Purely infinite C*-algebras associated to etale groupoids

Jonathon Brown
United States Naval Academy

Les Clark
University of Otago

Adam Sierakowski
University of Wollongong, asierako@uow.edu.au

Publication Details
Purely infinite C*-algebras associated to etale groupoids

Keywords
algebras, infinite, groupoids, c, etale, associated, purely

Disciplines
Engineering | Science and Technology Studies

Publication Details

This journal article is available at Research Online: http://ro.uow.edu.au/eispapers/3456
PURELY INFINITE C*-ALGEBRAS ASSOCIATED TO ÉTALE GROUPOIDS

JONATHAN BROWN, LISA ORLOFF CLARK, AND ADAM SIERAKOWSKI

Abstract. Let G be a Hausdorff, étale groupoid that is minimal and topologically principal. We show that $C^*_r(G)$ is purely infinite simple if and only if all the nonzero positive elements of $C_0(G^{(0)})$ are infinite in $C^*_r(G)$. If G is a Hausdorff, ample groupoid, then we show that $C^*_r(G)$ is purely infinite simple if and only if every nonzero projection in $C_0(G^{(0)})$ is infinite in $C^*_r(G)$. We then show how this result applies to k-graph C^*-algebras. Finally, we investigate strongly purely infinite groupoid C^*-algebras.

1. Introduction

Purely infinite simple C^*-algebras were introduced by Cuntz in [7] where he showed that the K_0 group of such algebras can be computed within the algebra itself without resorting to the usual direct limit construction. The K-theory groups of C^*-algebras have long been known to be computable invariants and Cuntz’s result shows that this computation is easier when the C^*-algebra is purely infinite simple. Elliott initiated a program to find a suitably large class of C^*-algebras on which the K-theory groups provide a complete isomorphism invariant (see [8]). This program has achieved remarkable success, most notably in a theorem of Kirchberg and Phillips [11, 20] which states that every Kirchberg algebra satisfying the Universal Coefficient Theorem (UCT) is classified by the isomorphism classes of its ordered K-theory groups. A Kirchberg algebra is a separable, nuclear, purely infinite simple C^*-algebra.

The allure of classification via the Kirchberg-Phillips theorem has led many authors to study when various constructions of C^*-algebras yield purely infinite simple algebras. Kumjian, Pask and Raeburn show that a graph C^*-algebra of a cofinal graph is purely infinite simple if and only if every vertex can be reached from a loop with an entrance [17, Theorem 3.9]. Carlsen and Thomsen show that if the C^*-algebra constructed from a locally injective surjection θ on a compact metric space of finite covering dimension is simple, then it is purely infinite simple if and only if θ is not a homeomorphism [5, Corollary 6.6]. Rørdam and Sierakowski [24] show that if a countable exact group H acts by an essentially free action on the Cantor set X and the type semigroup of clopen subsets of X is almost unperforated, then $C_0(X) \rtimes_r H$ is purely infinite if and only if every clopen set E in X is paradoxical. The constructions in each of the above examples are special cases of groupoid C^*-algebras.
In this paper we investigate purely infinite C^*-algebras associated to Hausdorff, étale groupoids. In sections 3 through 5 we restrict our attention to simple groupoid C^*-algebras. Characterising simplicity of groupoid C^*-algebras is known and we readily make use of the following theorem from [4, Theorem 5.1]:

Theorem 1.1 (Brown-Clark-Farthing-Sims). Let G be a second-countable, locally compact, Hausdorff and étale groupoid. Then $C^*(G)$ is simple if and only if all of the following conditions are satisfied.

1. $C^*(G) = C^*_r(G)$;
2. G is topologically principal;
3. G is minimal.

However, necessary and sufficient conditions on the groupoid for the associated algebra to be purely infinite simple are not known. Anantharaman-Delaroche showed that ‘locally contracting’ is a sufficient condition on the groupoid in [1, Proposition 2.4] but whether locally contracting is necessary remains an open question. Part of the difficulty in characterizing those groupoids that give rise to purely infinite simple C^*-algebras is relating arbitrary projections in the groupoid C^*-algebra to the groupoid itself.

In Section 3 we look at a necessary and sufficient conditions for ensuring pure infiniteness of groupoid C^*-algebras. We show that for a Hausdorff, étale, topologically principal, and minimal groupoid G the C^*-algebra $C^*_r(G)$ is purely infinite simple if and only if it all the nonzero positive elements of $C_0(G^{(0)})$ are infinite in $C^*_r(G)$ and (see Theorem 3.3). In Section 4 we specialize to Hausdorff, ample groupoids. This is an important class of examples because every Kirchberg algebra in UCT is Morita equivalent to an algebra associated to a Hausdorff, ample groupoid (see [26]). We show in Theorem 4.1 for a Hausdorff, ample groupoid G, that is also topologically principal and minimal, the C^*-algebra $C^*_r(G)$ is purely infinite if and only if every nonzero projection in $C_0(G^{(0)})$ is infinite in $C^*_r(G)$.

Theorem 4.1 is a generalisation of [10] about partial actions. In Section 5 we demonstrate how Theorem 4.1 applies to k-graph C^*-algebras.

In Section 6 we turn our attention to the non-simple case. In [13], Kirchberg and Rørdam introduce three separate notions of purely infinite C^*-algebras: weakly purely infinite, purely infinite and strongly purely infinite. Of these notions, the last one appears to be the most useful in the classification theory of non-simple C^*-algebras. Indeed, Kirchberg showed in [12] that two separable, nuclear, strongly purely infinite C^*-algebras with the same primitive ideal space X are isomorphic if and only if they are KK_X-equivalent. We provide a characterization of when groupoid C^*-algebras are strongly purely infinite in Proposition 6.3.

2. **Preliminaries**

2.1. **Groupoids.** A groupoid G is a small category in which every morphism is invertible. The set of objects in G is identified with the set of identity morphisms and both are denoted by $G^{(0)}$. We call $G^{(0)}$ the unit space of G. Each morphism $γ$ in the category has a range and source denoted $r(γ)$ and $s(γ)$ respectively and thus r and s define maps $G → G^{(0)}$.

A topological groupoid is a groupoid with a topology in which composition is continuous and inversion is a homeomorphism. An open bisection in a topological groupoid G is an open set B such that both r and s restricted to B are homeomorphisms; in particular
these restrictions are injective. An étale groupoid is a topological groupoid where \(s \) is a local homeomorphism. If a groupoid \(G \) is Hausdorff and étale, then the unit space \(G^{(0)} \) is open and closed in \(G \). If \(G \) is a locally compact, Hausdorff groupoid, then \(G \) is étale if and only if there is a basis for the topology on \(G \) consisting of open bisections with compact closure. A topological groupoid is called ample if and only if \(G^{(0)} \) is totally disconnected (see [9, Proposition 4.1]).

For a subsets \(L, K \subseteq G \), denote \(LK = \{ \gamma : \gamma = \xi \zeta \mid \xi \in L, \zeta \in K, s(\xi) = r(\zeta) \} \). With a slight abuse of notation, for \(u \in G^{(0)} \), we write \(uG \) and \(Gu \) for \(\{u\}G \) and \(G\{u\} \) respectively and denote by \(uGu \) the set

\[
\{ \gamma \in G : r(\gamma) = s(\gamma) = u \}.
\]

A topological groupoid \(G \) is topologically principal if the set \(\{u \in G^{(0)} : uGu = \{u\}\} \) is dense in \(G^{(0)} \), and minimal if \(G : u := \{r(\gamma) : s(\gamma) = u\} \) is dense in \(G^{(0)} \) for all \(u \in G^{(0)} \). Recall, for a second countable, locally compact, Hausdorff, étale groupoid \(G \) the algebra \(C^*(G) \) is simple if and only if \(G \) is minimal, topologically principal, and \(C^*(G) = C^*_r(G) \).

2.2. Groupoid \(C^* \)-algebras.

Let \(G \) be locally compact, Hausdorff étale groupoid and let \(C_c(G) \) denote the set of compactly supported continuous functions from \(G \) to \(\mathbb{C} \). Since every element \(\gamma \) of \(G \) has a neighbourhood \(B_\gamma \) such that \(r|_{B_\gamma} \) is injective, the set \(r^{-1}(u) \) is discrete for every \(u \in G^{(0)} \). Thus if \(f \in C_c(G) \) then \(\text{supp}(f) \cap r^{-1}(u) \) is finite for all \(u \in G^{(0)} \). With this, we are able to define a convolution and involution on \(C_c(G) \) such that for \(f, g \in C_c(G) \),

\[
f * g(\gamma) := \sum_{r(\eta) = r(\gamma)} f(\eta)g(\eta^{-1}\gamma) \quad \text{and} \quad f^*(\gamma) := \overline{f(\gamma^{-1})}.
\]

Under these operations, \(C_c(G) \) is a \(*\)-algebra. Next define for \(f \in C_c(G) \),

\[
\|f\|_I := \sup_{u \in G^{(0)}} \left\{ \max\left\{ \sum_{\gamma \in Gu} |f(\gamma)|, \sum_{\gamma \in uG} |f(\gamma)| \right\} \right\} \quad \text{and} \quad \|f\| := \sup\{\|\pi(f)\| : \pi \text{ is a } \| \cdot \|_I\text{-decreasing representation}\}.
\]

Then \(C^*(G) \) is the completion of \(C_c(G) \) in the \(\| \cdot \| \)-norm.

Given a unit \(u \in G^{(0)} \), the regular representation \(\pi_u \) of \(C_c(G) \) on \(\ell^2(Gu) \) associated to \(u \) is characterized by

\[
\pi_u(f)\delta_\gamma = \sum_{s(\eta) = r(\gamma)} f(\eta)\delta_{u\eta}.
\]

The reduced \(C^* \)-norm on \(C_c(G) \) is \(\|f\|_r := \sup\{\|\pi_u(f)\| : u \in G^{(0)} \} \) and \(C^*_r(G) \) is the completion of \(C_c(G) \) in the \(\| \cdot \|_r \)-norm. Our attention will be focused on the reduced \(C^* \)-algebra and situations where the reduced and full algebras coincide. Also, we will often be assuming \(G \) is second-countable, implying \(C^*_r(G) \) is separable [21, Page 59].

Below we recall a few standard results (we heavily use) and their proofs to familiarise the reader with locally compact, Hausdorff étale groupoids.

Lemma 2.1 (cf. [21]). Let \(G \) be a locally compact, Hausdorff and étale groupoid. Then

1. The extension map from \(C_c(G^{(0)}) \) into \(C_c(G) \) (where a function is defined to be zero on \(G - G^{(0)} \)) extends to an embedding of \(C_0(G^{(0)}) \) into \(C^*_r(G) \).
(2) The restriction map \(E_0 : C_c(G) \to C_c(G^{(0)}) \) extends to a conditional expectation \(E : C^*_r(G) \to C_0(G^{(0)}) \).

(3) The map \(E \) from item (2) is faithful. That is, \(E(b^*b) = 0 \) implies \(b = 0 \) for \(b \in C^*_r(G) \).

(4) For every closed invariant set \(D \subseteq G^{(0)} \) we have the following commuting diagram:

\[
\begin{array}{cccc}
0 & \xrightarrow{\iota_r} & C^*_r(G|U) & \xrightarrow{\rho_r} & C^*_r(G|D) & 0 \\
E_U & & E & & E_D & \\
0 & \xrightarrow{\iota_0} & C_0(U) & \xrightarrow{\rho_0} & C_0(D) & 0
\end{array}
\]

where \(U = G^{(0)} - D \), \(\iota_r \) and \(\rho_r \) are determined on continuous functions by extension and restriction respectively. Moreover, \(\text{image}(\iota_r) \subseteq \ker \rho_r \).

(5) The subalgebra \(C_c(G^{(0)}) \) contains an approximate unit for \(C^*_r(G) \).

Proof. Since \(G \) is Hausdorff and étale, \(G^{(0)} \) is open and closed in \(G \). Thus, the map \(C_c(G^{(0)}) \) into \(C_c(G) \) is well defined. For \(f, g \in C_c(G^{(0)}) \), a quick computation gives

\[
f \ast g(\gamma) = \begin{cases} f(\gamma)g(\gamma), & \text{if } \gamma \in G^{(0)}; \\ 0, & \text{otherwise,}
\end{cases}
\]

so the map from \(C_c(G^{(0)}) \) into \(C_c(G) \) is a *-homomorphism. We claim the map is isometric, that is, we claim the reduced norm agrees with the infinity norm for functions in \(C_c(G^{(0)}) \). By evaluating at point masses in \(\ell^2(GU) \), one can show that \(\|f\|_\infty \leq \|f\|_r \), for \(f \in C_c(G) \). The reverse inequality can be verified for \(f \in C_c(G^{(0)}) \) and the claim follows. Thus the *-homomorphism from \(C_c(G^{(0)}) \) into \(C_c(G) \subseteq C^*_r(G) \) extends by continuity to an isometric (hence injective) *-homomorphism from \(C_0(G^{(0)}) \) into \(C^*_r(G) \).

Once again using that \(G \) is Hausdorff and étale, we have that \(G^{(0)} \) is open and closed in \(G \) and hence \(E_0 \) is well defined. One may easily verify that \(E_0 \) is (a) positive (b) linear (c) idempotent, and (d) of norm one. Therefore \(E_0 \) extends by continuity to a map \(E : C^*_r(G) \to C_0(G^{(0)}) \) with the same properties (a)–(d). By [3] II.6.10.1] we conclude that \(E \) is a conditional expectation.

Let \(b \in C^*_r(G) \) such that \(E(b^*b) = 0 \). We need to show that \(b = 0 \). Let \(V_\gamma : \mathbb{C} \to \ell^2(G_{s(\gamma)}) \) be given by \(c \mapsto c\delta_\gamma \). Then \(V_\gamma^*\omega = \omega(\gamma) \). Since \(\|b\|_r = \sup_{u \in G^{(0)}} \|\pi_u(b)\| \) and

\[
\|\pi_u(b)\delta_\gamma\|^2 = \langle \pi_u(b)\delta_\gamma, \pi_u(b)\delta_\gamma \rangle = \langle \pi_u(b^*b)\delta_\gamma, \delta_\gamma \rangle = V_\gamma^*\pi_u(b^*b)V_\gamma \delta_\gamma,
\]

it suffices to show that \(V_\gamma^*\pi_u(b^*b)V_\gamma = 0 \) for all \(u \in G^{(0)} \) and \(\gamma \in G \).

For \(f \in C_s(G), \ u \in G^{(0)}, \) and \(c \in \mathbb{C}, \) we have

\[
(2.1) \quad V_u^*\pi_u(f)V_u^*c = V_u^*\pi_u(f)c\delta_u = V_u^*(\sum_{s(\eta) = u} f(\eta)c\delta_\eta) = f(u)c = E(f)(u)c.
\]

Thus by the continuity of \(E \), for all \(a \in C^*_r(G), \ E(a)(u) = V_u^*\pi_u(a)V_u \) as operators on \(\mathbb{C} \).

For every open bisection \(B \) and \(\gamma \in B, \) pick a function \(\phi_{\gamma,B} \in C_s(G) \) such that \(\phi_{\gamma,B}(\gamma) = 1, \) \(\text{supp}(\phi_{\gamma,B}) \subseteq B, \) and \(0 \leq \phi_{\gamma,B} \leq 1. \) Now if \(f \in C_c(G) \) and \(B \) is an open bisection with

\footnote{Recall: A conditional expectation \(E : A \to B \) is a contractive, linear, completely positive map such that for every \(b \in B, a \in A \) we have \(E(b) = b, E(ba) = bE(a) \) and \(E(ab) = E(a)b, \) see [3] II.6.10.1.]
\(\gamma \in B \), then
\[
(E(\phi^*_B f \phi_B))(u) = \sum_{r(\zeta) = u} \phi_B(\xi^{-1}) f(\xi^{-1} \zeta) \phi_B(\zeta^{-1}),
\]
which is zero unless \(\xi, \zeta \in B^{-1} \). Since \(r(\zeta) = r(\xi) = u \), we have that \(\xi = \zeta \) is the unique element of \(uB^{-1} \). So
\[
(E(\phi^*_B f \phi_B))(u) = \phi_B(\xi^{-1}) f(\xi^{-1}) \xi \phi_B(\zeta^{-1}) \leq E(f)(s(\xi)) \leq \|E(f)\|_\infty.
\]
Now if \(a \in C^*_e(G) \) then \(\phi_B^* a^* a \phi_B^* \) is positive so \(E(\phi_B^* a^* a \phi_B^*) \geq 0 \).
Therefore by the continuity of \(E \) we can apply (2.2) to obtain
\[
0 \leq E(\phi_B^* b^* b \phi_B^*) \leq \|E(b^* b)\|_\infty = 0.
\]
Thus \(E(\phi_B^* b^* b \phi_B^*) = 0 \) for all open bisections \(B \) and \(\gamma \in B \).

For \(\gamma \in G \) pick an open bisection \(B \) such that \(\gamma \in B \). Notice for \(c \in \mathbb{C} \)
\[
\pi_s(\gamma)(\phi_B) V_s(\gamma) c = \pi_s(\gamma)(\phi_B) c \delta_s(\gamma) = \sum_{s(\eta) = s(\gamma)} \phi_B(\eta) c \delta_\eta = c \delta_\gamma = V_\gamma c.
\]
Thus \(\pi_s(\gamma)(\phi_B) V_s(\gamma) = V_\gamma \) as operators. Now by equation (2.1) and the above observation we get for all \(\gamma \in G \) that
\[
V_\gamma^* \pi_u(b^* b) V_\gamma = V_\gamma^* \pi_s(\gamma) (\phi_B b^* b \phi_B^*) V_s(\gamma) = E(\phi_B^* b^* b \phi_B^*) = 0
\]
as desired. Therefore \(b = 0 \) and hence \(E \) is faithful.

\[\square\]

2.3. Purely infinite simple C*-algebras.

Given a C*-algebra \(A \) we denote its positive elements by \(A^+ \). If \(B \) is a subalgebra of \(A \) then \(B^+ \subseteq A^+ \). In particular, if \(C_0(X) \) is an abelian subalgebra of \(A \) and \(f \in C_0(X) \) such that \(f(x) \geq 0 \) for all \(x \in X \), then \(f \in A^+ \).

For positive elements \(a \in M_n(A) \) and \(b \in M_m(A) \), \(a \) is Cuntz below \(b \), denoted \(a \lesssim b \), if there exists a sequence of elements \(x_k \in M_{m,n}(A) \) such that \(x_k^* b x_k \to a \) in norm. Notice that \(\lesssim \) is transitive: if \(a \lesssim b \) and \(b \lesssim c \) there exist sequences of element \(x_n \) and \(y_n \) such that \(x_n^* b y_n \to a \) and \(y_n^* c y_n \to b \) in norm, so \(x_n^* y_n^* c y_n x_n \to a \) in norm, that is \(a \lesssim c \). We say \(A \) is purely infinite if there are no characters on \(A \) and for all \(a, b \in A^+ \), \(a \lesssim b \) if and only if \(a \in A^bA \). A nonzero positive element \(a \in A \) is properly infinite if \(a \not\lesssim a \). By Theorem 4.16 \(A \) is purely infinite if and only if every nonzero positive element in \(A \) is properly infinite.

A projection \(p \) in a C*-algebra \(A \) is infinite if it is Murray-von Neumann equivalent to a proper subprojection of itself, i.e., if there exists a partial isometry \(s \) such that \(s^* s = p \) but \(ss^* \not\leq p \). By Proposition 4.7 a C*-algebra \(A \) is purely infinite if every nonzero hereditary C*-subalgebra in every quotient of \(A \) contains an infinite projection. For simple C*-algebras the converse is also true, thus a simple C*-algebra is purely infinite precisely when every hereditary subalgebra contains an infinite projection.
3. Topologically Principal Groupoids and Positive Elements of $C_0(G^{(0)})$

In this section we consider, locally compact, Hausdorff and étale groupoids. We will show that we can determine when $C_\ast^r(G)$ is purely infinite simple by restricting our attention to elements of $C_0(G^{(0)})$ (see Theorems 4.4 and 5.5). Before we do that, we need the following technical lemmas.

Lemma 3.1. Let G be a locally compact, Hausdorff and étale groupoid and $E : C_\ast^r(G) \to C_0(G^{(0)})$ be the faithful conditional expectation extending restriction. Suppose that G is topologically principal. For every $\epsilon > 0$ and $c \in C_\ast^r(G)^+$, there exists $f \in C_0(G^{(0)})^+$ such that:

1. $\|f\| = 1$;
2. $\|fcf - fE(c)f\| < \epsilon$
3. $\|fE(c)f\| > \|E(c)\| - \epsilon$

Proof. Let $\epsilon > 0$. For $c = 0$ the result is trivial so let $c \in C_\ast^r(G)^+$ such that $c \neq 0$. Define

$$a := \frac{c}{\|E(c)\|}.$$

To find an appropriate f, we use the construction in the proof of [1] Proposition 2.4]; we include the details below. Find $b \in C_c(G) \cap C_\ast^r(G)^+$ so that $\|a - b\| < \frac{\epsilon}{2\|E(c)\|}$. Then

$$\|E(b)\| > 1 - \frac{\epsilon}{2\|E(c)\|},$$

because E is linear and $\|E(a)\| = 1$. Now, let $K := \text{supp}(b - E(b))$, which is a compact subset of $G \setminus G^{(0)}$. Let

$$U := \{u \in G^{(0)} \mid E(b)(u) > 1 - \frac{\epsilon}{2\|E(c)\|}\}.$$

Since G is topologically principal, [1 Lemma 2.3] implies that there exists a nonempty open set $V \subseteq U$ such that $VKV = \emptyset$. Using regularity, fix a nonempty open set W such that $\overline{W} \subseteq V$. Using normality, select a positive (nonzero) real-valued function $f \in C_c(G^{(0)})$ such that $f|_W = 1$, $\text{supp}(f) \subseteq V$, and $0 \leq f(x) \leq 1$ for all $x \in G^{(0)}$.

Therefore, f is positive in $C_\ast^r(G)$ and satisfies item [1].

To see that item [2] holds, a direct computation gives

$$fbf = fE(b)f.$$

Since $\|a - b\| < \frac{\epsilon}{2\|E(c)\|}$, $\|f\| = 1$ and E is norm decreasing we have

$$\|fE(a)f - fE(b)f\| < \frac{\epsilon}{2\|E(c)\|}.$$

Combining equations (3.1) and (3.2) we get

$$\|faf - fE(a)f\| = \|faf - fbf + fbf - fE(b)f + fE(b)f - fE(a)f\| < \frac{\epsilon}{\|E(c)\|}.$$

Thus multiplying by $\|E(c)\|$ gives $\|fcf - fE(c)f\| < \epsilon$ as needed in [2].

To see item [3] notice that since $\text{supp} f \subseteq U$ we have

$$fE(b)f \geq (1 - \frac{\epsilon}{2\|E(c)\|})f^2.$$
Since $\|f\| = 1$, from the above equation and equation (3.2) we get
$$
\|fE(a)f\| > \|fE(b)f\| - \frac{\epsilon}{2\|E(c)\|} \geq 1 - \frac{\epsilon}{2\|E(c)\|} - \frac{\epsilon}{2\|E(c)\|} = 1 - \frac{\epsilon}{\|E(c)\|}.
$$
Multiplying by $\|E(c)\|$ we obtain $\|fE(c)f\| > \|E(c)\| - \epsilon$ as needed. □

Lemma 3.2. Let G be a locally compact, Hausdorff and étale groupoid and $E : C_r(G) \to C_0(G(0))$ be the faithful conditional expectation extending restriction. Suppose that G is topologically principal. For every nonzero $a \in C_r(G)^+$, there exists nonzero $h \in C_0(G(0))^+$ such that $h \prec a$.

Proof. Let $a \in C_r(G)^+$ such that $a \neq 0$. Since E is faithful, $E(a)$ is nonzero. Applying Lemma 3.1 to $c := \frac{a}{\|E(a)\|}$ and $\epsilon = 1/4$ gives us an $f \in C_0(G(0))$ such that items (1), (2) and (3) of Lemma 3.1 hold. In particular $\|fE(c)f\| > \frac{\epsilon}{4}$.

Following [14, p. 640], for each $d \in C_0(G(0))^+$ we define the element
$$(d - 1/2)_+ := \phi_{1/2}(d) \in C_0(G(0))^+$$
where $\phi_{1/2}(t) = \max\{t - 1/2, 0\}$ for $t \in \mathbb{R}^+$. Notice that
$$\|\phi_{1/2}(d)\| = \max\{|d| - 1/2, 0\},$$
for each $d \in C_0(G(0))^+$.

Now let $h := (fE(c)f - 1/2)_+ \in C_0(G(0))^+$. Using item (2) of Lemma 3.1 and [13, Lemma 2.2], we can find $g \in C_r(G)$ so that $h = g^* f g$. Therefore $h \preceq a$. Finally, $h \neq 0$ since
$$\|h\| = \|(fE(c)f - 1/2)_+\| \geq \|fE(c)f\| - 1/2 \geq 1/4 > 0.$$ □

We are now in a position to prove the main result of this section.

Theorem 3.3. Let G be a locally compact, Hausdorff and étale groupoid. Suppose that G is minimal and topologically principal. Then $C_r(G)$ is purely infinite if and only if every nonzero positive element of $C_0(G(0))$ is infinite in $C_r(G)$.

Proof. The forward implication is trivial. To see the reverse, let $a \in C_r(G)^+$ such that $a \neq 0$. Using Lemma 3.2 we can find a nonzero $h \in C_0(G(0))^+$ such that $h \preceq a$. By assumption, we know h is infinite. Since $C_r(G)$ is simple by [21, Proposition II.4.6], h is properly infinite by [14, Proposition 3.14]. Thus a is properly infinite by [14, Lemma 3.8], hence $C_r(G)$ is purely infinite. □

Recall that a Kirchberg algebra is a separable, nuclear, purely infinite simple C^*-algebra. We combine Theorem 3.3 with results from [2] [4] [21] to obtain the following characterization of groupoid Kirchberg algebras.

Corollary 3.4. Let G be a second-countable, locally compact, Hausdorff and étale groupoid. Then $C^*(G)$ is a Kirchberg algebra if and only if G is minimal, topologically principal, measure-wise amenable and every non-zero positive element of $C_0(G(0))$ is infinite in $C^*(G)$.

Proof. Suppose $C^*(G)$ is a Kirchberg algebra. Then $C^*(G)$ is simple by definition and so $C^*(G) = C_r(G)$, G is minimal and G topologically principal [4, Theorem 5.1]. Since $C^*(G)$ is nuclear, $C_r(G)$ is also nuclear hence G is measure-wise amenable by [2, Corollary 6.2.14]. Finally, we apply Theorem 3.3 to see that every non-zero positive element of $C_0(G(0))$ is infinite in $C^*(G)$.
Conversely, suppose G is minimal, topologically principal, measure-wise amenable and that every non-zero positive element of $C_0(G^{(0)})$ is infinite in $C^*(G)$. Then $C^*_r(G) = C^*(G)$ is nuclear by [2, Corollary 6.2.14], simple by [4, Theorem 5.1], separable because G is second countable [21, Remark (iii) page 59] and purely infinite by Theorem 3.3. □

4. C^*-algebras associated to ample groupoids

In this section, we will restrict our attention to ample groupoids. Although this might seem a very restrictive class of groupoids, it actually includes a lot of important examples. Again, every Kirchberg algebra in UCT is Morita equivalent to a C^*-algebra associated to a Hausdorff, ample groupoid (see [26]). The ample case is far more manageable than the general case. In particular there is a large number of projections in the associated algebra. Let G be a locally compact, Hausdorff and étale groupoid. If G is ample, then the complex Steinberg algebra associated to G is

$$A(G) := \text{span}\{\chi_B : B \text{ is a compact open bisection} \} \subseteq C_c(G)$$

where χ_B denotes the characteristic function of B, is dense in $C^*_r(G)$ see [6, Proposition 4.2] (see also [27]). A quick computation shows that $\chi_B * \chi_D = \chi_{BD}$ and $\chi_B^* = \chi_{B^{-1}}$, so that if $B \subseteq G^{(0)}$ is compact open, then χ_B is a projection.

Theorem 4.1. Let G be a second countable, Hausdorff, ample groupoid. Suppose that G is topologically principal, minimal and that \mathcal{B} is a basis of $G^{(0)}$ consisting of compact open sets. Then $C^*_r(G)$ is purely infinite if and only if every nonzero projection p in $C_0(G^{(0)})$ with $\text{supp}(p) \in \mathcal{B}$ is infinite in $C^*_r(G)$.

Proof. The forward implication is trivial. To see the reverse, suppose every nonzero projection p of $C_0(G^{(0)})$ with $\text{supp}(p) = U$ for some $U \in \mathcal{B}$ is infinite in $C^*_r(G)$. By Theorem 3.3 it suffices to show that every positive element in $C_0(G^{(0)})^+$ is infinite. Let $a \in C^*_r(G^{(0)})^+$ be a nonzero element. We show that a is properly infinite. We claim there is a nonzero projection $p \in C_0(G^{(0)})^+$ with $\text{supp}(p) \subseteq U$ for some $U \in \mathcal{B}$ such that $p \lesssim a$. To see this, first note that characteristic functions of the form χ_V are projections in $C_0(G^{(0)})$ for every compact open set $V \subseteq G^{(0)}$. Since \mathcal{B} is a basis of compact open sets, there exists a compact open set $U_0 \in \mathcal{B}$ and a nonzero $s \in \mathbb{R}^+$ such that $\chi_{U_0}(x) \leq sa(x)$ for every $x \in G^{(0)}$. Then $p := \chi_{U_0} \leq sa$. Applying [14, Proposition 2.7] we get that $p \lesssim sa$ and so $p \lesssim a$ as claimed. Since p is infinite by assumption and $C^*_r(G)$ is simple, p is properly infinite by [14, Proposition 3.14]. Hence a is properly infinite by [14, Lemma 3.8]. □

Corollary 4.2. Let G be a second countable, Hausdorff, ample groupoid. Suppose that G is topologically principal and minimal. Then $C^*_r(G)$ is purely infinite if and only if there exists a point $x \in G^{(0)}$ and a neighbourhood basis \mathcal{D} at x consisting of compact open sets so that every nonzero projection q in $C_0(G^{(0)})$ with $\text{supp}(q) \in \mathcal{D}$ is infinite in $C^*_r(G)$.

Proof. Again, the forward direction is trivial. For the reverse implication, suppose there exist a point $x \in G^{(0)}$ and neighbourhood basis \mathcal{D} of x consisting of compact open sets such that that every nonzero projection q in $C_0(G^{(0)})$ with $\text{supp}(q) \in \mathcal{D}$ is infinite in $C^*_r(G)$. Let \mathcal{B} be a basis of $G^{(0)}$ consisting of compact open sets and suppose $p := \chi_U$ is a nonzero projection in $C_0(G^{(0)})$ with $U \in \mathcal{B}$. By Theorem 4.1, it suffices to show that p
is infinite. Since G is minimal and ample, there exists a compact open bisection B such that $x \in s(B)$ and $r(B) \cap U \neq \emptyset$. By shrinking B, we may assume that $r(B) \subseteq U$. Since $s(B)$ is an compact open neighbourhood of x, there exists a $V \in D$ such that $V \subseteq s(B)$. By shrinking B again, we may assume that $s(B) = V$. Thus,

$$
\chi_V = \chi_{B}^* \chi_{r(B)} \chi_{B}.
$$

That is, $\chi_V \preceq \chi_{r(B)}$. Hence, $\chi_{r(B)}$ is properly infinite by [13, Lemma 3.8]. Finally, since $\chi_V = \chi_{r(B)} + \chi_{U - r(B)}$, χ_V is infinite.

5. AN APPLICATION: k-GRAPH C^*-ALGEBRAS

In this section, we apply Theorem 4.1 to C^*-algebras associated to k-graphs. We assume the reader is familiar with the basic definitions and constructions of k-graphs and their C^*-algebras found in [16], but we recall a few facts here. Let Λ be a k-graph. Then the associated C^*-algebra $C^*(\Lambda)$ is the universal C^*-algebra generated by a Cuntz-Krieger Λ-family $\{s_\lambda : \lambda \in \Lambda\}$. To keep things clean, we will restrict our attention to row-finite k-graphs with no sources but similar results hold in the more general setting. We think our results will be useful in this setting because necessary and sufficient conditions on Λ for $C^*(\Lambda)$ to be purely infinite simple are not known.

Following [16] we recall how $C^*(\Lambda)$ can be realised as the C^*-algebra of a second countable, Hausdorff, ample groupoid G_Λ as follows. Let Λ^∞ denote the infinite path space of Λ and $\Lambda^\infty(v)$ be the set of infinite paths with range v. Define

$$
G_\Lambda := \{(x, n, y) \in \Lambda^\infty \times \mathbb{N}^k \times \Lambda^\infty : \sigma^l(x) = \sigma^m(y), n = l - m\}
$$

where σ is the shift map. We view (x, n, y) as a morphism with source y and range x. Composition is given by $(x, n, y)(y, m, w) = (x, n + m, w)$. The unit space $G_\Lambda^{(0)}$ is identified with Λ^∞. For $\lambda, \mu \in \Lambda$ with $s(\lambda) = s(\mu)$ we define

$$
Z(\lambda, \mu) := \{(\lambda z, d(\lambda) - d(\mu), \mu z) : z \in \Lambda^\infty(s(\lambda))\}.
$$

The (countable) collection of all such $Z(\lambda, \mu)$ generate a topology under which G_Λ is a second countable, Hausdorff, ample groupoid by [16, Proposition 2.8]. Further, the relative topology on the unit space Λ^∞ has a basis of compact cylinder sets

$$
Z(\lambda) := \{\lambda x \in \Lambda^\infty : x \in \Lambda^\infty(s(\lambda))\}
$$

by identifying $Z(\lambda, \lambda)$ and $Z(\lambda)$ from [16, Lemma 2.6 and Proposition 2.8]. Note that G_Λ is amenable by [16, Theorem 5.5] and hence $C^*_r(G_\Lambda) = C^*(G_\Lambda)$. It was shown in [16] that

$$
C^*(\Lambda) \cong C^*(G_\Lambda).
$$

More specifically, by [16, Corollary 3.5(i)], there is a (unique) isomorphism $\phi : C^*(\Lambda) \rightarrow C^*(G_\Lambda)$ such that $\phi(s_\lambda) = \chi_{Z(\lambda, s(\lambda))}$. Note that

$$
\phi(s_\mu s_\mu^*) = \chi_{Z(\mu, s(\mu))} \chi_{Z(\mu, s(\mu))} = \chi_{Z(\mu, s(\mu))} \chi_{Z(\mu, s(\mu))} = \chi_{Z(\mu)}.
$$

With all of this theory in place, along with the simplicity results of [23] and [4], the following is an immediate corollary of Theorem 4.1 and Corollary 4.2.

Corollary 5.1. Suppose Λ is a row-finite k-graph with no sources such that Λ is aperiodic and cofinal in the sense of [23]. Then

1. For $\mu \in \Lambda$, $s_\mu s_\mu^*$ is infinite if and only if s_μ is.
2. $C^*(\Lambda)$ is purely infinite simple if and only if s_v is infinite for every $v \in \Lambda^0$.
(3) $C^*(\Lambda)$ is purely infinite simple if and only if there exists $x \in \Lambda^\infty$ such that s_v is infinite for every vertex v on x.

Proof. For [11], we use a trick used in [25, Lemma 8.13]. Recall that infiniteness is preserved under von Neumann equivalence, hence $s_\mu s_\mu^*$ is infinite if and only if $s_\mu^* s_\mu = s_{s(\mu)}$ is infinite.

For (2), we apply Theorem 4.4 to the second countable, Hausdorff, ample groupoid G_Λ; first we check the remaining hypotheses of Theorem 4.4. Since Λ is cofinal and aperiodic, $C^*(G_\Lambda) \cong C^*(\Lambda)$ is simple by [23, Theorem 3.1]. Thus $C^*(G_\Lambda) = C^*_r(G_\Lambda)$ is simple and hence G_Λ is topologically principal and minimal by [4, Theorem 5.1].

We have that the collection of cylinder sets of the form $Z(\mu)$ form a basis B of $G^{(0)}$ consisting of compact open sets. Now we apply Theorem 4.4 to see that $C^*(G_\Lambda)$ is purely infinite if and only if each $\chi_{Z(\mu)}$ is infinite. Let $\phi : C^*(\Lambda) \to C^*(G_\Lambda)$ be the isomorphism characterized by $s_\mu \mapsto \chi_{Z(\mu)}$. Since ϕ is an isomorphism, this gives $\chi_{Z(\mu)}$ is infinite if and only if $\phi^{-1}(\chi_{Z(\mu)}) = s_\mu s_\mu^*$ is infinite. Finally, $s_\mu s_\mu^*$ if and only if $s_{s(\mu)}$ is infinite by (1).

For (3), given an infinite path x, the collection of compact open sets of the form $Z(x(0, n))$ for $n \in \mathbb{N}^k$ form a neighbourhood base at x. Now proceed as in the proof of (2) replacing Theorem 4.4 with Corollary 4.2 and μ with $x(0, n)$. \hfill \square

6. THE NON-SIMPLE CASE

Let A be a C^*-algebra. A pair of positive elements $(a_1, a_2) \in A \times A$ has the matrix diagonalization property in A in the sense of [15, Definition 3.3] if for every positive matrix (a_{ij}) with $b_{ij} \in A$ and every $\epsilon_1, \epsilon_2, \delta > 0$ there exists $d_1, d_2 \in A$ with

$$||d_i^* a_i d_i - a_i|| < \epsilon_i \quad \text{and} \quad ||d_i^* b_{ij} d_j|| < \delta.$$

A subset \mathcal{F} of A^+ is a filling family for A, in the sense of [15, Definition 3.10], if for every hereditary C^*-subalgebra H of A and every primitive ideal I of A with $H \not\subseteq I$ there exist $f \in \mathcal{F}$ and $z \in A$ with $z^* z \in H$ and $z z^* = f \not\in I$.

By Proposition 3.13 and Lemma 3.12 of [15], if A^+ contains a filling family \mathcal{F} that is closed under ϵ-cut-downs and every pair of elements $(a_1, a_2) \in \mathcal{F} \times \mathcal{F}$ has the matrix diagonalization property, then A is strongly purely infinite. In this section we provide a characterization of when the reduced groupoid C^*-algebra is strongly purely infinite (Proposition 6.3). In our proof of Proposition 6.3 we will use results from [4] to describe ideals of reduced groupoid C^*-algebras. First we need the following lemma. Recall that a subset $D \subseteq G^{(0)}$ is said to be invariant if $G \cdot D := \{r(\gamma) : s(\gamma) \in D\} \subseteq D$.

Lemma 6.1. Let G be a second countable, locally compact, Hausdorff and étale groupoid such that $C^*(G) = C^*_r(G)$. Then the following properties are equivalent:

1. For every closed invariant set $D \subseteq G^{(0)}$

$$C^*(G|_D) = C^*_r(G|_D).$$

2. For every closed invariant set $D \subseteq G^{(0)}$ the sequence

$$0 \longrightarrow C^*_r(G|_{G^{(0)} - D}) \overset{\iota_r}{\longrightarrow} C^*_r(G) \overset{\rho_r}{\longrightarrow} C^*_r(G|_D) \longrightarrow 0$$

is exact where ι_r and ρ_r are determined on continuous functions by extension and restriction respectively.
Remark 6.2. In [22, Remark 4.10], Renault mentions that if $G|_D$ is amenable for every closed invariant set $D \subseteq G^{(0)}$, then item (2) of Lemma 6.1 follows. Thus Lemma 6.1 is a strengthening of Renault’s comment.

Proof. Fix a closed invariant set $D \subseteq G^{(0)}$ and let $U = G^{(0)} - D$. Consider the following diagram:

\[
\begin{array}{ccccccccc}
0 & \xrightarrow{\iota_r} & C^*_r(G|_U) & \xrightarrow{\iota} & C^*_r(G) & \xrightarrow{\rho} & C^*_r(G|_D) & \xrightarrow{\rho_r} & 0 \\
\pi_U & & \downarrow \pi & & \downarrow \pi_D & & \downarrow \pi_D & & \\
0 & \xrightarrow{\iota_r} & C^*_r(G|_U) & \xrightarrow{\iota} & C^*_r(G) & \xrightarrow{\rho_r} & C^*_r(G|_D) & \xrightarrow{\rho_r} & 0 \\
\end{array}
\]

where π_U, π and π_D are the respective quotient maps, and ι, ι_r and ρ, ρ_r extend extension and restriction respectively. Since all of the maps involved are continuous, the diagram commutes. We also have that the top row of (6.1) is exact by [18, Lemma 2.10].

(6.2) $\Rightarrow (\mathbf{1})$: We show the surjective map π_D is injective. Fix any $a \in C^*_r(G|_D)$ with $\pi_D(a) = 0$. Find $b \in C^*(G)$ with $\rho(b) = a$. From $\pi_D(\rho(b)) = \rho_r(\pi(b)) = 0$, exactness of (6.1), surjectivity of π_U, and $\iota \circ \pi_U = \pi \circ \iota$ we obtain

$\pi(b) \in \ker \rho_r = \iota_r(C^*_r(G|_U)) = \iota_r \circ \pi_U(C^*(G|_U)) = \pi \circ \iota(C^*(G|_U))$.

Find $c \in C^*(G|_U)$ with $\pi(b) = \pi \circ \iota(c)$. As π is an isomorphism by assumption we obtain that $b = \iota(c)$. Hence $a = \rho(b) = \rho \circ \iota(c) = 0$, and $C^*(G|_D) = C^*_r(G|_D)$.

(\mathbf{1}) $\Rightarrow (\mathbf{2})$: By assumption the maps π and π_D are isomorphisms. Using the commutative diagram (6.1) and the exactness of the top line of that diagram, the exactness of the bottom line follows from a easy diagram chase. \[\square \]

Let G be a second countable, locally compact, Hausdorff and étale groupoid and D be a closed invariant set of $G^{(0)}$ and define $U = G^{(0)} - D$. Recall from Lemma 2.1(4) we have the commuting diagram:

\[
\begin{array}{ccccccccc}
0 & \xrightarrow{\iota_r} & C^*_r(G|_U) & \xrightarrow{\iota} & C^*_r(G) & \xrightarrow{\rho} & C^*_r(G|_D) & \xrightarrow{\rho_r} & 0 \\
E_U & & \downarrow E & & \downarrow E & & \downarrow E_D & & \\
0 & \xrightarrow{\iota_r} & C_0(U) & \xrightarrow{\iota} & C_0(G^{(0)}) & \xrightarrow{\rho_0} & C_0(D) & \xrightarrow{\rho_0} & 0 \\
\end{array}
\]

Notice that the bottom row in (6.2) is exact. We will use this diagram several times. We also use the notation Ideal[S] for the ideal in $C^*_r(G)$ generated by $S \subseteq C^*_r(G)$.

Proposition 6.3. Let G be a second countable, locally compact, Hausdorff and étale groupoid such that $C^*(G) = C^*_r(G)$. Then the following properties are equivalent:

1. The C^*-algebra $C^*_r(G)$ is strongly purely infinite, and for every ideal I in $C^*_r(G)$, $I = \text{Ideal}[I \cap C_0(G^{(0)})]$.

2. For every closed invariant set $D \subseteq G^{(0)}$, $G|_D$ is topologically principal; the sequence

\[
\begin{array}{ccccccccc}
0 & \xrightarrow{\iota_r} & C^*_r(G|_U) & \xrightarrow{\iota} & C^*_r(G) & \xrightarrow{\rho_r} & C^*_r(G|_D) & \xrightarrow{\rho_r} & 0 \\
\end{array}
\]

is exact where $U = G^{(0)} - D$, ι_r and ρ_r are determined on continuous functions by extension and restriction respectively; and for every pair of elements a, b in $C_0(G^{(0)})^+$ the 2-tuple (a, b) has the matrix diagonalization property in $C^*_r(G)$.

Proof. (1) \Rightarrow (2): Fix a closed invariant set $D \subseteq G^{(0)}$ and $U = G^{(0)} - D$. For this D and U we have a commuting diagram as in (6.2). Define $I := \ker \rho_r \subseteq C^*_r(G)$. Using the diagram, $\rho_0(E(I)) = E_0(\rho_r(I)) = 0$, implying that $E(I) \subseteq \iota_0(C_0(U))$. Since $E(b) = b$ for $b \in C_0(G^{(0)}), I \cap C_0(G^{(0)}) \subseteq E(I)$. Using assumption (1) we have $I = \text{Ideal}[I \cap C_0(G^{(0)})]$. Hence

$$\ker \rho_r = I = \text{Ideal}[I \cap C_0(G^{(0)})] \subseteq \text{Ideal}[E(I)] \subseteq \text{Ideal}[\iota_0(C_0(U))] \subseteq \iota_r(C^*_r(G)_U));$$

that is $\ker \rho_r \subseteq \text{image}(\iota_r)$. Thus (6.3) is exact.

We know that each $G|_D$ is topologically principal by [4] Remark 5.10] provided that $C^*(G|_D) = C^*_r(G|_D)$. The latter follows from Lemma 6.1 since (6.3) is exact.

Since $C^*_r(G)$ is strongly purely infinite, Lemma 5.8 in [13] implies that every pair (a, b) of positive elements in $C_0(G^{(0)})$ has the matrix diagonalization property in $C^*_r(G)$.

(2) \Rightarrow (1): Since we assumed that $G|_D$ is topologically principal for all closed invariant $D \subseteq G^{(0)}$, by the proof of Corollary 5.9 in [4] (see also [4] Remark 5.10)), we know $I = \text{Ideal}[I \cap C_0(G^{(0)})]$ for every ideal I in $C^*_r(G) = C^*(G)$ provided that $C^*(G|_D) = C^*_r(G|_D)$ for every closed invariant set $D \subseteq G^{(0)}$. But this follows from Lemma 6.1 since $C^*(G) = C^*_r(G)$ and (6.3) is exact, which are assumed in (2). Hence (2) implies $I = \text{Ideal}[I \cap C_0(G^{(0)})]$.

We prove $C^*_r(G)$ is strongly purely infinite. Define $F := C_0(G^{(0)})^+ \subseteq C^*_r(G)$. By functional calculus we know

$$f(a) \in F, \quad \text{for } f \in C_0(\mathbb{R})^+, \quad a \in F.$$

In particular F is closed under ε-cut-downs, i.e., for each $a \in F$, and $\varepsilon \in (0, \|a\|)$ we have $(a - \varepsilon)_+ \in F$. By [2] each pair (a, b) with $a, b \in F$ has the matrix diagonalization property (of [13] Definition 3.3]). Now by Lemma 3.12 of [13] we know that F has the matrix diagonalization property of [13] Definition 3.10(ii)]. If follows from Proposition 3.13 of [13] that $C^*_r(G)$ is strongly purely infinite provided that F is a filling family for $C^*_r(G)$, which we now show.

Fix any hereditary C^*-subalgebra H of $C^*_r(G)$ and any ideal I of $C^*_r(G)$ with $H \nsubseteq I$. We know $I = \text{Ideal}[I \cap C_0(G^{(0)})]$, hence $I = \iota_r(C^*_r(G)_U))$ for some open invariant set $U \subseteq G^{(0)}$. Let $D = G^{(0)} - U$ and consider the corresponding commuting diagram (6.2).

Select $d \in H^+$, $d \notin I$. Define $c := \rho_r(d)$. As $d \notin I = \ker \rho_r$ by exactness in (2), we know $\rho_r(d) \neq 0$. Since E_D is faithful and c positive,

$$\epsilon := \frac{1}{4} \|E_D(c)\| > 0.$$

By (2) the groupoid $G|_D$ is topologically principal, hence Lemma 6.11 gives $f \in C_0(D)^+$ such that

$$\|f\| = 1, \quad \|fcf - fE_D(c)\| < \epsilon, \quad \|E_D(c)f\| > \|E_D(c)\| - \epsilon.$$

Recall [13] Lemma 2.2: For x, y positive and $\delta > 0$ with $\|x - y\| < \delta$ there exist a contraction a with $a^*xa = (y - \delta)_+$. Use this to find a contraction $a \in C^*_r(G|_D)$ such that

$$h := a^* f e a = (f E_D(c)f - \epsilon)_+ \in C_0(D)^+.$$

Notice that

$$\|h\| \geq \|f E_D(c)f\| - \epsilon > \|E_D(c)\| - 2\epsilon > 0.$$

Using that ρ_r restricts to the map $C_0(G^{(0)}) \rightarrow C_0(D)$, select $b \in C_0(G^{(0)})^+$ such that $\rho_r(b) = h$. Also as ρ_r is surjective find $w \in C^*_r(G)$ such that $\rho_r(w) = f a$. Since $\rho_r(b -
$w^*dw = h - a^* f c a = 0$ we have $b = w^*dw + v$ for some $v \in I$. Let $\{e_\lambda\}$ denote an approximate unit of $I = C^*_r(G_U)$ with $e_\lambda \in C_0(U)$ (see Lemma 2.1). Let 1 be the unit of the unitisation of $C^*_r(G)$. Then $(1 - e_\lambda)v(1 - e_\lambda) \to 0$. For suitable λ_0 and $\epsilon := 1 - e_{\lambda_0}$ we get

$$\|ew^*dwe - ebe\| = \|eve\| < \epsilon.$$

Use Lemma 2.2 of [13] to find a contraction $u \in C^*_r(G)$ such that

$$g := u^* ew^*dweu = (ebe - \epsilon) + C_0(G^{(0)})^+ = \mathcal{F}.$$

Since $be_{\lambda_0} + e_{\lambda_0}b - e_{\lambda_0}be_{\lambda_0} \in C_0(U) \subseteq \ker \rho_r$ we obtain that $\rho_r(ebe) = \rho_r(b) = h$. Moreover by functional calculus we know $(h - \epsilon)_+ = (fE_D(c)f - 2\epsilon)_+$. We conclude

$$\|\rho_r(g)\| = \|(h - \epsilon)_+\| \geq \|fE_D(c)f\| - 2\epsilon > \|E_D(c)\| - 3\epsilon > 0,$$

eff ensuring $g \not\in I$. Finally with $z := u^* ew^*d^{1/2} \in C^*_r(G)$ we obtain $g = zz^*$ and $z^*z \in H$. By definition \mathcal{F} is a filling family for $C^*_r(G)$ completing the proof. \hfill \square

References

Jonathan Brown, Mathematics Department, Kansas State University, 138 Cardwell Hall, Manhattan, KS 66506-2602, USA.

E-mail address: brownjh@math.kansas.edu

Lisa Orloff Clark, Department of Mathematics and Statistics, University of Otago, PO Box 56, Dunedin Dunedin 9054, New Zealand.

E-mail address: lclark@maths.otago.ac.nz

Adam Sierakowski, School of Mathematics and Applied Statistics, University of Wollongong, NSW 2522, Australia

E-mail address:asierakowski@uow.edu.au