Modeling a soft robotic mechanism articulated with dielectric elastomer actuators

Chuc H. Nguyen
University of Wollongong, chuc@uow.edu.au

Gursel Alici
University of Wollongong, gursel@uow.edu.au

Rahim Mutlu
University of Wollongong, rmutlu@uow.edu.au
Modeling a soft robotic mechanism articulated with dielectric elastomer actuators

Abstract
In this paper, a translational actuation mechanism in the form of a parallel-crank mechanism (i.e. double-crank 4-bar mechanism) articulated with two dielectric elastomer actuators working in parallel are fabricated. This structure, which is a fully soft mechanism, is established by stretching a dielectric elastomer (DE) film over a PET (polyethylene terephthalate) frame so that the energy released from the stretched DE film is stored in the frame as bending energy. The mechanism generates a translational output under a driving voltage applied between two electrodes of the DE film. The visco-elastic models are proposed for the mechanism so that the mechanical properties of the actuator can more accurately be incorporated into the mechanism model. The proposed model accurately predicts the experimental frequency response of the mechanism at different voltages.

Keywords
dielectric, elastomer, articulated, mechanism, robotic, soft, actuators, modeling

Disciplines
Engineering | Science and Technology Studies

Publication Details

This conference paper is available at Research Online: https://ro.uow.edu.au/eispapers/3430
Modeling a Soft Robotic Mechanism Articulated with Dielectric Elastomer Actuators

Chuc Huu Nguyen, Gursel Alici, and Rahim Mutlu

Abstract—In this paper, a translational actuation mechanism in the form of a parallel-crank mechanism (i.e., double-crank 4-bar mechanism) articulated with two dielectric elastomer actuators working in parallel are fabricated. This structure, which is a fully soft mechanism, is established by stretching a dielectric elastomer (DE) film over a PET (polyethylene terephthalate) frame so that the energy released from the stretched DE film is stored in the frame as bending energy. The mechanism generates a translational output under a driving voltage applied between two electrodes of the DE film. The visco-elastic models are proposed for the mechanism so that the mechanical properties of the actuator can more accurately be incorporated into the mechanism model. The proposed model accurately predicts the experimental frequency response of the mechanism at different voltages.

Index Terms—soft robotic mechanism, smart actuators, dielectric elastomer actuators.

I. INTRODUCTION

Recent progress in electroactive polymers (EAPs) has attracted the attention of a lot of researchers [1]. Among EAP actuators, dielectric elastomer actuators (DEAs) are considered to be the most promising because of their high strain and force outputs, easy fabrication, flexibility, light weight and low cost [2], [3]. DEAs in different modes and shapes have been used for many applications including robotics and mechatronics [4–9].

A soft robotic mechanism articulated with DEAs has a wide range of applications in different fields especially in biomedical engineering, which requires programmable stiffness and flexibility that the conventional actuators are unable to provide. As an example, a self-organized minimum energy structure is able to behave like nastic structures in nature [10]. Another practical example is a binary actuator, that is a compliant diamond-shaped dielectric elastomer actuator [10]. The diamond-shaped actuator, which is able to output a bi-stable motion, can be used for medical applications in a Magnetic Resonance Imaging (MRI) system. Additionally, a linear compliant actuator whose shape is conical is fabricated using a dielectric elastomer and compliant frame [11]. This mechanism can generate a monodirectional or bidirectional movement. As an extension of this linear actuator, a six degree of freedom conical DEAs is established to produce rotational actuation outputs which can be exploited in minimally invasive medical devices [12]. Those proposed mechanisms, which are flexible and have a high energy density, show promising properties in various applications. However, these mechanisms are based on complex structures. This prevents them from biomedical applications which require a simple and monolithic mechanism. Therefore, in this paper, we go a further step to propose a flexible parallel mechanism using minimum energy mechanism shown in [13]. This basic soft mechanism can generate a translational movement. The proposed mechanism includes two bending actuators or cranks and a soft (Polyethylene terephthalate) bar—it is a fully soft robotic mechanism. This mechanism is articulated by a pair of bending actuators replicating the articulation of cranks in the corresponding conventional mechanism. The proposed mechanism can generate a translational movement and a compliant force output which are essential for human-machine interactions in frontier biomedical applications.

The elastic modulus of the DEAs is not constant and changes during operation, due to the viscoelastic properties of the DE material [3]. These properties must be considered in modeling the DEAs and a mechanism articulated with the actuators. Therefore, we have experimentally identified a set of transfer function models in order to accurately predict the position response of the mechanism for a wide range of frequencies and driving voltages. Additionally, the relationship between the displacement output and driving voltage is identified by a non-linear least square estimation method.

The remainder of this paper is organized as follows. In Section II, we introduce the proposed mechanism and the bending actuators based on the minimum energy principle. Modeling and analysis concepts for the actuators and mechanism are provided in Section III. We have provided the experimental frequency response results and the identified transfer function models in Section IV. Conclusions and future work are reported in Section V.

II. THE PROPOSED MECHANISM

A. The operation principle of dielectric elastomer actuators

The operating principle of a dielectric elastomer actuator is shown in Fig. 1, where compliant electrodes are applied on both sides of the dielectric material. When an electrical stimulus is applied to the electrodes, the Maxwell stress...
deforms the dielectric elastomer and generates the lateral displacement which is the mechanical output of the actuator. It is this mechanical output which is exploited to design various actuation configurations in order to generate the desired output.

Fig. 1. Operation principle of dielectric elastomer actuators [5].

Fig. 2. The working principle of the bending actuator built as a minimum energy structure. The wider end of the structure is fixed to generate the bending motion.

Fig. 3. The bending actuator based on the minimum energy principle.

B. Description of bending actuator

In this section, a bending mechanism based on dielectric elastomer, like a cantilever beam in deflection is described. To this aim, we have exploited the minimum energy principle (MEP) [13] to build the bending actuator, which is made of a DE film stretched over a PET (Polyethylene terephthalate) frame. The DE is covered with electrodes on both sides and attached to the frame (PET). The working principle of this minimum energy structure which acts like a bending actuator is shown in Fig. 2 and Fig. 3. In addition, the outline of the mechanism is described in Fig. 4. When a driving voltage is applied, the film compresses in the thickness direction and expands in the lateral direction. The expansion of the film releases the energy stored in the PET frame. Consequently, the bending angle of this mechanism depends on the driving voltage.

C. Parallel-crank mechanism articulated

A parallel-crank four-bar mechanism is designed to demonstrate the efficacy of a bending actuator based on the minimum energy principle in generating a translational output. In addition, thanks to their compliance, this mechanism can be applied in biomedical applications that require compliance matching or soft-on-soft contact. The proposed mechanism is shown in Fig. 4. The mechanism consists of two bending actuators (two dielectric elastomer actuators) acting like two flexural joints that can actuate by themselves, as shown in Fig. 5. When the driving voltage is applied through two electrodes of the actuator, the mechanism will bend from the initial position, \(\theta_0 \) to the final position \(\theta \).

Fig. 4. The proposed parallel mechanism.

III. MODELING OF MECHANISM

A. Analysis of bending actuator

When the driving voltage is applied to the DE film, the Maxwell stress is generated [2], as expressed below:

\[
\sigma_z = \varepsilon_r \varepsilon_0 \frac{V^2}{t_d}
\]

(1)

where \(\sigma_z \) is the Maxwell stress, and \(\varepsilon_r, \varepsilon_0 \) are the free-space permittivity \((8.85 \times 10^{-12} \, \text{F/m})\) and the dielectric constant of the material, respectively. \(V \) is the driving voltage applied between the electrodes of the DE film. \(t_d \) is the thickness of the film.

Assuming that the DE film expands in the x-direction, as shown in Fig. 3. The strain of the film in the x-direction is given by:
\[\varepsilon_s = \frac{\nu \sigma_s}{E_d} = \frac{V}{t_d} \]

where \(E_d \) is the elastic modulus of the DE film. \(\nu \) is Poisson’s ratio.

The curvature of the composite minimum energy bending actuator changes due to the expansion of the film under an applied voltage. This change in the curvature of each bending actuator is given as follows [14, 15]:

\[\kappa = \frac{1}{R_0} - \frac{1}{R} \]

\[= \frac{\varepsilon_s}{2} \left(\frac{t_f + t_d}{t_d + t_f} \right) + \frac{2 \left(E_d I_d + E_f I_f \right)}{E_d A_d + E_f A_f} \]

where \(R_0 \) is the initial radius of curvature of the actuator. \(t_f, E_f \) are the thickness and elastic modulus of the PET frame, respectively. \(A_d \) and \(A_f \) are the areas of the DE film and PET frame, respectively. \(I_d \) and \(I_f \) are the area moment of inertias of the DE film and PET frame, respectively.

Fig. 5. The parallel-crank mechanism (a) initial state (b) bending state under a voltage input.

By incorporating Eq.2 into Eq.3, the following transfer function of curvature of bending actuator can be obtained as:

\[G_b(s) = \frac{1}{R_0} - \frac{1}{R} \frac{\nu \sigma_s / \left(E_d t_d^2 \right)}{t_f + t_d + \frac{2 \left(E_d I_d + E_f I_f \right)}{t_d + t_f} \left(\frac{1}{E_d A_d} + \frac{1}{E_f A_f} \right)} \]

\[= \frac{1}{R_0} - \frac{1}{R} \frac{\nu \sigma_s / \left(E_d t_d^2 \right)}{t_f + t_d + \frac{2 \left(E_d I_d + E_f I_f \right)}{t_d + t_f} \left(\frac{1}{E_d A_d} + \frac{1}{E_f A_f} \right)} \]

A viscoelastic behavior of the DE film is incorporated into the actuator model in order to accurately consider the change in the elastic modulus. We employ the Standard Linear Solid model to describe the visco-elastic behaviour of the film. The proposed model is described in Fig. 6 (a).

Fig. 6. The viscoelastic model of the DE film (a) and the PET frame (b).

With reference to Fig.6 (a), we obtain the effective modulus of elasticity of the DE film as follows:

\[\frac{1}{E_d} = \frac{1}{e_0} + \frac{1}{e_1 + c_1 s} \]

where \(e_0 \) indicates the modulus of elasticity of the dielectric elastomer layer under an instantaneous strain, \(e_1 \) and \(c_1 \) are the modulus of elasticity and viscosity of the DE layers, respectively, due to the maximum retarded strain and the rate of strain after the instantaneous strain region in the creep curve [4].

The viscoelastic behavior of the PET frame can be expressed by the Kelvin Voigt model [16], as shown in Fig. 6 (b). The effective modulus of elasticity of the frame is derived as follows:

\[E_f = e_2 + c_2 s \]

where \(e_2, c_2 \) are the elastic modulus and damping ratio of the frame, respectively. Incorporating Eqs. (5) and (6), into Eq. 4 results in the following transfer function \(G_b(s) \):

\[G_b(s) = \frac{b_3 s^3 + b_2 s^2 + b_1 s + b_0}{a_5 s^4 + a_4 s^3 + a_3 s^2 + a_2 s + a_1} \]
where \(a_i (i = 0, 4) \) and \(b_i (i = 0, 3) \) are the parameters based on the mechanical and viscoelastic properties of the actuators. The details of how these parameters are provided in Appendix A.

B. Analysis of the parallel mechanism

The schematic of the parallel-crank mechanism is shown in Fig. 7. When the driving voltage is applied, the connecting bar moves a distance, \(d \), in the vertical direction:

\[
d = L \sin(\theta) - L_0 \sin(\theta_0)
\]

where \(L_0 \) and \(\theta_0 \) are the initial length and bending angle of each actuator, respectively. Similarly, \(L \) and \(\theta \) are the final length and bending angle, respectively, upon the application of a voltage. For a conventional mechanism made of rigid links and joints, \(L \) and \(L_0 \) are equal to each other. For the compliant four-bar mechanism we built, however, they are not equal to each other. This is because the parallelogram topology we have used does not cause any change in the parallel orientation of the coupling bar.

As shown in Fig. 8, \(R_0 \) are \(R \) are the initial curvature and final curvatures of the bending actuators, respectively. The lengths \(L \) and \(L_0 \) are obtained as follows:

\[
\begin{align*}
L_0 &= 2R_0 \sin \theta_0 \\
L &= 2R \sin \theta
\end{align*}
\]

Incorporating Eq. 9 into Eq. 8 results in:

\[
d = 2R_0 \sin \theta_0 \sin \theta_0 - 2R \sin \theta \sin \theta
\]

\[
= (R_0 - R)(R_0 \cos 2\theta_0 - R \cos 2\theta)
\]

We use the following Taylor series of expansions to simplify Eq. 10:

\[
\begin{align*}
\cos 2\theta_0 &\approx 1 - \frac{4\theta_0^2}{2} \\
\cos 2\theta &\approx 1 - \frac{4\theta^2}{2}
\end{align*}
\]

By incorporating Eq. 11 into Eq. 10, the linear movement of the coupling bar is obtained as follows:

\[
d = 2(R_0 \theta_0^2 - R \theta^2)
\]

From Eqs. (4) and (15), we obtain the following relationship between the output \(d \) and the square of the applied voltage:

\[
G(s) = \frac{d}{V^2} = \frac{1}{2 \left(\frac{R_0}{R} - 1 \right)}
\]

\[
\frac{1}{2} \left(\frac{1}{R_0} - \frac{1}{R} \right)
\]

From Eqs. (4) and (15), we obtain the following relationship between the output \(d \) and the square of the applied voltage:

\[
G(s) = \frac{d}{V^2} = \frac{1}{2 \left(\frac{R_0}{R} - 1 \right)}
\]

By combining Eqs. (12), (13) and (14), the linear distance, \(d \), is expressed as follows:

\[
d = \frac{I_f^2}{2} \left(\frac{1}{R_0} - \frac{1}{R} \right)
\]

\[
\frac{1}{2} \left(\frac{1}{R_0} - \frac{1}{R} \right)
\]

Fig. 7. Schematic of the parallel mechanism from a non-actuated configuration to an actuated configuration.

Fig. 8. Schematic of each bending actuator at their initial and final configurations.

Fig. 9. The experimental setup.
I. EXPERIMENTAL SET-UP AND MODEL IDENTIFICATION

The minimum energy bending actuators are fabricated from VHB 4905, from 3M Inc. Two sides of this film were covered with conductive carbon grease. The experimental set-up depicted in Fig. 9 is employed to activate the mechanism and measure its displacement output 'd' via a laser displacement sensor (ILD 1700-50) from Micro-Epsilon Inc. A high voltage amplifier (10/10B-HS) from TREK Inc. was used to amplify the driving voltage, which was varied from 0 KV to 7KV to obtain the experimental relationship between the displacement (i.e. bending angle) output and the driving voltage, as shown in Fig.10.

Moreover, the output displacement ‘d’ was experimentally measured as a function of the input voltage, as shown in Fig. 11, which indicates that the displacement ‘d’ is proportional to the square of the voltage up to 3 KV. When the voltage is larger than 3 KV, this relationship does not hold. We have, therefore, divided this displacement output into 3 ranges; (i) 0\(<\ V\leq\ 3.0\ KV\), (ii) 3.0KV\(<\ V\leq\ 4.0KV\) and (iii) 4.0KV\(<\ V\leq\ 5.0\ KV\).

II. CONCLUSIONS

This study has proposed a new linear actuation mechanism articulated with DE bending actuators based on the minimum energy principle. This is the first time that DEAs have been tested while articulating a mechanism which converts a bending displacement into a translational displacement effectively. The transfer function models of the mechanism were experimentally identified. The model takes into account the viscoelastic properties of the dielectric film in order to describe the mechanical behaviour of the actuator for a range of driving voltages. The experimental and theoretical results obtained for these three ranges and are shown in Fig. 12. The dynamic response of the mechanism changes with the input voltage due to the viscoelastic properties and non-linearities associated with the silicone-based DE material used [17].

<table>
<thead>
<tr>
<th>V (KV)</th>
<th>Transfer function</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>(G_1(s) = \frac{0.01s^3 + 0.01s^2 + 135.7s + 96.11}{s^4 + 22.17s^3 + 536.1s^2 + 8327s + 2636})</td>
</tr>
<tr>
<td>4</td>
<td>(G_2(s) = \frac{0.01s^3 + 0.01s^2 + 184.9s + 179.7}{s^4 + 24.26s^3 + 524.7s^2 + 8229s + 3663})</td>
</tr>
<tr>
<td>5</td>
<td>(G_3(s) = \frac{0.01s^3 + 0.01s^2 + 1007s + 1046}{s^4 + 20.04s^3 + 460.9s^2 + 6070s + 2685})</td>
</tr>
</tbody>
</table>

![Fig. 10. The relationship between the bending angle and the input voltage of bending actuator (θ).](image)

![Fig. 11. The nonlinear relationship between the displacement output and the driving voltage in steady state.](image)

![Fig. 12. Experimental and estimated frequency responses of the parallel-crank mechanism at different voltages.](image)
indicate that the proposed model is accurate enough to predict the displacement output of the mechanism.

Future work involves (i) quantifying the feasibility of inversion-based control strategies for such actuators, (ii) undertaking the design optimization of the mechanism to achieve a more accurate displacement output from the coupling link, and (iii) evaluating its compliance limits while maintaining the parallel configuration of its coupling link.

APPENDIX A: COEFFICIENTS OF THE TRANSFER FUNCTION IN EQ.7

For

\[C = \frac{\varepsilon_0 e_0}{t_d^2} \]

\[H = \frac{1}{2} (h_p + h_f) \]

the parameters \(b_i \) \((i=1,2,3)\) of Eq. (7) are obtained as follows:

\[b_0 = HCA_p A \left(e_0^2 + 2e_2 e_0 e_1 + e_1^2 \right) \]

\[b_1 = HCA_p A (e_0^2 + 2e_2 e_0 e_1 + 2e_1 e_0) + c_1 e_0^2 + 2c_0 e_0 e_1 \]

\[b_2 = HCA_p A (c_1 e_0^2 + 2c_0 c_1 e_0 + 2c_0 e_1) \]

\[b_3 = HCA_p A c_1 c_2 \]

The parameters \(a_i \) \((i=1,2,3,4)\) of Eq. (7) are similarly obtained as follows:

\[a_0 = A_1 I_p c_0^2 e_0^2 + A_1 I_p c_1^2 e_0^2 + A_1 I_p c_0^2 e_1^2 + 2A_1 I_p c_0 e_0 e_1 + A_2 I_p c_1 e_0 e_1 + A_3 I_p c_0 e_1^2 + A_4 I_p c_1 e_1^2 + 2A_4 I_p c_0 e_0 e_1 \]

\[a_1 = 2A_1 I_p c_0 c_1 e_0 e_1 + 2A_2 I_p c_1 c_0 e_0 e_1 + 2A_2 I_p c_1 c_0 e_1^2 + 2A_2 I_p c_1 c_0 e_0 e_1 + A_3 I_p c_0 c_1 e_0^2 + A_3 I_p c_0 c_1 e_1^2 + A_4 I_p c_1 c_0 e_0 e_1 + A_4 I_p c_1 c_0 e_0 e_1 \]

\[a_2 = A_1 I_p c_2^2 e_0^2 + A_1 I_p c_1^2 e_0^2 + A_1 I_p c_1^2 e_1^2 + A_1 I_p c_1^2 c_0 e_0 + A_2 I_p c_1 c_2 e_0^2 + A_2 I_p c_0 c_2 e_1^2 + A_3 I_p c_0 e_0^2 + 2A_4 I_p c_1 c_0 e_0 e_1 \]

\[a_3 = 2A_1 I_p c_1 c_2 e_0^2 + 2A_2 I_p c_1 c_2 e_0^2 + 2A_2 I_p c_1 c_2 e_1^2 + 2A_2 I_p c_1 c_2 e_0 e_1 + A_3 I_p c_1 c_2 e_0^2 + A_3 I_p c_1 c_2 e_1^2 + A_4 I_p c_1 c_2 e_0 e_1 \]

\[a_4 = A_1 I_p c_2^2 e_0^2 \]

REFERENCES
