2014

Weld-end solidification cracking in pulsed-tandem gas metal arc welding of naval steels

Zoran Sterjovski
zoran@uow.edu.au

C Bayley
Dockyard Laboratory Pacific

J Donato
DSTO

Nathan Lane
University of Wollongong, nlane@uow.edu.au

D Lang
Forgacs Engineering

Publication Details
Weld-end solidification cracking in pulsed-tandem gas metal arc welding of naval steels

Abstract
Pulsed tandem gas metal arc welding (PT-GMAW) has the potential to increase productivity and minimize distortion in the fabrication of naval surface ship panels. In this study, the PT-GMAW process was used in pulse-pulse mode to butt joint weld 5-mm DH36, 8-mm HSLA65, 9.5-mm 350WT, and 11-mm HSLA65 steel plate with ER70S-6 wire in order to assess its suitability as a replacement for submerged arc welding (SAW) and gas metal arc welding (GMAW) in panel lines of Australian naval shipyards. In the pulse-pulse mode, the wire feed rates for the leading and trailing welding wires are set independently and they alternately transfer metal into a single molten weld pool at deposition rates almost comparable with single-wire SAW. Radiographic inspection and subsequent analyses of the 8-, 9.5-, and 11-mm single-bead butt joint welds unexpectedly showed varying degrees of weld-end solidification cracking, which occurred within ∼30 mm from the run-off tab and was different than weld crater cracking. The percentage of plates with solidification cracking was greater at larger plate thicknesses due mainly to increases in both the weld bead depth:width ratio and joint restraint as plate thickness is increased. Also, relatively low levels of nickel in the weld metal resulted in less severe solidification cracks compared with weld metal with higher levels of nickel. There was no evidence of solidification cracks in the 5-mm welded plates. Potential strategies to overcome weld metal solidification cracking near the run-off tab in the PT-GMAW of steel are presented.

Keywords
weld, end, solidification, cracking, pulsed, tandem, arc, gas, welding, metal, steels, naval

Disciplines
Engineering | Science and Technology Studies

Publication Details

This journal article is available at Research Online: http://ro.uow.edu.au/eispapers/3297
Weld-End Solidification Cracking in Pulsed-Tandem Gas Metal Arc Welding of Naval Steels

The extent and nature of weld metal solidification cracking that occurred during welding of 8–11-mm naval hull steels was investigated to assess the suitability of using the PT-GMAW process for surface ship construction.

BY Z. STERJOVSKI, C. BAYLEY, J. DONATO, N. LANE, AND D. LANG

ABSTRACT

Pulsed tandem gas metal arc welding (PT-GMAW) has the potential to increase productivity and minimize distortion in the fabrication of naval surface ship panels. In this study, the PT-GMAW process was used in pulse-pulse mode to butt joint weld 5-mm DH36, 8-mm HSLA65, 9.5-mm 350WT, and 11-mm HSLA65 steel plate with ER70S-6 wire in order to assess its suitability as a replacement for submerged arc welding (SAW) and gas metal arc welding (GMAW) in panel lines of Australian naval shipyards. In the pulse-pulse mode, the wire feed rates for the leading and trailing welding wires are set independently and they alternately transfer metal into a single molten weld pool at deposition rates almost comparable with single-wire SAW. Radiographic inspection and subsequent analyses of the 8-, 9.5-, and 11-mm single-bead butt joint welds unexpectedly showed varying degrees of weld-end solidification cracking, which occurred within ~30 mm from the run-off tab and was different than weld crater cracking. The percentage of plates with solidification cracking was greater at larger plate thicknesses due mainly to increases in both the weld bead depth:width ratio and joint restraint as plate thickness is increased. Also, relatively low levels of nickel in the weld metal resulted in less severe solidification cracks compared with weld metal with higher levels of nickel. There was no evidence of solidification cracks in the 5-mm welded plates. Potential strategies to overcome weld metal solidification cracking near the run-off tab in the PT-GMAW of steel are presented.

Introduction

The pulsed tandem gas metal arc welding (PT-GMAW) process, which is commercially available but not yet optimized for widespread implementation into naval surface ship construction, has the potential to replace conventional arc welding processes such as submerged arc welding (SAW) and gas metal arc welding (GMAW). The appeal of the PT-GMAW process stems from its affordability compared with other high-speed processes such as laser-hybrid GMAW, and an ability to 1) achieve lower levels of weldment distortion, 2) deliver high deposition rates (comparable to SAW), and 3) perform out-of-position welding. In the PT-GMAW process, the wires (electrodes) are fed from separate wire feed units through to two contact tubes, which are electrically isolated inside a single welding head. The power sources for both wires (electrodes) are synchronized, thus enabling the coordinated transfer of metal from each wire into a single weld pool. The system is most stable when the metal transfer between the wires is completely out of phase, although shielding gas type will also influence arc stability (Ref. 1). Previous studies by Sterjovski et al. (Refs. 2, 3) have reported both relatively low levels of welding-related distortion (comparable with multirun GMAW) and deposition rates of ~15 kg/h with a 400-A PT-GMAW system.

Lower levels of welding-related distortion should significantly reduce delays to schedule since the dependence on line heating/flame straightening to rectify distortion is alleviated. Moreover, it is reported by Sampath (Ref. 4) that line heating can be detrimental to the structural integrity of the hull if incorrectly applied. Less distortion in hull sections will improve the stealth characteristics of naval surface ships by reducing their radar cross-section (Ref. 5). It is also envisaged that naval surface ships with significantly less hull distortion will reduce hydrodynamic drag, and consequently improve speed and fuel efficiency than ships with greater levels of hull distortion.

Naval shipbuilders can benefit from the high deposition rates of the PT-GMAW process by producing single-pass welds of low cross section or by increasing welding travel speeds. The latter approach, which would result in the deposition of multiple beads during the welding of plates ≥8 mm in thickness, is more likely to ensure adequate impact toughness in the weld metals of conventional shipping steels (e.g., DH36 and CSA 350WT) (Ref. 6). However, single-bead PT-GMAW of higher-strength steels (e.g., HSLA65) should result in weldments with adequate impact toughness since the composition of the ER70S-6 weld metal (WM) is bolstered via mixing (i.e., increased dilution) with the more highly alloyed base metal (Ref. 7).

A preliminary study by Larkin et al. (Ref. 8), which assessed the feasibility of

KEYWORDS

Pulsed Tandem Gas Metal Arc Welding (PT-GMAW) Solidification Cracking Naval Hull Steels HSLA65 Steel DH36 Steel Single-Bead Welds
the PT-GMAW process as a replacement for SAW for single-bead butt joint welding of 5-mm DH36 steel, showed that high weld quality and good mechanical properties can be achieved. This achievement, combined with a significant reduction in weld-related distortion compared with corresponding SAW weldments, has resulted in the PT-GMAW process replacing SAW on some panel lines in the fabrication of naval surface ships in Australia.

The aim of the current work is to assess the suitability of the PT-GMAW process in different areas of naval surface ship construction, in particular the PT-GMAW of steel plate 8–11 mm in thickness. The successful implementation of PT-GMAW in other areas of the naval shipyard is dependent on overcoming 'teething' problems such as susceptibility to weld overlap, and WM solidification cracking at the weld ends during single-bead butt joint welding of hull plate (28 mm thick). The sole focus of this paper is to discuss the extent and nature of weld metal solidification cracking that occurred during the PT-GMAW of naval hull steels. Weld metal solidification cracking can be defined as cracking that occurs during the solidification of the molten weld bead. Solidification cracking is due to critical levels of strain accumulation in the solidifying weld pool as a result of thermal contraction within the material as well as externally applied loads (Ref. 9). Solidification cracks initiate above the solidus temperature of the WM or due to the presence of low melting temperature intergranular eutectic films created by the segregation of impurity (e.g., S and P) and alloying elements (C, Ni, and Nb) (Ref. 10). Accordingly, WM solidification cracking is considered a complex cracking phenomenon dependent on the base metal and WM compositions, solidification structures, segregation, dendrite size and orientation, joint restraint, weld travel speed, arc energy heat input, and weld thickness (Refs. 11, 12).

Experimental Methods

Materials and Welding

The current investigation into the optimization of the PT-GMAW process for naval shipbuilding encompasses both currently used and future naval shipbuilding steels. The currently used grades of steels included in this study are DH36 steel (Ref. 13) and CSA 350WT steel (Ref. 14). HSLA65 steel (Ref. 15) is the potential hull steel considered for this study. The reasons for the selection of HSLA65 as a potential steel for naval surface ships in Australia have previously been published (Ref. 7). The plate thicknesses and chemical compositions of the steels used for this study are listed in Table 1. Even though the chemical compositions of the two HSLA65 steels are different, they both comply with ASTM A945/A945M-06 (Ref. 15).

For all welding experiments, a single weld head attached to two Fronius Trans Synergic 4000 power supply and wire feed systems was used. The two welding machines were synchronized to coordinate the metal transfer from each electrode to the molten weld pool — Fig. 1. For synchronized metal transfer, a synergic control system is implemented to ensure that a stable welding condition is maintained irrespective of the wire feed rates or average current levels. Coordinated metal transfer is particularly important for arc stability due to the proximity of the leading and trailing arcs (~5–6 mm). The welding parameters for each unit can be individually adjusted because each wire has its own electrically insulated contact tip within the single weld head. A high-speed welding tractor was used to reach the required travel speeds.

ER70S-6 wire (1.2 mm in diameter) and a shielding gas containing 16% CO₂, 2.75% O₂, and 81.25% Ar were used for all single-bead, complete penetration butt joint welds. The ER70S-6 wire was selected as it is currently being used to weld fabricate DH36, and it also meets the strength and toughness requirements for HSLA65 steel and CSA 350WT. The nominal chemical composition of the ER70S-6 wire is shown in Table 2.

In total, 20 butt joint welds at least 350 mm in length were evaluated for the current work (Table 3). All butt joint welds were single-bead and complete penetration (square-groove preparation with a varying root opening depending on plate thickness). The single-bead approach was used in the current study as it led to the biggest gains in productivity. It is also envisaged that this process will eventually compete with other

Table 1 — Actual Chemical Composition (wt-%) of the Hull Steels Investigated

<table>
<thead>
<tr>
<th>Material</th>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>S</th>
<th>P</th>
<th>Ni</th>
<th>Cr</th>
<th>Mo</th>
<th>Co</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-mm DH36</td>
<td>0.14</td>
<td>1.39</td>
<td>0.34</td>
<td>0.015</td>
<td>0.012</td>
<td>0.017</td>
<td>0.019</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Al</td>
<td>0.039</td>
<td><0.005</td>
<td>0.002</td>
<td>N/A</td>
<td>0.019</td>
<td>0.01</td>
<td>0.001</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>8-mm HSLA65</td>
<td>0.08</td>
<td>1.39</td>
<td>0.22</td>
<td>0.007</td>
<td>0.011</td>
<td>0.038</td>
<td>0.140</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>Al</td>
<td>0.009</td>
<td><0.005</td>
<td>0.006</td>
<td><0.01</td>
<td>0.24</td>
<td>0.063</td>
<td>0.020</td>
<td>0.010</td>
<td></td>
</tr>
<tr>
<td>9.5-mm CSA350WT</td>
<td>0.05</td>
<td>1.29</td>
<td>0.22</td>
<td>0.006</td>
<td>0.011</td>
<td>0.10</td>
<td>0.17</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Al</td>
<td>0.027</td>
<td><0.0005</td>
<td>0.006</td>
<td><0.005</td>
<td>0.23</td>
<td>0.05</td>
<td>0.04</td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>11-mm HSLA65</td>
<td>0.07</td>
<td>1.49</td>
<td>0.28</td>
<td>0.007</td>
<td>0.011</td>
<td>0.01</td>
<td>0.0302</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Al</td>
<td>0.018</td>
<td><0.0005</td>
<td>0.005</td>
<td><0.01</td>
<td>0.01</td>
<td>0.072</td>
<td>0.0315</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Balance is Fe.
processes capable of low-distortion and high-productivity single-bead welding, such as laser hybrid GMAW as its affordability improves. Table 4 lists all the critical weld process parameters for each of the welds (5-mm DH36, 8-mm HSLA65, 9.5-mm CSA 350WT, and 11-mm HSLA65). All plates were clamped during welding, had tacked runoff and run-on tabs, and had machined weld preparations.

Radiography, Optical Emission Spectroscopy, Microscopy, and Fractography

All butt joint welds were subjected to visual inspection and radiography in order to assess their quality. The radiographic technique used was XR2/S (X-ray with Type 2 film/single wall) in accordance with AS2177 2006 (Ref. 16). All of the 9.5-mm welds and four of the 8-mm welds were tested in Canada, but met the requirements of AS2177-2006 (Ref. 16). The majority of the welds were then sectioned, metallographically prepared, etched in 2% Nital, and evaluated by optical microscopy. Scanning electron microscopy (SEM) was also used to study the fracture surfaces in each of the cracked welds. Chemical compositions of each of the weld metals were determined by optical emission spectroscopy. Energy-dispersive spectroscopy (EDS) was carried out on the fracture surfaces of the solidification cracks.

Experimental Results

Weld Macrographs

Macrographs of the 5-, 8-, 9.5-, and 11-mm welds shown in Fig. 2A–D reveal that each of the single-bead, complete penetration butt joint welds are free of any significant defects. In the macrographs in Fig. 2, it is evident that weld bead depth-to-width ratio increases as plate thickness increases. The weld bead depth:width ratio measured for the 5-, 8-, 9.5-, and 11-mm welds was 3:3, 3:3, 4:4, and 6:8, respectively.

Weld Metal Compositions

The chemical composition analysis of the WM region in the 5-, 8-, 9.5-, and 11-mm welds is shown in Table 5.

Weld Metal Microstructure

The WM microstructures of all the complete penetration butt joint welds in the current work are shown in the photomicrographs in Fig. 3. These photomicrographs are taken from the weld centerline and the center of the weld with respect to weld length. From these photomicrographs it is evident that each of the weld beads is comprised of combinations of acicular ferrite, grain boundary ferrite, and Widmanstätten ferrite. There was no WM solidification cracking evident in the center of the plate (i.e., at the center of the weld length).

Weld Metal Solidification Cracking

Figure 4A–C shows macrographs of the cross section (taken within 30 mm from the weld end) of the 8-, 9.5-, and 11-mm welds. Weld centerline cracking is evident in each of these welds. SEM fractography (Fig. 5A–C) confirmed that these crack defects are solidification cracks due to the

Table 2 — Nominal Chemical Composition (wt-%) of the ER70S-6 Welding Wire

<table>
<thead>
<tr>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>S</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>ER70S-6</td>
<td>0.07</td>
<td>1.55</td>
<td>0.88</td>
<td>0.012</td>
</tr>
</tbody>
</table>

Balance is Fe.

Table 3 — List of Butt Joint Welds Completed and Corresponding Weld Lengths

<table>
<thead>
<tr>
<th>Weld ID</th>
<th>Welding Wire</th>
<th>Base Plate</th>
<th>Weld Lengths (mm)</th>
<th>Total Weld Length (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-mm weld</td>
<td>ER70S-6</td>
<td>DH36</td>
<td>700 (4)</td>
<td>2800 mm</td>
</tr>
<tr>
<td>8-mm weld</td>
<td>ER70S-6</td>
<td>HSLA65</td>
<td>700 (1), 350 (8)</td>
<td>3500 mm</td>
</tr>
<tr>
<td>9.5-mm weld</td>
<td>ER70S-6</td>
<td>CSA 350WT</td>
<td>450 (4)</td>
<td>1800 mm</td>
</tr>
<tr>
<td>11-mm weld</td>
<td>ER70S-6</td>
<td>HSLA65</td>
<td>450 (2), 350 (1)</td>
<td>1250 mm</td>
</tr>
</tbody>
</table>
smooth dendritic appearance of the fracture surface. There were no cases of solidification cracking evident in the 5-mm welds.

Plots of the number of welds with solidification cracking (% of total plates welded) and solidification cracking length (% of total weld length) vs. base metal thickness are shown in Fig. 6. Based on the available data, Fig. 6A shows that as plate thickness increases, the likelihood of solidification cracking increases. Figure 6B shows there is no direct linear relationship between plate thickness and the extent of solidification cracking. The crack lengths were measured from X-ray radiographs, which was also the method used to detect the plates with solidification cracks.

The locations of the solidification cracking with respect to the weld microstructure in the 8-, 9.5-, and 11-mm welds are shown in Fig. 7. The solidification cracking in the 8-mm weld appears to have propagated predominantly along the grain boundary ferrite — Fig. 7A, B. Similarly, the propagation of solidification cracks along grain boundary ferrite is also evident in the 9.5- and 11-mm welds — Fig. 7C–F. Additionally, there is evidence of fine-scale solidification cracks and some discontinuity in the cracking — Fig. 7A–C.

Discussion

Weld metal solidification cracking in the current study was unexpected. Firstly, there are no reported cases in the literature of solidification cracking in PT-GMAW welds. Also, solidification cracking in conventional single-wire GMAW of low-alloy steels is not widely reported. However, Shankar and Devletian (Ref. 17) do state that the role of C, Ni, S, and P is more significant in conventional GMAW than for SAW. Secondly, the outcome of a preliminary analysis on the chemical compositions of the base metals (Table 1) and the corresponding WM compositions (Table 5) indicated a very low susceptibility to the onset of solidification cracking.

A low solidification crack index, USC, and a high Mn:S ratio were calculated from the WM compositions in Table 5. The solidification cracking index, USC, of all weld metals was well below 25 (Table 6), thus indicating a low susceptibility to solidification cracking. Even though these types of equations have been derived from SAW Transverse restraint tests (Ref. 18), they are commonly used as a point of reference for other arc welding processes. Additionally, the ratio of manganese to sulfur in the four welds (5-, 8-, 9.5-, and 11-mm welds) was between 89 and 140 (Table 6). Adequate levels of Mn are required to tie up sulfur in order to prevent it from segregating to grain boundaries and forming low melting temperature films. For the carbon levels measured in the four weld types (0.1 wt-%), the calculated Mn:S ratios are overwhelmingly high and, hence, indicate that solidification cracking is not expected to occur (Ref. 19). Jones (Ref. 20) reports that in low-alloy steel welds an Mn:S ratio above 50 significantly reduces solidification cracking tendency, and Lancaster (Ref. 19) states that an Mn:S ratio greater than 10 is required to avoid solidification cracking. However, Ohshita et al.
Sterjovski 5-14_Layout 1 4/15/14 3:43 PM Page 149

(Ref. 11) have reported cases of solidification cracking in very low-carbon steel welds (0.1 wt-%) using shielded metal arc welding and GMAW. Despite all of the above, radiographic inspection revealed solidification cracks at the weld ends within ~30 mm from the runoff tab in many of the test plates. Thus, it can be assumed that the critical levels for inclusion and alloying elements leading to solidification cracking are different for single-bead PT-GMAW than that determined for SAW by Transvariant or Transversestraint tests. These simulated solidification cracking tests may be severe with respect to the loading conditions the weld bead is subjected to during solidification, but weld bead shape is not accurately represented in these types of tests. Hoshino et al. (Ref. 18) lend support to this view in their assessment of the susceptibility of steel welds to solidification cracking in narrow groove welding, and they subsequently developed an alternative solidification cracking test specific to their situation. It should be noted that in the current work, the length of the solidification cracks was minor (<3% of the total welded length). Even so, crack defects will generally result in a noncompliant weld with all the relevant regulatory standards in naval shipbuilding (Ref. 21).

The extent of solidification cracking identified in each weld (i.e., 5-, 8-, 9.5-, and 11-mm welds) is quantified in the plots in Fig. 6. Even though these plots are based on limited data, it is evident that as plate thickness is increased, the percentage of plates with WM solidification cracking also increased (Fig. 6A), and that crack length is less dependent on plate thickness — Fig. 6B. There is no systematic change in WM composition (Table 5) or the solidification cracking index (Table 6) with increasing plate thickness to support the increase in the number of plates with WM solidification cracking — Fig. 6A. Similarly, at the resolution of optical microscopy, there is no significant difference in the WM microstructure (Fig. 3) at the different plate thicknesses to offer an explanation for the increase in the number of plates with solidification cracking as plate thickness is increased. Consequently, the increased cracking that is observed as plate thickness increases is mainly attributed to an increase in the depth-width

Table 5 — Actual Weld Metal Chemical Composition (wt-%) Using the ER70S-6 Wire

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>S</th>
<th>P</th>
<th>Ni</th>
<th>Cr</th>
<th>Mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-mm Weld</td>
<td>0.10</td>
<td>1.16</td>
<td>0.44</td>
<td>0.013</td>
<td>0.016</td>
<td>0.02</td>
<td>0.04</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>0.019</td>
<td><0.0005</td>
<td>0.006</td>
<td>0.029</td>
<td>0.08</td>
<td>0.01</td>
<td><0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>8-mm Weld</td>
<td>0.08</td>
<td>1.12</td>
<td>0.43</td>
<td>0.008</td>
<td>0.010</td>
<td>0.20</td>
<td>0.09</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>0.008</td>
<td>N/A</td>
<td>N/A</td>
<td>0.034</td>
<td>0.21</td>
<td>0.008</td>
<td>0.013</td>
<td>0.005</td>
</tr>
<tr>
<td>9.5-mm Weld</td>
<td>0.06</td>
<td>1.11</td>
<td>0.41</td>
<td>0.008</td>
<td>0.009</td>
<td>0.10</td>
<td>0.10</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>0.007</td>
<td><0.0005</td>
<td>0.007</td>
<td>0.044</td>
<td>0.20</td>
<td>0.03</td>
<td>0.02</td>
<td><0.01</td>
</tr>
<tr>
<td>11-mm Weld</td>
<td>0.07</td>
<td>1.22</td>
<td>0.42</td>
<td>0.010</td>
<td>0.010</td>
<td>0.02</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>0.019</td>
<td><0.0005</td>
<td>0.006</td>
<td>0.029</td>
<td>0.09</td>
<td>0.04</td>
<td>0.02</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Balance is Fe.

Fig. 5 — Typical SEM images of the fracture surface confirming solidification cracking. A — 8-mm weld (SE); B — 9.5-mm weld (BSE); C — 11-mm weld (SE).
ratio — Fig. 2. The adverse effect of unfavorable weld bead geometries on the onset of solidification cracking is well known and widely accepted (Ref. 22). A decrease in the width of the molten weld pool, which can be related to the depth:width ratio in single-bead welds, is shown to have increased susceptibility in solidification cracking (Ref. 23). Welded plates with higher thickness are also associated with increased restraint and increased tensile residual stresses, both of which could also increase susceptibility to solidification cracking.

The microstructure of the weld bead in the center of the welded plate is similar to the microstructure at the weld end (where the solidification cracks are located). This suggests that there are no microstructural features (at the resolution of optical microscopy) peculiar to the weld end responsible for the onset of solidification cracking (compare microstructures in Fig. 3 to corresponding microstructures in Fig. 7). Makarov et al. (Ref. 23) attribute solidification cracking at the weld ends of 10-mm shipping steel plate. The cracking described by them in single-sided multi-wire SAW is remarkably similar to that observed in the current work with PT-GMAW and that encountered by naval shipbuilders in Australia with SAW. In a less detailed study, Hoshino et al. (Ref. 18) attribute solidification cracking in narrow groove welds to the speed of displacement of the base metal (proportional to strain rate in the TRB).

The TRB zone is the area immediately trailing the fully molten weld pool, and its size is dependent on factors such as weld process type, heat input, and plate thickness. This strain rate in the TRB zone \(B_{TRB} \), which must exceed a threshold or critical strain rate for solidification cracking to occur, is directly proportional to the rate of transverse displacement in the plate ahead of the molten weld pool \(v_T \), and inversely proportional to the cooling rate of the TRB zone \(w_0 \) (Equation 1). Equation 2 shows that \(B_{TRP} \) is also proportional to the length of the TRB zone \(l_{TRB} \) and inversely proportional to welding travel speed \(v_w \), temperature range of the TRB zone \(\Delta T \), and the width of the the molten weld pool \(h_p \) (Ref. 23). In contrast, Morgan-Warren and Jordan (Ref. 24) report that an increase in weld travel speed increases the length of the crack-susceptible zone \(l_{TRB} \) but decreases the transverse crack-promoting forces.

\[
B_{TRB} = v_T w_0
\]

\[
B_{TRP} \approx v_T l_{TRB} / (V_w \times TRB \times h_p)
\]

The work of Makarov et al. (Ref. 23) is considered relevant to the solidification cracking discovered in the current program, despite some of the obvious differences between the two studies. Firstly, the work carried out by them was based on SAW. However, the location of the cracking, the role of the runoff tabs, the end-user application, and the plate thickness justifies drawing on this publication for user application, and the plate thickness considered relevant to the solidification cracking discovered in the current program. These include 1) weld travel speeds (shown in Table 4) above the threshold for solidification cracking (Ref. 11), 2) a long trailing weld pool compared with conventional single-wire GMAW that increases the length of the susceptible region (TRB zone), 3) the ability to use a single-bead weld, which unlike multipole bead GMAW does not allow for the backgouging of often problematic first (i.e., root) runs (Ref. 11), and 4) higher deposition rates (and higher arc energy heat inputs) compared with conventional single-wire GMAW resulting in a slower
cooling rate and increasing the likelihood of solidification cracking (Ref. 23).

Solidification cracks located at the weld ends and formed during the single-bead PT-GMAW of naval hull steels should be avoidable. Makarov et al. (Ref. 23) explains that the runoff tab system used will influence the rate of transverse displacement in the base steels, and ultimately the likelihood of solidification cracking. In the current work, runoff tabs (80 × 100 mm plates) without grooves and attached to the main test plate by tacking on either side of the weld preparation were used. Makarov et al. (Ref. 23) reported that a 150-mm-long groove in the runoff tab for the oncoming weld to fill will significantly reduce the rate of transverse displacement, and hence, reduce the likelihood of solidification cracking. Alternatively, targeted heating at the weld ends prior to welding will reduce the likelihood of solidification cracking by seven times (Ref. 23). However, the targeted heating approach is undesirable in naval shipbuilding because it is costly and time consuming, and if incorrectly applied could adversely impact the integrity of the hull. A successful technique currently being used in some Australian naval shipbuilding yards for the PT-GMAW of 12-mm-thick DH36 steel plate is to adopt a single-sided multiple-run weld with a temporary backing strip (Ref. 6). This technique allows the manipulation of the weld process parameters to obtain a desirable weld-bead shape that is less prone to solidification cracking, and improves the impact toughness of the WM due to the tempering effect from ensuing weld beads. However, there is an adverse impact of this technique on shipyard productivity compared with single-sided single-bead welding.

The solidification cracks found in the 11-mm weld were less severe than those found in the other welds. Cracks in the 11-mm welds were not as long and deep compared with those in the 8- and 9.5-mm welds (compare Fig. 4C with Fig. 4A, B). This was also confirmed in the radiographs of the 11-mm weld by their relatively short lengths and lighter appearance. The small size of the solidification cracks in the 11-mm weld, despite it having the greatest weld bead depth-width ratio, is attributed to a significantly lower level of Ni in the WM. The 1-mm weld measured at least five times less Ni than 8-mm weld and ten times less Ni than 9.5-mm weld (compare Ni contents in Table 5). Nickel is reported to increase solidification cracking tendency as it widens the TRB zone, increase the solidification temperature range, increase the liquidus temperature, and acts in combination with sulfur to form low melting point nickel sulfides (Ref. 25). In further support on the role of Ni in weld metal solidification cracking, Masumoto and Imai (Ref. 26) report on the segregation of Ni at dendritic boundaries in steel welds. Other elements such as Ti, Al, Cu, S, and Ca were detected by EDS in some locations of the fracture surfaces on both the 8- and 11-mm HSLA65 welds, but it was not possible to establish the effect that they had on either the likelihood or extent of solidification cracking.

Optical microscopy, SEM, and EDS were used to characterize the cracks located near the end of the welds, and to gain insight into the potential mechanisms of crack initiation and the propagation path. The smooth dendritic appearance of the fracture surfaces examined (Fig. 5A–C), confirmed that the cracks in the welded test plates were solidification cracks. Semiquantitative EDS analysis showed that sulfur played an integral role in the solidification cracking observed. Approximately twice the amount of sulfur was detected on the fracture surface of the solidification cracks compared with sulfur levels distant from the cracks (also measured by EDS for consistency).

Figure 7 shows optical micrographs of WM solidification cracking and the surrounding microstructure in the 8-, 9.5-, and 11-mm welds. The solidification cracks in these welds are mainly situated along the grain boundary ferrite — Fig. 7. The carbon levels in the 8-, 9.5-, and 11-mm welds are, respectively, 0.08, 0.05, and 0.07 wt-% (Table 5). Ohshita et al. (Ref. 11) report that at these very low levels of carbon, solidification cracking will occur along the delta-ferrite grain boundaries during delta-phase solidification. However, this aspect has not been investigated in the current study. Additionally, the presence of fine/small solidification cracks (labeled in Fig. 7A and C) that appear detached from the main crack could be connected to the main crack on planes outside of the cross section shown in these macrographs.

Conclusions

The following conclusions are drawn from the current work:

1) Single-bead welds produced by PT-GMAW can be susceptible to weld metal (WM) solidification cracking near the weld end (within 30 mm from the runoff tab). Characteristic features of the single-bead PT-GMAW process that contribute to this type of cracking include high weld travel speeds, a long trailing weld pool, high deposition rates, and slow cooling rates compared with welding procedures that would be used for conventional single-wire GMAW.

2) The incidence of WM solidification cracking was found to increase with increasing plate thickness. This was attributed to an increase in the weld bead depth:width ratio and joint restraint with increasing plate thickness, and critical levels of impurity and alloying elements in the weld metal.
3) The sizes of solidification cracks in the 11-mm weld were smaller than the cracks in the 8- and 9.5-mm welds. Weld metal with significantly less Ni was attributed to limiting the size of the solidification cracks.

4) The levels of impurity elements (S and P) measured in the weld metal were significantly lower than that reported to increase the risk of solidification cracking in solidification cracking in submerged arc welds. Similarly, the Mn:S ratios calculated for each of the weld metals were substantially greater than that reported to increase the risk of solidification cracking in the literature that was reviewed.

Acknowledgments

The authors would like to acknowledge the Defence Materials Technology Centre (DMTC) for its ongoing support. We would also like to thank Dr. Len Davidson, Dr. Stan Lynch, and Dr. Stuart Cannon from DSTO for their support of this work and review of this paper. The authors would also like to acknowledge the support of Dr. Allison Nolting, Cameron Munro, and Alexandra McLeod from DRDC Atlantic, Johnnie DeLoach from NSWC–Carderock Division, and Prof. John Norrish from University of Wollongong. We also gratefully acknowledge the efforts of Paul Calleja, Joseph Dominguez, and Frank Griffo from DSTO for their assistance with welding, welding preparation, postweld sectioning, and SEM EDS analysis.

References

15. ASTM International. 2006. A945/A945M-06.

Authors: Submit Research Papers Online

Peer review of research papers is now managed through an online system using Editorial Manager software. Papers can be submitted into the system directly from the Welding Journal page on the AWS website (www.aws.org) by clicking on “submit papers.” You can also access the new site directly at www.editorialmanager.com/wj/. Follow the instructions to register or log in. This online system streamlines the review process, and makes it easier to submit papers and track their progress. By publishing in the Welding Journal, more than 69,000 members will receive the results of your research.

Additionally, your full paper is posted on the American Welding Society Web site for FREE access around the globe. There are no page charges, and articles are published in full color. By far, the most people, at the least cost, will recognize your research when you publish in the world-respected Welding Journal.
Copyright of Welding Journal is the property of American Welding Society and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.