mg EPA+DHA.[1]

Results: (Figure 1)
Myocardial fatty acid membrane relative composition showed significantly (p<0.001) increased DHA incorporation following FO supplementation in a dose related manner. Additionally the n-6 PUFA Arachidonic acid (AA) and Linoleic acid (LA) were significantly (p<0.05) reduced following supplementation.

Results: (Figure 2)
Resting heart rate of fish oil supplemented rats following anesthesia and prior to the ischaemic/reperfusion protocol being complete was significantly (p<0.05) reduced in a dose related manner.

Results: (Figure 3)
Ischaemia-induced cardiac arrhythmia’s were significantly (p<0.05) reduced in the moderate fish oil (1.25%) supplemented rats compared to control rats. This was shown via a reduction in the total incidence of ventricular fibrillation (VF); duration of VF and ventricular tachycardia; total fatal VF incidence; arrhythmia score and an increased time in normal sinus rhythm of rats supplemented with 1.25% fish oil.

Conclusions:
A human dietary or supplementation equivalent intake of fish oil increased the relative membrane composition incorporation of DHA in the left ventricle via replacing AA and LA in a dose response manner.
The increased incorporation of DHA into the left ventricle, slowed the heart and protected against serious ischaemia-induced cardiac arrhythmia’s, replicating previous findings of studies which used much higher doses not in the human dietary range.\(^3\)
This study, for the first time, completed a physiological investigation of fish oils actions on the heart in an animal model which was focussed on clinically relevant nutritional intakes of DHA-rich fish oil.
The results demonstrate the importance of addressing DHA dietary deficiency’s for cardiac health and disease prevention.

Conflict of interest: none declared.

References