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Abstract
As the penetration of renewable energy resources increases in distribution networks, so does the need to
manage these resources in an effective manner. Since these resources are installed to displace carbon-based
generation and to provide an income stream to the resource owner, it is important that both installation
objectives (as a minimum) can be met. With all of these renewable energy resources available, the opportunity
also exists to assist with the energy management of this resource-rich distribution network. However, the
renewable energy resources do not produce power in a deterministic manner. The available production
depends on the time of day and many other environmental factors. Accordingly, a system that is able to
program and coordinate the production and storage of power in a distribution network would be of benefit to
the network operator. This paper presents a multiagent system (MAS) that is responsible for the management
of renewable energy resources and power storage systems connected to the distribution network of a zone
substation. The MAS manages the orderly connection and disconnection of resources using a plug and play
algorithm in order to minimize disturbances to the supply-and-demand balance within the distribution
network. The proposed MAS design is validated using a network based on the IEEE 34-bus test feeder. The
results obtained through computer simulation show that with the MAS, it is possible to manage the power
resources so that there is minimal power drawn from the upstream network during periods of high demand.

Keywords
energy, smart, balancing, grid, dvf, distributed, value, function

Disciplines
Engineering | Science and Technology Studies

Publication Details
H. Shirzeh, F. Naghdy, P. Ciufo & M. Ros, "Balancing energy in the smart grid using distributed value function
(DVF)," Smart Grid, IEEE Transactions on, vol. 6, (2) pp. 808-818, 2014.

This journal article is available at Research Online: http://ro.uow.edu.au/eispapers/3549

http://ro.uow.edu.au/eispapers/3549


1

Balancing Energy in the Smart Grid using
Distributed Value Function (DVF)

Hassan Shirzeh, Fazel Naghdy, Philip Ciufo, Senior Member, IEEE, and Montserrat Ros, Member, IEEE,

Abstract—As the penetration of renewable energy resources
increases in distribution networks, so does the need to manage
these resources in an effective manner. Since these resources are
installed to displace carbon-based generation and to provide an
income stream to the resource owner, it is important that both
installation objectives (as a minimum) can be met. With all of
these renewable energy resources available, the opportunity also
exists to assist with the energy management of this resource-
rich distribution network. However, the renewable energy re-
sources do not produce power in a deterministic manner. The
available production depends on the time of day and many
other environmental factors. Accordingly, a system that is able to
program and co-ordinate the production and storage of power
in a distribution network would be of benefit to the network
operator. This paper presents a multi-agent system (MAS) that
is responsible for the management of renewable energy resources
and power storage systems connected to the distribution network
of a zone substation. The MAS manages the orderly connection
and disconnection of resources using a Plug and Play algorithm
in order to minimise disturbances to the supply-and-demand
balance within the distribution network. The proposed MAS
design is validated using a network based on the IEEE 34-bus test
feeder. The results obtained through computer simulation show
that with the MAS, it is possible to manage the power resources
so that there is minimal power drawn from the upstream network
during periods of high demand.

Index Terms—Smart Grid, Plug and Play, Reinforcement
Learning, Team Formation, Energy Management.

I. INTRODUCTION

THE term ‘smart grid’ has, in recent times, been used
to describe a power network that extensively leverages

communication technologies as part of the control and man-
agement of the network. In the context of the present research,
a smart grid is an unstructured network consisting of a large
number of independent energy nodes represented by renewable
energy sources, storage systems and loads distributed across
the grid [1]. In an ideal network, nodes constantly communi-
cate to exchange parameters that govern their performance and
that of the network. The nodes emerge or disappear from the
smart grid in an ad hoc manner, which can be interpreted as a
node becoming active or inactive, respectively. Interoperability
is therefore a critical characteristic in such a network and
an effective strategy for managing the ad hoc activity of the
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nodes is required [2]. In an interoperable network, a node can
autonomously plug into the network, exchange information
with other nodes and function effectively without centralised
supervision.

In the work presented in this paper, the ad hoc behaviour
of the nodes in a smart grid is modelled and managed by
a plug and play (PnP) algorithm. The aim is to establish
an interoperable model and information system that allows
the orderly connection and disconnection of renewable energy
resources to/from a distribution substation in order to minimise
disturbances to the supply-and-demand balance within the
distribution substation. The PnP algorithm is implemented
through a multi-agent system (MAS) that is responsible for
the management of renewable energy resources and power
storage systems connected to the distribution network of a
zone substation.

In the proposed approach, the disturbance to the power
balance of the substation is continuously minimised by ad-
justing the power contribution (injection or consumption) of
each node by applying a reinforcement learning method known
as ‘distributed value function’ (DVF) [3]. The PnP algorithm
determines the nodes that should become active (connect) or
inactive (disconnect). If the nodes become active, then the
DVF will calculate the value of injection/consumption power
flow by the nodes in order to minimise the deviation between
the power flow in the main power line before and after the
activation of the nodes. Each agent then switches its node to
be active or inactive according to the command received from
the PnP algorithm.

The proposed algorithm is validated using a network based
on the IEEE 34-bus test feeder. The results obtained through
computer simulation show that with the MAS, it is possible
to manage the power resources so that there is minimal
power drawn from the upstream network during periods of
high demand. The learning ability of PnP process with DVF
algorithm is compared against ant colony search algorithm
(ACSA) [4], and genetic algorithm (GA) [5]. According to the
results, the collaboration in DVF method provides less iteration
compared to GA and it is more competitive with ACSA.

The remaining part of the paper is structured as follows.
A review of the literature to further highlight the contribution
of the work is provided in Section III. Section IV provides
an overview of the proposed approach in smart grids. The
modelling of the network using multi-agents is described in
Section V. The results produced in the simulation and valida-
tion of the method are provided in Section VI. Conclusions
are drawn and future work proposed in Section VII.
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II. BACKGROUND

A. Plug and Play in a Smart Grid

The co-ordination of an increasing number of renewable
energy sources in energy networks requires a higher level
of interoperability compared to the networks of today [6]. If
the nodes involved are designed with standards compliance
as a criterion, then that enables the connection of nodes and
facilitates their co-operation, which is the objective of inter-
operability. In a PnP environment, the same communication
protocols and standards must be applied to both new and
existing components without re-engineering the information
system of the nodes. This approach ensures that a node
can join any other node in the network within the required
time. Hence, PnP can play a significant role in the intelligent
grid by responding to the ad hoc behaviour of a node and
decentralising the real-time communication of a large-scale
complex network [7].

The number of renewable energy sources in electrical power
networks is increasing. Based on a report from the Clean
Energy Regulator in Australia, the number of photovoltaic
(PV) systems connected to the radial distribution grid has
increased from 20,000 in 2008 to 1,011,000 in March 2013 [8].
In 2011-2012, PV penetration was accounted as 1.1% of
Australia’s annual electricity energy production (∼3 in ∼260
terawatt hours) and 5.3% of Australia’s annual total residential
electricity consumption (∼3 in ∼56 terawatt hours) [9] [10].
At present, about 11% of the Australian population use solar
power in their homes. The Climate Commission predicts that
the solar PV sector will provide around 5% of total electricity
production in Australia by 2020 and a third of Australia’s total
energy needs by 2050 [11].

This clearly shows the popularity of renewable energy
sources among home-owners but it also highlights the potential
adverse effects of distributed energy sources. Any real power
system is a combination of residential, commercial and in-
dustrial customers. Hence, the average power demand can fall
dramatically over some days of the week, such as weekends.
In order to meet such non-uniform power consumption and
avoid the worst-case scenario to the radial distribution feeder,
the operation of such a large number of PV systems must be
regulated. In addition, strong solar irradiance, high tempera-
tures and low power consumption causes a power flow from
the source nodes to the main grid. This reverse power flow
causes various problems for the main grid such as voltage rise,
voltage fluctuation, phase imbalance, and increased harmonic
distortion. The PnP approach to managing the renewable
energy sources in the network has the potential to deal with
these problems.

The importance of PnP in smart grids has been recognised
by many research groups. The National Institute of Standard
Technology (NIST), for example, has proposed using the Inter-
national Electrotechnical Commission (IEC) 61850 standard
as a framework and roadmap for smart grid interoperability
standards among intelligent electronic devices (IED) [12].
IEC 61850 accommodates the technical limitation of the
networking technology by using basic functionality for the
power systems automation such as (i) eliminating procure-

ment ambiguity over expectation in the IED from various
component suppliers, (ii) standardising configuration language
(SCL) to simplify the configuration of a device and its role in
the power systems, (iii) exchanging data by using a standard
data format of data and messages for lowering communication
cost, and (iv) by utilising the standard networking technology
for wide area protection schemes for lowering maintenance
cost [13].

B. Smart Agents and PnP

Agent technology is one of the approaches deployed to
design PnP models in the smart grid. An agent behaves
like a physical entity but with no physical presence in the
environment [14]. The deployment of MAS to achieve PnP
operation in smart grids is explored by McArthur et al. [15]
and Liu et al. [16]. Multi-agent systems have been previously
used to control power flow through the use of an auction
algorithm [17]. An intelligent distributed autonomous power
system (IDAPS) based on customer-owned resources to control
critical loads at the distribution level through a standardised
interoperability algorithm is proposed by Pipattanasomporn et
al. [18].

In many of the methods proposed in the literature, the
communication between the entrepreneur and the end-users
may be established by standard interoperability in real time.
For example, in the systems proposed by Dimeas et al. [17]
and Pipattanasomporn et al. [18], there is an optimum asso-
ciation between the controllable load and distributed energy
resource (DER) in order to design a framework for control
of the power flow. However, the above mentioned studies
do not consider co-operation of multiple energy sources by
exchanging messages to optimise the energy delivered to load
or collections of loads. Due to the unpredictable nature of
renewable energy sources, a group of co-operating energy
sources is necessary to provide the energy needed by loads.
This makes a protocol for negotiation essential, especially in
hybrid renewable energy generation systems.

In [19], a future renewable electric energy delivery and
management (FREEDM) mechanism is proposed that deploys
the PnP algorithm for decision making in power flow manage-
ment. This is an architecture which utilises the interoperability
of distributed renewable energy and energy storage devices.
The method proposed in their research allows residential
and industrial users to share and control energy through a
standardised PnP interface. In a similar way, Logenthiran
et al. [20] consider energy consumers to be responsible
for finding the best offers from energy suppliers through a
request/negotiation method. Chatzivasiliadis et al. [21] have
identified other parameters for negotiation in a team such as
the amount of power required, the duration of service, and the
energy price.

In such models, each autonomous agent takes responsibility
for making decisions and interacting with other agents. For
example, contract net protocol (CNP) [22] is a model for
dynamic task allocation via negotiation among multiple agents
by constantly exchanging environmental information among
themselves. In the strategy proposed in [23] and [24], a co-
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operative multi-agent framework is deployed to control a dis-
tributed power system for self-correction purposes by locating
and isolating faults. In the majority of methods proposed in
the literature, the lack of a standardised communication model
between an increasing number of electric components in the
power grid is a major challenge to the implementation of a PnP
information model. A solution to this problem is explored in
the work presented in the current research.

C. Learning and Adaptation in Cluster Formation
Learning and adaptation methods have been extensively

used in smart grid applications. For example, a heuristic
model presented in [25], based on an evolutionary algorithm
for learning and adaptation, offers a satisfactory outcome
based on empirical testing and evaluation. Automatic learning
(AL) aims at extracting information from the environment
about any excess or shortage of power caused by the activa-
tion/deactivation of a node. The learning algorithm determines
the nodes to be activated/deactivated as well as the amount of
power that should be injected/consumed by each node.

There are three categories of methods in AL: (i) statistical,
(ii) machine learning, and (iii) artificial neural networks learn-
ing [26]. The aim of machine learning is to build rules inspired
by human learning processes. There are different approaches
to machine learning such as reinforcement learning, and ge-
netic programming. Machine learning is implemented in the
smart grid for protection against vulnerability, management of
energy, and maintenance of infrastructure [27].

The Markov decision process (MDP) is the foundation of re-
inforcement learning (RL) in a single agent environment [28].
Dynamic stochastic optimal power flow (DSOPF) [29] control
using adaptive critic design (ACD) outperforms traditional
automatic generation control (AGC). ACD is proposed as
a new, optimal method developed based on reinforcement
learning and approximate dynamic programming. In another
application, an innovative energy management system called
‘consumer automated energy management system’ (CAES) is
developed based on reinforcement learning [30]. Reinforce-
ment learning is also used in a distributed model for negotiat-
ing electric power between widely distributed sources [31] or
with demand response [32].

Q-learning as a distributed algorithm for learning of the
power flow adjustment is used in [33] to allow an agent to
learn and adapt to the environment in a microgrid. Optimised
learning algorithms are presented to study distribution system
operation by using the ACSA [4] and the GA [5]. Q-learning is
less efficient than ACSA due to the higher number of iterations
required for convergence [34]. In Q-learning, each agent stores
a Q-table that depends only on its own action. This makes Q-
learning inefficient because it fails to consider the action of
neighbour and non-neighbour agents action. ACSA achieves
cluster formation among the agents by evaluating pheromone
deposit in order to reduce the number of iterations. Both
Q-learning and ACSA operate based on only one criterion,
making them inappropriate for this study because multiple
criteria must be considered concurrently. In this study , the
DVF is deployed due to its ability to optimise multiple criteria
and its fast convergence compared to other methods [35].

III. PROBLEM FORMULATION AND THE PROPOSED
APPROACH

The PnP algorithm manages interoperability among var-
ious nodes and reduces the risk associated with network
disruption caused by the unpredictable addition or removal
of nodes, which may result in power flow fluctuations [36].
In the context of our research, a zone substation refers to
an infrastructure consisting of a number of incoming high
voltage (transmission line) connections and multiple outgoing
and medium voltage (MV) distribution lines. The MV lines
are further transformed to a low voltage (LV) for connection
to customer equipment. In a dwelling, there are agents rep-
resenting photovoltaic (PV) resources, small wind turbines,
power storage systems and power consumers. All the agents
associated with nodes perform three main tasks: (i) they
monitor and communicate to exchange information about the
state and parameters of the nodes, (ii) they form clusters
to reduce the number of messages and optimise the PnP
algorithm, and (iii) they learn and adapt to determine the states
of nodes in terms of power flow estimation.

Each node in the grid is represented by a set of parameters
defining its ability to inject power into the grid or draw power
from it. These parameters are continuously exchanged between
agents, providing a global awareness for each node about
the characteristics of other nodes present in the substation.
This information plays a critical role upon the emergence
of a new node in a distribution substation in order to form
clusters of power-consuming and power-generating nodes. The
information is exchanged by transferring messages among
agents.

A cluster of the selected agents operates the orderly con-
nection and disconnection of resources in order to minimise
disturbance to the supply-and-demand balance within the dis-
tribution substation. The ad hoc emergence/disappearance of a
node can adversely affect the power balance in the substation.
In this algorithm, the PnP algorithm determines the nodes that
should be active or inactive and DVF calculates the value of
power flow for minimising the deviation from the main power
line.

In such a system, the large number of messages required to
be exchanged among the nodes can be a challenge. Through
two methods, the algorithm proposed in this study keeps
the number of exchanged messages between the nodes to a
minimum, even if the network consists of a large number of
nodes. In the first method, an agent called ‘multi agent systems
management’ (MASM) keeps a directory of the agents in the
network. Hence, any enquiry about other agents is directed to
this agent. In this manner, each agent only needs to update the
MASM agent rather than directly contacting each individual
agent in the network.

In the network, each MASM is responsible for communi-
cation among the nodes associated with a limited number of
dwellings. This method can face the single point of failure
(SPOF) [37] problem and can undermine the scalability of the
large network. This is addressed by adding redundancy in all
SPOFs. If the MASM fails to connect then a secondary MASM
that has been mirrored with primary MASM is deployed
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to obtain the replacement. This duplication and redundancy
prevents a total system failure in case of malfunction.

The communication protocol in multi agent systems deals
with query, tracking, subscription, and approval of requests
and agent status. In our PnP algorithm, further communication
is required to transfer additional messages after cluster forma-
tion. Cluster formation makes the PnP algorithm manageable
by lowering the number of nodes and messages as it eliminates
the need to send messages to agents not involved in the PnP
process.

The information available from the PnP algorithm, which
includes the value of power flow in each node, is transferred
by the MASM agent to the lower layers of the smart grid
responsible for functions such as voltage or power quality
control. The agents have their own local control and are
able to report their status to the MASM agent located at the
distribution substation. In this way, the low-level control of
the nodes in terms of voltage and current adjustment is de-
coupled from energy management. This co-ordinated approach
means that the zone substation has the autonomy to make
decisions about peak demand requirements by just supervising
the distribution substations.

The proposed PnP algorithm is applied to a network based
on the IEEE 34-bus test feeder and using real data of a
typical domestic dwelling. MATLAB/Simulink and JADE are
deployed to explore the performance of the algorithm in terms
of the number of messages exchanged, disturbances caused
and power losses incurred. The performance of the DVF is
compared against the ACSA, and GA techniques, with DVF
outperforming both.

IV. MODELLING OF NODES IN THE DISTRIBUTION
SUBSTATION

The smallest elements of the proposed system are nodes
representing sources (such as renewable energy sources or
generators), storage (such as batteries), and loads (such as
home or business dwellings), communicating continuously by
exchanging messages to manage the power demand of the
distribution substation. Using multi-agent methodology, an
agent is assigned to each type of node: A ‘source agent’ to
a power source, a ‘sink agent’ to a load (or group of loads),
and a ‘storage agent’ to storage systems. The sink and source
terminologies represent consumption and injection of power,
respectively. Storage can be a source or a sink depending on
whether the power is in surplus or in deficit.

A. Model of a Node

We define a distribution substation (D) consisting of a set
of N nodes connected by power lines:

D = {Ni ‖ i = 1, . . . , h}.

The parameters associated with node Ni in conjunction with
node Nj considered in cluster formation can be represented
by a 5-tuple:

Ni =< Ni Spt, Ni Avt, Ni,j Co,Ni,j Di,Ni,j Cat >

where Ni Spt is the Set-point of Ni at time t, defined by three
parameters: (i) the amount of power that the node exchanges
with other nodes (Ni Pt, kW), (ii) the sampling time (Ni ST ,
minutes), and (iii) the priority (Ni Pr) of the node in the
cluster formation. Ni Pr is assigned 0 (low priority) or 1
(high priority) depending on the type of the node. If a node is
a source, then Ni Pr is set to 1 for renewable energy sources,
and 0 for other types such as fuel power generator or batteries.
If a node is a load, then Ni Pr is set to 1 for batteries, and
0 for others. If a node is storage and operates as a load, then
Ni Pr is always set to 1, and set to 0 if it operates as a source.
For example, Ni Spt for a battery, which operates as a source,
can be defined by a power rating of 0.8 kW, sampling time
of five minutes with a priority of zero because the battery is
given the lowest priority (zero) compared to other sources of
power, such as a wind turbine, during cluster formation with
load nodes.

The parameters Ni,j Cat, Ni,j Co and Ni,j Di define the
characteristics of a node during cluster formation. Ni,j Cat
represents Capability of a node at time t, calculated based
on the difference between the power required by node Nj

and the amount of power that Ni can provide during cluster
formation. For example, during cluster formation between two
load nodes and two source nodes, if the total load power is
2.1 kW and total source power is 3.4 kW, then the Capability
of each source node in the cluster is 1.3 kW.

Ni,j Co is Cost and is defined as the cost of power
exchanged between Ni and Nj . For example, the electricity
pricing or electricity tariff which varies widely from locality
to locality within a particular time, such as between peak
demand hours and off-peak hour demand. Ni,j Di is the
physical distance between Ni and Nj which shows the power
lost during power exchange between them. For example, the
power losses in the power line, measured in kW, depends on
the length of the power cable.

Ni Avt defined as the availability of a node at time t,
provides an indication of how active or inactive the node is.
When the power injected/consumed by a node surpasses a
pre-defined threshold, it is considered as an active node in
the network, otherwise it is an inactive node. The threshold
is determined based on the size and characteristics of the
renewable energy source. For example, for a wind turbine
with maximum 900 W output power, the minimum output
might be 300 W and so this is selected as the threshold value.
Availability is usually considered within a specific timeframe
and is measured as the probability of the node’s availability
within that timeframe. Availability is an indication of the
node’s potential for cluster formation.

Availability of a source node within a timeframe can be
estimated based on the historical data accumulated over the
operation of the node. This historical data represents the active
(up) and inactive (down) states of the source node in the
previous timeframes. In this study, Ni Avt for a source node
over a timeframe of (T) is calculated based on the Time Decay
Average [38] of the historical data as shown in (1). Availability
of a sink node in timeframe (T) is the same as availability of
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a sink during timeframe (T-1).

Ai(T ) =

∑n
i=0 f(ti)g(T − ti)∑n

i=0 g(T − ti)
,where, g(x) =

1

xϕ
(1)

where g(x) is a polynomial function and ϕ > 0. f(ti)=0 if
the node is inactive during a timeframe (T ), otherwise, it
is 1 if the node is active, and ϕ is the rate of decay that
could vary over twenty four hours. For example, for a solar
panel (source), the decay rate is identified based on the solar
irradiance pattern. This means that at the beginning of the day,
the decay rate is set close to 0 to start a new cycle independent
from the previous day. At midday, the decay rate is set close
to 1 because the pattern of the data recorded since sunrise
determines Availability. At sunset, the decay rate is set close
to 0 as the historical data loses its significance.

B. Plug and Play Algorithm

A distribution substation (D) consists of Ni nodes, con-
trolled by a set of agents:

DAgents = {ANi ‖ i = 1, . . . , h}.

The PnP algorithm is triggered when a node, Nnew be-
comes active in the distribution substation due to a change
in the amount of power within the node from Nnew P(t−1)
to Nnew Pt, where (Nnew Pt − Nnew P(t−1)) 6= 0 . When
Nnew Pt is positive, the node is consuming power whereas
when Nnew Pt is negative, the node is an energy source. Nnew
becomes active within D through the following steps during
the PnP algorithm.

I) In the first step, the agent associated with Nnew, ANnew
sends to and receives a message from the MASM agent, asking
for the parameters of Ni.

II) ANnew analyses the received data and selects a set of
nodes with the potential to form a cluster with Nnew. This is
carried out according to the following rules. A node Ni is
selected:

1) If Ni has the opposite function of Nnew, this means that
if Nnew is source, then Ni must be load, and vice versa.

2) In the first instance, if
Σ|Ni Pt| > |Nnew Pt − Nnew P(t−1)| and
Ni Pr =1. In the absence of a high priority node, a
node with Ni Pr=0 will be selected.

If at least one potential node cannot be found, then ANnew
becomes inactive and the next step is skipped.

III) After selecting the candidate nodes, ANnew evaluates
the potential of different permutations of candidate nodes to
determine the best cluster formation Clopt. This is carried out
by calculating an index U (2) which is the sum of normalised
Capability, Cost and Distance of Nnew in connection with the
candidate nodes over each permutation. If p is the number of
candidate nodes in a permutation P, then

Unew,p =

p∑
k=1

NNnew,k Co+

p∑
k=1

NNnew,k Cat+

p∑
k=1

NNnew,k Di+

p∑
k=1

Nk Avt

(2)

The normalised values of NNnew,k Co, NNnew,k Cat, and
NNnew,k Di for every node in the permutation are calculated
as follows:

NNnew,k Cat =
1

1 + e(Nnew,k Cat−l)
(3)

NNnew,k Co =
1

1 + e(Nnew,k Co−m)
(4)

NNnew,k Di =
1

1 + e(Nnew,k Di−n) (5)

In (3), (4) and (5), the parameters l, m and n are the average
values of Capability, Cost and Distance between Nnew and
the nodes considered in the permutation. The parameters are
normalised using a sigmoid curve function to make it possible
to combine them in one index. The permutation with highest
Unew,p is selected as the best cluster.

IV) ANnew broadcasts another messages to the agents of the
formed cluster, asking for their confirmation and subscription
to start the learning and adaptation process.

V) The excess or deficit power flow caused by clopt can
disturb the power balance within the distribution substation.
Hence, in this step the amount of power injected/consumed
by each node in clopt is adjusted globally by DAgents using
a learning algorithm, DVF [3]. The process is illustrated in
Fig. 1 in which ANnew (assigned as AN1) starts the learning
process within clopt to minimise an objective function called
the ‘power deviation index’ (6) before and after the addition
of the nodes in clopt to the distribution substation. The power
deviation index is defined as follows:

 

 

 

 

 

 

 

clopt

P1,t  Pq,t 

P2,t

ANnew 

AN2AN 

AN 

ANq

 

AN1 

Q(st,at

R(st,at) 

Fig. 1. The formed cluster.

Power deviation index =

q∑
i=1

(Pi,t − Pi,t−1)2 (6)

where q is the number of nodes in clopt, Pi,t is the power in
the distribution substation after adding node Ni into clopt, and
Pi,t−1 is the power in the distribution substation before adding
node Ni into clopt.

The DVF is an iterative leaning algorithm that estimates the
values of the state-action pair through a process of trial and
error. In the state-action pair, state st represents the amount of
power flow in each agent within clopt in terms of the injection
or consumption of power. The action at is defined as the
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change of power in each agent during the transition between
states.

When there are q nodes with a power Pq within clopt, each
agent will have a state of (| ROUNDUP(Pq, 0) |) state and
action of (| ROUNDUP(Pq, 0) | +1). Consequently, there will
be (

∏q
i=1 | ROUNDUP(Pi, 0) |) states and

(
∏q

i=1(| ROUNDUP(Pi, 0) | +1)) actions in clopt. For exam-
ple, if at is defined as the change of 1 kW and there are 2
sources which inject 2.8 kW and 4 kW respectively, then there
are 3 states (0 ≤ P < 1, 1 ≤ P < 2, 2 ≤ P ≤ 2.8) and 4
actions (A = 0, 1, 2, 2.8) for the first agent and there are 4
states (0 ≤ P < 1, 1 ≤ P < 2, 2 ≤ P < 3, 3 ≤ P ≤ 4) and
5 actions (A = 0, 1, 2, 3, 4, 5) for the second agent. This will
result in 12 states and 20 actions for clopt in overall. The DVF
operates based on two matrices , Q(st, at) and R(st, at), as
illustrated in Fig. 1.

In every learning step in DVF, Q(st, at) is updated ac-
cording to (7) in which α is the learning factor. R(st, at)
is calculated based on (6). In every learning step in DVF,
ANnew observes the current state st of the clopt and accordingly
selects an action at for each agent and consequently, all agents
enter a new state st+1. Each new state update the estimated
Q(st, at) value associated with ANnew. Updating the Q(st, at)
will result in an optimum path and a set of state-action pairs
minimising the power deviation index.

Qnew(st, at) = (1− α)Qnew(st, at) + α[Rnew(st, at)+∑
i∈Neigh(new)

f(new, i)Vi(s′i)],where, Vi(s′i) = max
a∈Ai

Qi(s
′
i, a)

(7)

Forming the cluster has two advantages for the learning
algorithm: (i) it helps to reduce iteration number and the size
of Q(st, at) and R(st, at) matrix which results in reducing the
complexity as well, and (ii) Equations (8) and (2) will be used
to calculate f(new, i) in (7) to assign different weights for the
distrbution value function which will result in faster updating
of Q(st, at) matrix. A weight function f(new, i) shows how
much ANi contributes towards updating the Q-value of agent
ANnew. According to (8), pair of nodes, Nnew and Ni, may
receive non-zero weight based on ratio of Unew,i to the all∑q

j=1 Unew,j in clopt.

f(new, i) =
Unew,i∑q
j=1 Unew,j

(8)

V. VALIDATION OF PLUG AND PLAY ALGORITHM BY MAS
IN A POWER NETWORK

For validation of the proposed methodology, the agents are
simulated using the JADE platform. Agents exchange a set of
parameters by sending messages to each other using ‘semantic
language’ (SL) [39]. There are three types of agents defined in
the current research: source, storage, and sink, each assigned
to each node within the dwelling. The message type and
information model for each agent is shown in Fig. 2. The result
of the learning and adaptation is used by agents to determine
the state of the switches.
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Fig. 2. Information model of each agent.

A. Computer Simulation Set up

In the computer simulation, seven dwellings including
different levels of occupancy are assigned to the dwellings
that are connected to the distribution substation. Inside each
dwelling, there is one PV (maximum output: 2.5 kW), one
wind turbine with the maximum output of 900 W, one battery
with maximum capacity of 1500 W and a load with average
consumption of [0-1.5 kW] per hour. The environmental data
used in the source agent consisting of solar irradiance and wind
speed were recorded in Cleveland, QLD, Australia [40] at a
time interval of five minutes. The typical load consumption in
a dwelling was provided by Endeavour Energy Pty Ltd. [41].
The environmental data used in the simulation and their
sources are summarised in Table I. The power components of
a dwelling including PV, wind turbine, load, and battery are
simulated in MATLAB/Simulink (Fig. 3). As demonstrated in
Fig. 3, the variables and dynamics of this network are sent to
the JADE platform by an S-function, MACSimJX [42] which
acts as a gateway to pass data between MATLAB/Simulink
and JADE.

The IEEE 34-bus test feeder was chosen for simulating
the distribution power network because of its simplicity in
monitoring the network parameters. The IEEE 34-bus test
feeder (Fig. 4) is simulated in PSCAD that is linked to MAT-
LAB/Simulink. The dwelling substation is connected to each
of the buses 846, 844, 848, and 842. The values of the power
flow are imported from MATLAB/Simulink after calculation
by agents in the JADE platform. In Table I, Ni,j Co is the
electricity tariff that for simplicity is considered to be the same
from one locality to another within a particular period. After
calculation and exchange of messages in JADE, the data is
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Fig. 3. Modelling of one dwelling and wind turbine in MATLAB/Simulink.

TABLE I
THE PARAMETERS OF ENVIRONMENTAL CHARACTERISTICS.

Parameter The methods of obtaining
Solar irradiance Cleveland, QLD, Australia

(http://www.clevelandweather.net/misc/archive.php)
Wind speed Cleveland, QLD, Australia

(http://www.clevelandweather.net/misc/archive.php)
Load consump-
tion

Endeavour Energy Pty Ltd.
(http://www.endeavourenergy.com.au/)

Ni,j Di The interval between buses in IEEE 34 bus test
feeder

Ni,j Co Electricity tariff which considered same for all agents
Ni,j Cat The current active power inside node minus re-

quested power

sent back to MATLAB/Simulink (Fig. 3) and consequently to
the PSCAD platform.
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Fig. 4. IEEE 34-bus Test Feeder.

The internal connection between JADE and the MAT-
LAB/Simulink is achieved by MACSimJX, an open source
software tool. MACSimJX provides the means, utilising JADE,
to receive data from Simulink and pass it on to agents for fur-
ther processing. The reverse functionality is also possible [43].

B. Results

The main focus of the computer simulation was to study
the power balance within the distribution substation network,
the number of messages exchanged, and the comparison of
the computational cost of the learning methods in terms of
iteration and processing time. In the first step, there is no PnP
algorithm. Each dwelling has its own 1.5 kW battery. The
solar irradiance is the input for the PV units and wind speed
is the input for the wind turbines. Fig. 5 shows the active
power in two selected bus test feeders (846 and 848) over a
24 hour period. It shows that the power has high fluctuations,
especially, at noon when PVs inject power into the main grid.
When the power flow is negative, there is reverse power to bus
feeders from the dwellings. In Fig. 5, the demand line shows
the required power by sink and home consumption excluding
batteries. The maximum and minimum power required by
the selected bus test feeder (846 and 848) is 5.85 kW and
-6.44 kW respectively which result in 12.29 kW magnitude of
fluctuation.
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Fig. 5. Power flow on distribution substation bus with 1.5 kW batteries in
each house; no PnP algorithm.

In the next step, the PnP process is started and agents on
each bus communicate to each other within the distribution
substation. Fig. 6 shows the resultant power flow in the
selected bus test feeders (846 and 848). Due to the controlling
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action of the MAS, whenever the source agent cannot form a
cluster with the sink agent then the power will not be injected
to the distribution substation bus. Based on the network
structure, the surplus of power may be used by another sink
in other bus feeders. The maximum and minimum of required
power by selected bus test feeder (846 and 848) is 2.02 kW
and 0.1 kW respectively which result in 2.01 kW magnitude
of fluctuation. The results show 81% less fluctuation than the
non-PnP operation, which is quite significant. The batteries
in this scenario were the source for 3 hours and 20 minutes
and the demand for 4 hours and 10 minutes. Consequently,
batteries were active on average for 7 hours and 30 minutes
during the day.
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Fig. 6. Power flow on distribution substation bus with 1.5 kW batteries in
each house with the PnP algorithm enabled.

Table II compares different results by different capacities of
a storage node. In Table II, the size of the battery was changed
to find the minimum fluctuation of power based on the size
of the storage node. These results illustrate the critical role a
storage node has in decreasing power fluctuations. However,
the cost and environmental impact of batteries should be also
considered because batteries may contain toxic material.

TABLE II
COMPARING THE RESULTS FROM DIFFERENT SIZE OF BATTERY.

Size of
battery
(kW)

Average
of fluc-
tuation
(kW)

Maximum
value of
fluctuation
(kW)

The time
that battery
was sink
(minutes)

The time that bat-
tery was source
(minutes)

0.5 1.52 2.17 150 100
1 1.38 2.10 200 175
1.5 1.24 2.02 250 200
2 1.1 1.81 300 245

Fig. 7 shows the number of messages that are transmitted by
one source agent assigned to the wind turbine during a typical
day. The result demonstrates the efficiency of the number of
generated messages by selecting two appropriate sink agents.
There are three possible scenarios in this process: (i) when
the source agent does not communicate with the other sink
agents and sends message just inside the dwellings (scenario
A), (ii) when the source agent communicates with other sink
agents inside the other dwellings but selects agents randomly
(scenario B), and (iii) when the source agent communicates

with sink agents inside other dwellings and selects agents
based on the PnP algorithm (scenario C). Fig. 7 shows that a
lower number of messages are generated in the first scenario
when the agents are isolated without agent selection, but it
is less efficient in terms of power saving and minimising
disturbances. The second scenario is compared to the third
scenario in which an agent selects sink agents with or without
considering the parameters of the nodes. In scenario B, 67%
more messages are exchanged during a typical day as there
is the possibility for an agent to select an agent that does not
have adequate potential for cluster formation.
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Fig. 7. The number of messages exchanged for each load agent daily.

The number of messages exchanged across the network
is changed with an increase or decrease in the number of
dwellings. In this experiment, the number of messages gener-
ated by the PnP algorithm is validated for different numbers
of dwellings. Table III shows the maximum and the minimum
and the average number of messages in every hour by all the
agents associated with the dwellings. The result shows that the
number of messages is doubled if the number of dwellings is
increased by two-fold. The reason for this efficiency is the
deployment of an MASM agent which has control over all the
messages and consequently, the agents transfer their messages
to the MASM agent system instead of contacting each other
directly.

TABLE III
COMPARISON OF THE NUMBER OF MESSAGES IN DIFFERENT NUMBER OF

DWELLINGS.

Number
of
dwellings

Minimum num-
ber of messages
in an hour

Maximum
number of
messages in an
hour

Average num-
ber of messages
in an hour

3 288 480 384
7 745 1176 9610
14 1354 2256 1805

Fig. 8 shows the comparison of learning steps between
ACSA, GA, and DVF. All three of these learning algorithm are
simulated in the same environment with the same input data. In
all of the learning algorithms, it is assumed that one sink agent
creates a cluster with two source agents. The load consumes
3 kW that two source agents have collectively provided. In
every learning step, an agent selects one of the six actions:



9

0, 1, 2, 3, 4 and 5. The sink agent tries to minimise (6) by
implementing the learning steps. There are five states for each
source agent with injection of 5 kW in our scenario as follows:

(0 ≤ P < 1), (1 ≤ P < 2), (2 ≤ P < 3),

(3 ≤ P < 4), (4 ≤ P < 5).

In the GA method [5], a binary code is assigned to each
state in each source agent. The cost and fitness function are
based on (6). This method finds the best fitness states based
on minimising the cost by using Parent Selection, Crossover
and Mutation of the string. Parent Selection is a probabilistic
process in which strings are selected to produce offspring
based on their fitness value. The crossover rate has been
changed from 0.6 to 1 and the mutation rate has been changed
from 0.01 to 0.05 for the lowest learning rate. The iteration
stops if (i) all the produced binary strings are the same, or
(ii) the required number of iteration is achieved. The other
parameters of the GA are as follows: population size = 8,
crossover rate = 0.7, mutation rate = 0.03, and maximum
iterations=450.

In the ACSA method [4], each ant finds the shortest path
to food (the five states in each source agent) by laying
a pheromone trail as they walk. An ant minimises (6) by
updating the pheromone when moving in a tour from one state
to another during each iteration. The probability of moving
from one state to another state depends on the combination
of two values: (i) the state of power flow in the next state
which is a potential source to inject power, (ii) the trail level
which is the pheromone strength between states. The algorithm
is terminated if (i) all ants select the same path in their
tours, or (ii) the maximum number of iteration is achieved.
The following parameters are used for ACSA: Number of
ants=6, maximum iterations=450, pheromone weighting=2,
state weighting=6, pheromone evaporation constant =0.8, and
elite path weighting constant =0.5.

In the proposed scenario and application, the problem of
a high number of iterations, which is mentioned in [34] in
comparison to Q-learning and ACSA, has been solved in
the DVF (distributed learner) by collaboration on updating
the Q-value. As illustrated in Fig. 8, the GA has the worst
performance and the result for ACSA and DVF are roughly
the same. In this paper, DVF has been selected because of
its mathematical simplicity in modelling the collaboration
between agents. The main disadvantage of the GA is that it is
a stochastic algorithm and its solution cannot be guaranteed
to be optimum.

The hardware for simulating has a central processing unit
(CPU) with 3 GHz speed and each millisecond is defined as
1 per unit (p.u.). In this case, every learning step by DVF,
ACSA, and the GA takes 11, 12, 42 p.u., respectively. Fig. 8
compares the learning rates for three nodes (one sink agent
and two sources nodes). The real network has a lot of nodes
which constantly run the learning algorithm every 5 minutes
as well as having other PnP functionality. A low number of
iterations is important, especially for an agent which does not
have powerful computing hardware in terms of memory and
processor.
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Fig. 8. comparison learning steps among ACSA, DVF, GA.

VI. CONCLUSION AND FUTURE WORK

The reported research is one step towards the PnP tech-
niques in a smart grid with distributed intelligent automation.
The architecture of the proposed information model is hierar-
chical and stems from PnP techniques. The algorithm allows
the network elements to be active or inactive with minimal
fluctuations in power flow. In the current work, the research
is focused on the control and collaboration of the intelligent
components. This research aims at achieving management of
the power resources so that there is minimal power drawn
from the network via the distribution substation. Simulation
has been carried out using MATLAB/Simulink and JADE
platform. Based on the ongoing situation in the environment,
MATLAB/Simulink sends data to JADE for processing and the
agent makes a decision to open or close the power switches.

In terms of learning steps, the performance of the PnP
process using the DVF algorithm is compared with ACSA,
and GA techniques. According to the results, the collaboration
in the DVF method provides fewer iterations compared to
GA and it is more competitive with ACSA. It also shows
that the battery has a critical role in the smart grid because
it helps to minimise disturbances to the supply-and-demand
balance within the distribution network. Future work will be
in the direction of adding more intelligent functionalities in
virtual power systems. The other issues can be considered
such as developing a framework for learning algorithms for the
scheduling of demand-side integration, optimising the size of
storage capability and control and management of forecasting
power flow by using stochastic models.
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