Photosynthetic temperature responses of tree species in Rwanda: evidence of pronounced negative effects of high temperature in montane rainforest climax species

Angelica Varhammar
University of Wollongong, University of Gothenburg

Goran Wallin
University of Gothenburg

Christopher M. McLean
University of Wollongong, chrismc@uow.edu.au

Mirindi Eric Dusenge
University of Gothenburg

Belinda E. Medlyn
Macquarie University

Follow this and additional works at: https://ro.uow.edu.au/smhpapers

Recommended Citation
Varhammar, Angelica; Wallin, Goran; McLean, Christopher M.; Dusenge, Mirindi Eric; Medlyn, Belinda E.; Hasper, Thomas B.; Nsabimana, Donat; and Uddling, Johan, "Photosynthetic temperature responses of tree species in Rwanda: evidence of pronounced negative effects of high temperature in montane rainforest climax species" (2015). *Faculty of Science, Medicine and Health - Papers: part A*. 3184.

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Photosynthetic temperature responses of tree species in Rwanda: evidence of pronounced negative effects of high temperature in montane rainforest climax species

Abstract
The sensitivity of photosynthetic metabolism to temperature has been identified as a key uncertainty for projecting the magnitude of the terrestrial feedback on future climate change. While temperature responses of photosynthetic capacities have been comparatively well investigated in temperate species, the responses of tropical tree species remain unexplored. We compared the responses of seedlings of native cold-adapted tropical montane rainforest tree species with those of exotic warm-adapted plantation species, all growing in an intermediate temperature common garden in Rwanda. Leaf gas exchange responses to carbon dioxide (CO2) at different temperatures (20-40°C) were used to assess the temperature responses of biochemical photosynthetic capacities. Analyses revealed a lower optimum temperature for photosynthetic electron transport rates than for Rubisco carboxylation rates, along with lower electron transport optima in the native cold-adapted than in the exotic warm-adapted species. The photosynthetic optimum temperatures were generally exceeded by daytime peak leaf temperatures, in particular in the native montane rainforest climax species. This study thus provides evidence of pronounced negative effects of high temperature in tropical trees and indicates high susceptibility of montane rainforest climax species to future global warming.

Disciplines
Medicine and Health Sciences | Social and Behavioral Sciences

Publication Details

Authors
Angelica Varhammar, Goran Wallin, Christopher M. McLean, Mirindi Eric Dusenge, Belinda E. Medlyn, Thomas B. Hasper, Donat Nsabimana, and Johan Uddling

This journal article is available at Research Online: https://ro.uow.edu.au/smhpapers/3184
Photosynthetic temperature responses of tree species in Rwanda: evidence of pronounced negative effects of high temperature in montane rainforest climax species

Angelica Varhammar¹, Göran Wallin¹, Christopher M. McLean², Mirindi Eric Dusenge¹,³, Belinda E. Medlyn⁴, Thomas B. Hasper¹, Donat Nsabimana³ and Johan Uddling¹

¹Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden; ²Department of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia; ³Department of Biology, University of Rwanda, Huye, Rwanda; ⁴Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia

Author for correspondence:
Johan Uddling
Tel: +46 317863757
Email: johan.uddling@bioenv.gu.se

Received: 16 October 2014
Accepted: 11 December 2014

Key words: Africa, leaf energy balance, maximum rate of electron transport \(\left(V_{\text{cmax}} \right) \), optimum temperature \(\left(T_{\text{opt}} \right) \), stomatal conductance \((g_s) \), the maximum carboxylation rate of oxygenase \(\left(V_{\text{cmax}} \right) \), tropical montane rainforest.

Summary
• The sensitivity of photosynthetic metabolism to temperature has been identified as a key uncertainty for projecting the magnitude of the terrestrial feedback on future climate change. While temperature responses of photosynthetic capacities have been comparatively well investigated in temperate species, the responses of tropical tree species remain unexplored.
• We compared the responses of seedlings of native cold-adapted tropical montane rainforest tree species with those of exotic warm-adapted plantation species, all growing in an intermediate temperature common garden in Rwanda. Leaf gas exchange responses to carbon dioxide \((\text{CO}_2) \) at different temperatures \((20-40^\circ \text{C})\) were used to assess the temperature responses of biochemical photosynthetic capacities.
• Analyses revealed a lower optimum temperature for photosynthetic electron transport rates than for Rubisco carboxylation rates, along with lower electron transport optima in the native cold-adapted than in the exotic warm-adapted species. The photosynthetic optimum temperatures were generally exceeded by daytime peak leaf temperatures, in particular in the native montane rainforest climax species.
• This study thus provides evidence of pronounced negative effects of high temperature in tropical trees and indicates high susceptibility of montane rainforest climax species to future global warming.

Introduction
Observations have unequivocally demonstrated increasing global surface air temperatures (Hartmann et al., 2013), and global climate change models project a continuation of temperature increase over the coming century, irrespective of the chosen emission scenario (IPCC, 2013; Burrows et al., 2014). As temperature is one of the most important environmental factors controlling physiological processes (Hughes, 2000; Poethig, 2003; Root et al., 2003; Hegland et al., 2009), increased temperature is expected to have significant effects on the fitness of all living organisms.

Improving the understanding of the effect of temperature on terrestrial plant species is particularly important, as most migrate far more slowly than would be necessary to remain in a suitable climate under mid- and high-range rates of global warming (IPCC, 2013, 2014). Furthermore, terrestrial vegetation has important biogeochemical, hydrological and biophysical interactions with the atmosphere and its responses thus affect both local and global climate (Denman et al., 2007; Bonan, 2008). In particular, it is paramount to understand the responses of plant primary production to climate change in order to project terrestrial feedbacks on the carbon cycle along with the potential of the terrestrial biosphere to be either mitigative or promotive to further global warming (Cox et al., 2000; Cao et al., 2001; Bonan, 2008). The sensitivity of photosynthetic metabolism to temperature has been identified as the most important uncertainty with respect to projections of the magnitude of the terrestrial feedback on future climate change, highlighting the need for a better understanding of plant photosynthetic responses to high temperature (Booth et al., 2012).

In global vegetation models, photosynthesis of terrestrial plants is modelled using the well-established biochemical model of photosynthesis developed by Farquhar et al. (1980; Sellers et al., 1997; Pitman, 2003; Prentice et al., 2007). This model requires parameters of two photosynthetic capacities: the maximum carboxylation rate of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; \(V_{\text{cmax}} \)) and the maximum rate of electron transport \((J_{\text{max}}) \), necessary to regenerate ribulose-1,5-bisphosphate. The maximum rates of photosynthetic carboxylation and electron transport depend on multiple factors, of which the most important include light (Carswell et al., 2000; Kenzo et al., 2006),
nutrient availability (particularly nitrogen and phosphorus; Kattge et al., 2009; Domingues et al., 2010; Mercado et al., 2011) and intercellular carbon dioxide (CO$_2$) concentration (C$_i$), which is dependent on stomatal conductance (g$_s$; Farquhar & Sharkey, 1982), as well as temperature (Kattge & Knorr, 2007). Increasing temperature causes J$_{\text{max}}$ and V$_{\text{cmax}}$ to rise to a maximum followed by a rapid decrease at supraoptimal temperatures (Berry & Björkman, 1980; Read, 1990; Battaglia et al., 1996; Cunningham & Read, 2002; Way & Oren, 2010). Observations of considerable declines in growth rates of tropical trees resulting from only subtle increases in air temperature (Clark et al., 2003; Feeley et al., 2007; Doughty & Goulden, 2008; Way & Oren, 2010) further support this hypothesis. Tropical forests are thus suspected of being close to a thermal threshold, above which CO$_2$ uptake is strongly reduced (Doughty & Goulden, 2008).

This study aimed to improve the limited understanding of temperature responses of tropical primary production by providing the first temperature response assessments of photosynthetic capacities (i.e. J$_{\text{max}}$ and V$_{\text{cmax}}$) in tropical tree species. This was achieved by examining leaf gas exchange responses to CO$_2$ at different temperatures (20–40°C) in three native cold-adapted, tropical montane rainforest species and three common exotic warm-adapted plantation species, in an intermediate temperature common garden in Rwanda. We hypothesized that: (1) J$_{\text{max}}$ is more sensitive to high temperature than V$_{\text{cmax}}$ as has been found in temperate and boreal tree species. (2) Cold-adapted native montane rainforest species have lower photosynthetic optimum temperatures (i.e. T$_{\text{opt}}$ for J$_{\text{max}}$, V$_{\text{cmax}}$ and A$_{\text{n}}$) than warm-adapted exotic plantation species, as a consequence of adaptation to the species’ climate of origin, which is not erased by acclimation to the common garden conditions. (3) The optimum temperatures of photosynthesis are commonly exceeded in the native tropical species growing in the common garden, but not in the exotic plantation species, demonstrating limited acclimation ability and high sensitivity to future global warming.

Along with increased temperatures, climate change also includes continued increases in atmospheric CO$_2$ concentrations (C$_3$; IPCC, 2013, 2014). The expected CO$_2$ rises are predicted to increase the optimum temperature of photosynthesis, such that the negative effects of increased temperature will be mitigated (Long, 1991; Cao et al., 2001; Kirschbaum, 2004; Lloyd & Farquhar, 2008). A fourth hypothesis explores the temperature sensitivity under higher atmospheric CO$_2$ concentration conditions, according to the photosynthesis model parameterized for the investigated species: (4) in a moderate climate change scenario for year 2100 (IPCC, 2013, 2014), a 50% increase in atmospheric CO$_2$ concentration cancels the negative effects of 3°C warming such that heat-induced reductions in photosynthesis remain similar compared with today.

Materials and Methods

Study site and plant material

The study was carried out on seedlings cultivated in the Rwaseve nursery, located on the edge of the Ruhande Arboretum (Rwanda; 2°36’S, 29°44’E; c. 1640 m above sea level (asl)) and surrounded by vegetation in all directions. At a meteorological station c. 2 km from the arboretum (1765 m asl; Nsabimana et al., 2009), the average day and night air temperatures at 7.5 m
above ground were 20.8 and 17.1°C, respectively, the average relative humidity was 74% and annual rainfall was 1231 mm during 2006–2013. The climate of the region is tropical humid and the difference in mean temperature between the warmest and coldest months is 1.5°C. The rainfall is bimodal with most rain in March–May and lighter occurrence in September–December, separated by a major drought period in June–August and a moderately dry period in January–February. Maximum temperatures and the average diurnal temperature range at the meteorological station are provided in Table 1.

Daytime air temperature (Model TinyTag Plus 2; Gemini Data Loggers Ltd, Chichester, UK; placed inside self-ventilating radiation shields) at 1.8 m above ground in the nursery was similar to that at 1.8 m above ground at the meteorological station, but predawn temperature was c. 3°C lower at the lower location of the nursery. The vertical variation in air temperature was considerable, with the temperatures at 1.8 and 0.4 m above ground being 2°C and 4°C higher compared with the temperature at 7.5 m in the nursery.

The taxa selected (Table 2) were either native tropical montane rainforest tree species or silviculturally important exotics, planted in the Ruhande Arboretum one to two generations ago. The native species included two climax taxa from the Meliaceae family, Carapa grandiflora Sprague and Entandrophragma excelsum (Dawe & Sprague) Sprague, along with one pioneer species from the Rosaceae family, Hagenia abyssinica (Bruce) J. F. Gmelin. Carapa grandiflora is a dominant species in transitional Afromontane rainforest and has an altitudinal distribution ranging between 1600 and 2500 m asl (White, 1983; Fischer & Killmann, 2008; Bloesch et al., 2009). Entandrophragma excelsum is a dominant species in Afromontane rainforest and occurs between 1500 and 2100 m asl (White, 1983; Fischer & Killmann, 2008; Bloesch et al., 2009) and H. abyssinica, which is the diagnostic species for H. abyssinica forest, occurs at altitudes of 1800–3400 m asl (White, 1983; Fischer & Killmann, 2008; Bloesch et al., 2009). The plant material of the three native species originates from the Nyungwe national park montane rainforest (Rwanda; 2°15′–2°55′S, 29°00′–29°30′E; 1500–2950 m asl). At a meteorological station located at Uwinka (2°28′43″S, 29°12′00″E; 2465 m asl; Nsabimana, 2009), the average day and night air temperatures at 7.5 m above ground were 15.7 and 13.5°C, respectively, the relative humidity was 81%, and annual rainfall was 1879 mm during 2007–2013. At another meteorological station located at 1935 m asl in Nyungwe, the annual mean temperature was 1.5°C higher than at Uwinka. Maximum temperatures and average diurnal temperature range experienced at Uwinka are provided in Table 1.

Three common exotic plantation taxa were selected to represent warm-adapted exotics (Table 2): two Myrtaceae species, Eucalyptus microcorys F. Muell and Eucalyptus maidenii F. Muell, along with a deciduous pioneer species from the Meliaceae family, Cedrela serrata Royal. Eucalyptus maidenii occurs in temperate southern coastal New South Wales and Victoria, Australia (Hill, 1991), whereas E. microcorys is distributed in warmer subtropical coastal areas of New South Wales and Queensland, Australia (Hill, 1991). Cedrela serrata is known to occur from Central to South East Asia (Orwa et al., 2009). Maximum temperatures and average diurnal temperature range experienced by the exotic species in their known native distributions are provided in Table 1.

The seedlings were cultivated in pots containing clay soil from the surrounding area (ISAR, 2011) and were irrigated twice daily with water sourced from the local creek. The pots were placed in monospecific plots, some partially shaded from the sun by basic shade houses. Seedling dimensions are provided in Table 2.

Table 1 Temperature parameters (°C) for Nyungwe montane rainforest, the common garden of Ruhande Arboretum, and the known native distribution of three exotic tree species

<table>
<thead>
<tr>
<th>Air temperature parameter</th>
<th>Nyungwe montane rainforest¹</th>
<th>Common garden²</th>
<th>Eucalyptus microcorys³</th>
<th>Eucalyptus maidenii⁴</th>
<th>Cedrela serrata⁵</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean diurnal range⁶</td>
<td>2.2</td>
<td>3.7</td>
<td>11.5</td>
<td>12.0</td>
<td>10.7</td>
</tr>
<tr>
<td>Mean daily maximum of warmest month⁷</td>
<td>19.2</td>
<td>24.8</td>
<td>26.9</td>
<td>24.3</td>
<td>n/a</td>
</tr>
<tr>
<td>Mean monthly maximum of warmest month⁸</td>
<td>22.1</td>
<td>27.5</td>
<td>33.1</td>
<td>32.6</td>
<td>29.6</td>
</tr>
<tr>
<td>Mean annual maximum⁹</td>
<td>22.6</td>
<td>27.8</td>
<td>40.8</td>
<td>40.4</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Data for the native species refers to footnotes 1 and 2 and for the exotic species to footnotes 3–9. Values for the exotic species are based on climate extracted for coordinates where species observations have been recorded (Eucalyptus: 5598 records, 1940–2012; Cedrela serrata: nine records, dates not available). n/a, data not available.

¹Measured at Uwinka meteorological station at 2465 m above sea level (asl) during 2007–2013.
²Measured at a nearby (c. 2 km away) meteorological station at 1765 m asl during 2006–2013.
³ALA (2014).
⁴GBIF (2014).
⁵Hijmans et al. (2005).
⁶Mean diurnal range (average of years 1950–2000; °C).
⁷Daily maximum of warmest month (average of years 1927–1995; °C).
⁸Monthly maximum of warmest month (average of years 1957–2004; °C).
⁹Annual maximum (average of years 1957–2004; °C).
Table 2: Information on species native distribution, average plant height, leaf size (taken as 0.7 × length × width), leaf mass per unit area, leaf nitrogen content per unit area (N_a) and mass (P_a) and leaf phosphorus content per unit area (N_m) and mass (P_m)

<table>
<thead>
<tr>
<th>Species</th>
<th>Native distribution</th>
<th>Plant height (m)</th>
<th>Leaf size (cm²)</th>
<th>Leaf mass per unit area (g m⁻²)</th>
<th>N_a (g m⁻²)</th>
<th>P_a (mg m⁻²)</th>
<th>N_m (%)</th>
<th>P_m (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carapa grandiflora</td>
<td>East African montane forest endemic</td>
<td>0.85 ± 0.04</td>
<td>85.9 ± 6.6A</td>
<td>81.4 ± 3.4A</td>
<td>2.14 ± 0.09A</td>
<td>106 ± 10AB</td>
<td>2.63 ± 0.08A</td>
<td>0.13 ± 0.01A</td>
</tr>
<tr>
<td>Entandrophragma excelsum</td>
<td>Central East African forest endemic</td>
<td>0.23 ± 0.02</td>
<td>35.7 ± 4.3B</td>
<td>55.5 ± 2.08C</td>
<td>1.33 ± 0.04B</td>
<td>172 ± 14A</td>
<td>2.39 ± 0.10A</td>
<td>0.31 ± 0.03B</td>
</tr>
<tr>
<td>Hagenia abyssinica</td>
<td>African montane forest endemic</td>
<td>0.39 ± 0.05</td>
<td>24.0 ± 2.9B</td>
<td>44.4 ± 2.8C</td>
<td>1.58 ± 0.11B</td>
<td>86.4 ± 17B</td>
<td>3.56 ± 0.14B</td>
<td>0.20 ± 0.04AB</td>
</tr>
<tr>
<td>Cedrela serrata</td>
<td>South-east Asia</td>
<td>0.82 ± 0.03</td>
<td>19.2 ± 1.6B</td>
<td>56.8 ± 2.98C</td>
<td>2.18 ± 0.20A</td>
<td>96.2 ± 12AB</td>
<td>3.82 ± 0.24B</td>
<td>0.17 ± 0.02A</td>
</tr>
<tr>
<td>Eucalyptus maidenii</td>
<td>East Australia; NSW and VIC</td>
<td>0.89 ± 0.06</td>
<td>60.2 ± 9.3C</td>
<td>65.5 ± 1.5B</td>
<td>2.26 ± 0.11A</td>
<td>82.5 ± 7.98</td>
<td>3.45 ± 0.16B</td>
<td>0.13 ± 0.01A</td>
</tr>
<tr>
<td>Eucalyptus microcorys</td>
<td>East Australia; NSW and QLD</td>
<td>0.35 ± 0.04</td>
<td>15.7 ± 1.1B</td>
<td>67.6 ± 8.0AB</td>
<td>1.83 ± 0.18AB</td>
<td>145 ± 42AB</td>
<td>2.80 ± 0.20A</td>
<td>0.20 ± 0.05AB</td>
</tr>
</tbody>
</table>

Species investigated include native tropical montane species (*Carapa grandiflora, Entandrophragma excelsum* and *Hagenia abyssinica*) and exotic plantation species (*Cedrela serrata, Eucalyptus maidenii* and *Eucalyptus microcorys*). Values represent mean ± SE. The significance of results from ANOVA (species comparison) and Student’s t-test (native vs exotic species) is reported as: ns, P > 0.05; *, P < 0.01; ***, P < 0.001. The same capital letter indicates no significant difference between species according to Tukey’s post hoc test.

visible damage) was measured on each seedling and five to six seedlings per species were investigated. The species to be measured each day was selected randomly and different monospecific plots within the nursery were used for each replicate when available.

Measurements of the response of A_{i} to varying C_{i} (A–C curves) were conducted at leaf temperatures (T_{leaf}) of 20, 25, 30, 35 and 40°C using an LI–6400XT Portable Photosynthesis System equipped with an LED light source as well as an expanded temperature control kit (Li-Cor Inc., Lincoln, NE, USA). The measurements were conducted at a photosynthetic photon flux density of 1800 μmol m⁻² s⁻¹ and were commenced as soon as leaf temperature and g_{i} were stable. The A–C_{i} curves included measurements at the following CO₂ concentrations of air entering the leaf chamber: 400, 60, 125, 225, 400, 800, 1200, 1600, 2000 and 400 μmol mol⁻¹. As a result of difficulties in measuring at 40°C with acceptable levels of g_{i} (> 0.015 mol H₂O m⁻² s⁻¹) and reaching 20°C on hotter days, not all desired leaf temperatures could be measured for some replicates. As a result, the temperature range for the native species *C. grandiflora* was 20–35°C (i.e. no measurements were completed at 40°C), four replicates were possible at 20°C for the exotic species *E. maidenii* and three replicates were possible at 40°C for the native species *E. excelsum*.

A sensitivity analysis was performed to assess the possible influence of cuticular transpiration on the estimated values of J_{max} and V_{cmax}. In this analysis, cuticular conductance was assumed to be 2% of maximum g_{i} (at 20°C), which is typical for nonsucculents (Larcher, 2003). Subtraction of this cuticular conductance from the original value of g_{i} (and the consequent recalculation of C_{i}) had relatively small effects on the parameterization of V_{cmax} and J_{max}. In *C. grandiflora* at 35°C and *E. excelsum* at 40°C (the measurements with lowest g_{i}), the mean effects on J_{max} and V_{cmax} were +3 and +8%, respectively, while the effects for the other species or temperatures were considerably smaller. Results for J_{max} temperature responses are thus only slightly influenced by possible cuticular transpiration. The larger influence on V_{cmax} is probably a minor concern, as lack of discernible peaks within the measured temperature range for half of the species introduced a comparatively large uncertainty regarding the V_{cmax} high temperature responses (see the ‘Photosynthetic temperature responses’ subsection).

Parameterization of photosynthesis models

The photosynthesis model by Farquhar et al. (1980), with modifications of photosynthetic temperature dependences (Bernacchi et al., 2001; Medlyn et al., 2002a), was used to parameterize the photosynthetic capacities V_{cmax} and J_{max} as well as the nonphotosynthetic CO₂ release in the light (R_{d}), from A–C_i curve data using the least-square method. The rates of V_{cmax}-limited photosynthesis (A_{i}) and J_{max}-limited photosynthesis (A_{j}) were estimated using Eqs 1 and 2:

$$A_{i} = \left(1 - \frac{\Gamma^{*}}{G_{i}}\right) \frac{V_{cmax} \cdot C_{i}}{C_{i} + K_{c}(1 + \frac{C_{i}}{G_{i}})} - R_{d} \quad \text{Eqn 1}$$

$$A_{j} = \frac{C_{i} - \Gamma^{*}}{4G_{i} + 8\Gamma^{*}} - R_{d} \quad \text{Eqn 2}$$

(K_{c} and K_{n}, Michaelis–Menten constants for CO₂ and O₂, respectively; Γ^{*}, the CO₂ concentration at which the carboxylation reaction of Rubisco equals the oxygenation reaction.) Values
Leaf mesophyll conductance to CO2 was not estimated and therefore apparent \(V_{\text{cmax}} \) and \(J_{\text{max}} \) values were determined, based on \(C_i \) rather than the CO2 concentration at the chloroplast. The uncertainty of the values of curvature of the light response (0.9) and quantum yield of electron transport (0.3 mol electrons mol\(^{-1}\) photons) used when calculating \(J_{\text{max}} \) from actual electron transport \((f) \) has only a slight effect on the estimated value of \(J_{\text{max}} \) (Medlyn et al., 2002a). The only a priori restriction placed on the \(V_{\text{cmax}} \) and \(J_{\text{max}} \) determination through \(A-C_i \) fitting was that data points with \(C_i \) below 100 \(\mu \text{mol mol}^{-1} \) were forced to be \(V_{\text{cmax}} \)-limited. Triose phosphate use limitation of photosynthesis, which mainly occurs at high \(C_i \) and low temperature (Sage, 2002), was not observed in the \(A-C_i \) curves of the present study (data not shown). As a consequence of low \(g_s \) at higher temperatures, the \(C_i \) did not reach values high enough for \(A_n \) to be limited by the rate of electron transport in some \(A-C_i \) curves. Determination of \(J_{\text{max}} \) required that \(A_n \) was clearly limited by \(f \) in at least one data point, for which the value predicted by electron transport limitation was >10% lower than that predicted by carboxylation limitation (according to data at lower \(C_i \)). Inclusion of \(J_{\text{max}} \) data also required that there were at least two \(J_{\text{max}} \) values for each species and temperature combination. As a result, \(J_{\text{max}} \) data were unavailable for 20 of the 150 \(A-C_i \) curves obtained; mainly values at high temperatures in the exotic species \(C. \) serrata and the native species \(C. \) grandiflora and \(E. \) excelsum.

The temperature responses of photosynthetic capacities were determined by regressing \(V_{\text{cmax}} \) and \(J_{\text{max}} \) against measured \(T_{\text{leaf}} \) using a peaked Arrhenius equation (Eqn 3), where a deactivation term accounts for the negative effects at higher temperatures (Medlyn et al., 2002a):

\[
f(T) = \frac{H_{\text{d}} \left(\frac{H_{\text{l}}(T-T_{\text{opt}})}{T_{\text{opt}} R T_{\text{opt}}} \right)}{H_{\text{d}} - H_{\text{l}} \left(1 - \frac{H_{\text{l}}(T-T_{\text{opt}})}{H_{\text{d}} R T_{\text{opt}}} \right)}
\]

(Eqn 3)

\((H_{\text{a}}\), the activation energy (kJ mol\(^{-1}\)); \(T_{\text{opt}}\), optimum temperature (°C); \(k_{\text{opt}}\), the value of \(J_{\text{max}} \) or \(V_{\text{cmax}} \) at \(T_{\text{opt}} \) (\(\mu \text{mol m}^{-2}s^{-1} \)); \(H_{\text{d}}\), the deactivation energy (kJ mol\(^{-1}\)); \(T_{\text{k}}\), the measured leaf temperature (°C); \(R\), the universal gas constant (8.314 \(\text{J} \text{ mol}^{-1} \text{ K}^{-1} \)).) By fitting the observed data to Eqn 3, \(H_{\text{a}}, T_{\text{opt}}, k_{\text{opt}} \) and \(H_{\text{d}} \) could be estimated. However, the peaked Arrhenius equation is overparameterized if all four parameters are allowed to vary (Dreyer et al., 2001; Medlyn et al., 2002a; Kattnor & Knorr, 2007) and, in such a case, data may be insufficient to reliably estimate all parameters. Therefore, following the method of previous studies on temperate and boreal species, \(H_{\text{d}} \) was held at a constant 200 kJ mol\(^{-1}\) for all species (Medlyn et al., 2002a; Kattnor & Knorr, 2007). In an analysis where \(H_{\text{d}} \) was also allowed to vary, it was only significantly different from 200 kJ mol\(^{-1}\) in one case (\(V_{\text{cmax}} \) in \(E. \) maidenii).

As all replicates did not have data covering the entire temperature range, Eqn 3 was fitted to data pooled for each species. Fitted parameters were considered to significantly differ between two species if \(P \leq 0.01, \) that is, if the following relationship between mean values \((\bar{x})\) and SE was true:

\[
(x_1 - x_2) - 2.58 \sqrt{SE_1^2 + SE_2^2} > 0
\]

(Eqn 4)

While the probability of obtaining at least one significant difference by pure chance is 14% \((1 - 0.99^{15})\) when making 15 pairwise comparisons, the probability of obtaining at least two significant differences (as found here; Table 3) is just 2%.

Net photosynthesis temperature responses

To estimate biochemical limitations of \(A_n \) at varying temperatures, the Farquhar et al. (1980) photosynthesis model parameters from each \(A-C_i \) curve were used to calculate \(A_n \) at a common \(C_i \) and saturating photosynthetic photon flux density (1800 \(\mu \text{mol m}^{-2}s^{-1} \)), for each leaf replicate and measurement temperature. The intercellular to ambient CO2 concentration ratio \((C_i/C_o)\) was assumed to be 0.7. As the global ambient CO2 concentration at the time of measurement was 389 \(\mu \text{mol mol}^{-1} \) (Thoning et al., 2014), the common \(C_i \) was set to a constant value of 272 \(\mu \text{mol mol}^{-1} \). In an additional analysis to assess the effect of 50% elevated CO2 concentration on photosynthetic temperature optimum, \(A_n \) was calculated at a common \(C_i \) of 408 \(\mu \text{mol mol}^{-1} \).

In order to also account for stomatal limitations of \(A_n \) at increasing temperature, a third analysis was conducted in which the decrease in \(C_i \) with increasing temperature and leaf-to-air vapour pressure deficit (VPD) was calculated according to a coupled stomatal-photosynthesis model assuming optimal stomatal behaviour (\(A_{\text{opt}} \); Medlyn et al., 2011). The atmospheric vapour pressure was held constant at 1.6 kPa (the mean predawn value from the nearby meteorological station, which varied little over the year and remained fairly constant during the day). The \(C_i \) concentrations calculated with this stomatal behaviour model were, for each 5°C increase between 20 and 40°C, 284, 253, 229, 209 and 192 \(\mu \text{mol mol}^{-1} \). For a +50% atmospheric CO2 concentration scenario, the corresponding values were 427, 380, 344, 314 and 287 \(\mu \text{mol mol}^{-1} \).

The temperature responses of \(A_n \) at \(C_i \) of 272 \(\mu \text{mol mol}^{-1} \) (\(A_{272} \)) and \(C_i \) of 408 \(\mu \text{mol mol}^{-1} \) (\(A_{408} \)) were parameterized for each leaf replicate using nonlinear regression of a second-order equation (Säll & Petersson, 1994; Battaglia et al., 1996; Gunderson et al., 2010), where \(A_n(T) \) is the \(A_n \) (\(\mu \text{mol m}^{-2}s^{-1} \)) at a given air temperature \(T \) (°C) and \(A_{\text{opt}} \) is the \(A_n \) at the optimum temperature \((T_{\text{opt}})\):

\[
A_n(T) = A_{\text{opt}} - b(T - T_{\text{opt}})^2
\]

(Eqn 5)

Eqn 5 was fitted to \(A_{272} \) and \(A_{408} \) data for individual leaves, and the significance of differences in \(T_{\text{opt}} \) among species and provenances (i.e. cold-adapted vs warm-adapted) was determined.
Table 3 Temperature response parameters estimated for maximum electron transport rate, maximum Rubisco carboxylation rate (I_{max}, a, c_{max}) and V_{max} at 25°C, see Eqn 3; stomatal conductance (g_s) and optimum temperatures for net photosynthesis at an intercellular CO2 concentration of 272 and 408, 2015. T and A_{opt}, optimum temperature of net photosynthesis and A_{opt}, optimum temperature of net photosynthesis at 25°C, A_{opt}, optimum temperature of net photosynthesis at 25°C and A_{opt}, optimum temperature of net photosynthesis at 25°C, respectively.

<table>
<thead>
<tr>
<th>Species</th>
<th>T_{opt} ($^\circ$C)</th>
<th>A_{opt} (mmol m$^{-2}$ s$^{-1}$)</th>
<th>V_{max} (mmol m$^{-2}$ s$^{-1}$)</th>
<th>I_{max} (mmol m$^{-2}$ s$^{-1}$)</th>
<th>a (kJ mol$^{-1}$)</th>
<th>c_{max} (mol mol$^{-1}$)</th>
<th>g_s (mmol m$^{-2}$ s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entandrophragma</td>
<td>22.2</td>
<td>3.64</td>
<td>2.13</td>
<td>0.03</td>
<td>170</td>
<td>1.20</td>
<td>11.5</td>
</tr>
<tr>
<td>Hagenia abyssinica</td>
<td>21.9</td>
<td>3.71</td>
<td>2.10</td>
<td>0.03</td>
<td>170</td>
<td>1.18</td>
<td>11.0</td>
</tr>
<tr>
<td>Cedrela serrata</td>
<td>21.6</td>
<td>3.67</td>
<td>2.09</td>
<td>0.03</td>
<td>160</td>
<td>1.16</td>
<td>10.6</td>
</tr>
<tr>
<td>Eucalyptus microcorys</td>
<td>21.4</td>
<td>3.65</td>
<td>2.08</td>
<td>0.03</td>
<td>155</td>
<td>1.15</td>
<td>10.2</td>
</tr>
</tbody>
</table>

Leaf traits and energy balance

Leaf size (length and width) was recorded with a ruler to the nearest millimetre. A hole punch (13 mm diameter) was used to collect disc samples from each leaf, avoiding major veins, in order to determine leaf mass per unit area (LMA) and leaf nitrogen and phosphorus content expressed per unit area (N_a and P_a, respectively) and mass (N_m and P_m, respectively). The collected leaf material was oven-dried at 70°C for at least 48 h before dry mass was recorded. The discs were milled using a ball mill with stainless steel grinding jars (Model MM 301; Retsch, Haan, Germany).

Leaf nitrogen content was determined using an elemental analyser (EA 1108; Fison Instruments, Rodano, Italy). Leaf phosphorus content was determined by extracting and oxidizing leaf phosphorus into phosphate (Valderrama, 1981), followed by determining phosphate content through spectrophotometry (Ames, 1966). Eighteen leaf samples were analysed for phosphorus content using a different method, inductively coupled plasma mass spectrometry (ICP-MS; Basic Suite 1VE1; ACME Analytical Laboratories, Vancouver, BC, Canada), in order to calibrate the spectrophotometric method.

Data on g_s (at 25°C) and leaf dimensions, together with micrometeorological data collected at 7.5 m above ground from the local meteorological station, were used to model the annual mean leaf temperature (modelled T_{leaf}) of horizontal leaves at the hottest hour of the day (15:00 h) for each species. As a result of the large variation in vertical air temperature, the micrometeorological input data for the T_{leaf} modelling were corrected for the 3°C higher temperature at canopy height (c. 1.0 m) and the corresponding vertical difference in VPD (assuming no variation in absolute air humidity). The horizontal wind speed at canopy height was estimated by assuming a logarithmic wind profile (Campbell & Norman, 1998). The micrometeorological data used in the energy balance calculations included mean annual air temperature (26.0°C; 23.0°C at 7.5 m), wind speed (0.45 m s$^{-1}$; 1.52 m s$^{-1}$ at 7.5 m), total incoming irradiance (381 W m$^{-2}$) and VPD (2.12 kPa; 1.57 kPa at 7.5 m) at 15:00 h. In an additional analysis, T_{leaf} was estimated based on mean daytime (06:30–18:30 h) environmental conditions at canopy height (air temperature 23.9°C; wind speed 0.35 m s$^{-1}$; incoming radiation 285 W m$^{-2}$; VPD 1.36 kPa). Leaf energy balance equations were taken from Campbell & Norman (1998), with particular attention being paid to expressing variables on a relevant leaf area basis (i.e. one- or two-sided). The photosynthetically active radiation was assumed to be 50% of the total incoming radiation.

Leaf temperatures were also measured with infrared thermometers (Model IR-66; CEM, Shenzhen, China) on seedlings of all species except the exotic species E. microcorys. These...
measured on similarly sized plants growing in the nursery in March 2014, under sunny conditions in the early afternoon (13:00–15:00 h) of four days. On each day, \(T_{\text{leaf}} \) was measured on 20–30 leaves per species, selecting leaves with a horizontal leaf angle.

Results

Photosynthetic temperature responses

Values of \(J_{\text{max}} \) and \(V_{\text{cmax}} \) at 25°C differed among all six species (Table 3; Fig. 1); \(J_{\text{max}} \); \(P<0.01 \); \(V_{\text{cmax}} \); \(P<0.01 \), but all had a similar \(J_{\text{max}} \) to \(V_{\text{cmax}} \) ratio \((J:V; \text{ mean } 1.75 \pm 0.07 \text{ SE}) \), except for \(H.\text{ abyssinica} \) which had a mean ratio of 2.29 \(\pm 0.14 \) SE \((P<0.001) \). The native species, \(E.\text{ excelsum} \) and \(C.\text{ grandiflora} \), had the lowest values of \(J_{\text{max}} \) and \(V_{\text{cmax}} \) (Table 3; Fig. 1). Additionally, \(g_s \) at 25°C differed significantly among species \((P<0.01) \); Table 3), in a similar pattern as for photosynthetic capacities. Comparisons between native tropical montane species and the exotic plantation species demonstrated that native species had significantly lower values of \(V_{\text{cmax}} \) \((P=0.04) \) and higher \(J:V \) ratios than exotic species \((P=0.01) \), while \(J_{\text{max}} \) and \(g_s \) did not differ between these two groups (Table 3).

Both \(J_{\text{max}} \) and \(V_{\text{cmax}} \) at 25°C had significant positive relationships with leaf nitrogen content, expressed on both an area \((N) \) and a mass basis \((N_i; P \leq 0.04) \); Fig. 2), however, stronger relationships were found for \(N_i \) (Fig. 2). Leaf nitrogen content also differed significantly among species \((P<0.01) \); Table 2), where higher \(N_i \) was found in \(C.\text{ serrata} \), \(E.\text{ maidenii} \) and \(H.\text{ abyssinica} \), and higher \(N \) was found in \(C.\text{ serrata} \), \(E.\text{ maidenii} \) and \(C.\text{ grandiflora} \). The species also differed in LMA \((P<0.01) \); Table 2), with the highest values found in \(C.\text{ grandiflora} \) and the lowest in \(H.\text{ abyssinica} \). Neither LMA nor leaf nutrient content significantly differed between native and exotic taxa (Table 2).

The leaf phosphorus content also differed among species \((P<0.01) \), but not between native and exotic taxa (Table 2). The response of \(J_{\text{max}} \) and \(V_{\text{cmax}} \) at 25°C to leaf phosphorus content varied among species, on both a mass \((P_m) \) and an area basis \((P_i; \text{ data not shown}) \). The data could therefore not be pooled, as for the response to leaf nitrogen content, and data replication was deemed insufficient to conclude that there were any effects of leaf phosphorus content on photosynthetic capacities at an individual species level.

The activation energy \((H_a) \) of \(V_{\text{cmax}} \) and \(J_{\text{max}} \) did not significantly differ among species, but \(H_a \) was generally higher for \(V_{\text{cmax}} \) than for \(J_{\text{max}} \) (paired \(t \)-test: \(P=0.002 \)). \(H_a \) for \(V_{\text{cmax}} \) was also significantly higher in the native than in the exotic species \((P=0.04) \); Table 3), while \(H_a \) for \(J_{\text{max}} \) did not differ between the two groups.

Values of \(T_{\text{opt}} \) for \(V_{\text{cmax}} \) and \(J_{\text{max}} \) differed among species and ranged between 29.3 and 38.3°C and between 34.6 and 41.9°C, respectively (Table 3; Fig. 1). Values of \(T_{\text{opt}} \) were lower for \(J_{\text{max}} \) than for \(V_{\text{cmax}} \), in native species, but not in exotics (Table 3; Fig. 1). Native species also had significantly lower \(T_{\text{opt}} \) for \(J_{\text{max}} \) than exotic species \((P=0.01) \), whereas \(T_{\text{opt}} \) for \(V_{\text{cmax}} \) did not differ (Table 3).

For \(J_{\text{max}} \), the temperature response curves had clear discernible peaks within the measured temperature range, particularly for the three native species (Fig. 1a). Similarly, clear peaks within the temperature responses for \(V_{\text{cmax}} \) could be produced for \(E.\text{ excelsum} \), \(H.\text{ abyssinica} \) and \(C.\text{ serrata} \). However, the lack of clear peaks causes uncertainty in the \(T_{\text{opt}} \) estimates of \(V_{\text{cmax}} \) for the remaining three species, particularly \(C.\text{ grandiflora} \), for which measurements only occurred up to 35°C (Fig. 1b).

Three different parameters of \(A_{\text{n}} \) were determined: \(A_{\text{n}} \), at a constant \(C_i: C_i \) ratio of 0.7 \((A_{0272}) \); \(A_{\text{n108}} \), at a constant \(C_i: C_i \) ratio of 0.7 in an atmosphere with 50% higher \(\text{CO}_2 \) concentration \((A_{0272}) \) and \(A_{\text{n108}} \), at a \(C_i: C_i \) ratio that decreased with increasing temperature, as predicted by an optimal stomatal behaviour model \((A_{0272} \text{ and } A_{0408}) \); Medlyn et al., 2011; Fig. 3). The optimum temperatures of \(A_{0272} \) and \(A_{0408} \) did not significantly differ among species or between native and exotic species (Table 3). The average \(T_{\text{opt}} \) values for \(A_{0272} \) and \(A_{0408} \) across species were 26.3°C (± 0.85

Fig. 1 Responses of (a) maximum electron transport rate \((J_{\text{max}}) \) and (b) maximum rate of RuBisco carboxylation \((V_{\text{cmax}}) \) to temperature. Species include native tropical montane species (closed symbols and solid lines) and exotic species (open symbols and dashed lines). Error bars indicate \(\pm \) SE. Lines represent the fitted peaked Arrhenius equations.

- Carapa grandiflora
- Entandrophragma excelsum
- Hagenia abyssinica
- Cedrela serrata
- Eucalyptus maidenii
- Eucalyptus microcorys
SE) and 29.0°C (±0.75 SE), respectively (Figs 3a,b, 4). The A_{nT} at ambient atmospheric CO₂ concentrations was negatively affected by temperatures above 20–25°C in all species and its T_{opt} could thus not be confidently estimated (Fig. 3c). This demonstrates that, when stomatal responses are also considered, photosynthetic optima drastically decrease. For a +50% atmospheric CO₂ concentration scenario, A_{nT} peaked at 24–27°C (Fig. 3d).

In a sensitivity analysis, we assessed the influence of a 6% down-regulation in V_{cmax} under elevated CO₂; a typical response of trees to growth in elevated CO₂ (Ainsworth & Long, 2005). Such down-regulation had only a minor effect on T_{opt} of A_{n408}, which was increased from 29.0 to 29.5°C (±1.2 SE) across all species (Supporting Information Fig. S1).

Leaf temperatures in relation to photosynthetic optimum temperatures

Leaf width, length and g_s (Table 2) along with micrometeorological parameters were used to model the annual mean T_{leaf} of the six species at the hottest hour (15:00 h) in the common garden. Modelled T_{leaf} values were considerably higher for species with large leaves and low g_s as compared with species with smaller leaves and/or higher g_s (Fig. 4; Table 2). Consequently, $C. grandiflora$ and $E. excelsum$ (large leaves, low g_s) were found to have the highest modelled T_{leaf} and $E. microcorys$ (small leaves, high g_s) had the lowest, while the other species had intermediate values of leaf size, g_s and modelled T_{leaf}. Field measurements collected at 15:00 h on four days in March 2014 confirmed the pattern of differences in modelled T_{leaf} among species (Fig. 4). During these observations, air temperature at the meteorological station was 25.3°C; that is, somewhat above the mean annual air temperature at 15:00 h of 23.0°C. Estimates of T_{leaf} based on average daytime (06:30–18:30 h) environmental conditions were 1–2°C lower than the estimates for 15:00 h (Fig. 4).

As the optimum temperature of photosynthesis (J_{max}, V_{cmax}, A_{n272} and A_{n408}) refers to leaf temperature, the results were compared with modelled and observed T_{leaf} values in order to determine acclimation capacity to the temperature of the common garden and potential sensitivity to global warming. Daytime mean and peak T_{leaf} greatly exceeded the T_{opt} for J_{max} in the native species $C. grandiflora$ and $E. excelsum$ (Fig. 4). In $H. abyssinica$ and $C. serrata$, values of T_{leaf} and T_{opt} for J_{max} were similar, while the two Eucalyptus species had considerably lower T_{leaf} than T_{opt} for J_{max}. Daytime mean and peak T_{leaf} values were similar to T_{opt} for V_{cmax} in $C. grandiflora$, $E. excelsum$ and $C. serrata$ but lower than T_{opt} for V_{cmax} in the other three species (Fig. 4). As for J_{max}, the difference between optimal temperatures of photosynthetic capacities and T_{leaf} was largest (c. 10°C) for the two Eucalyptus species.

The optimal temperature of A_n at a C_i of 272 μmol mol⁻¹ was 26.3°C averaged across all six species (±0.85 SE), and thus...
significantly lower than daytime mean and peak T_{leaf} in all species (Fig. 4; Table 3). Increasing the CO$_2$ concentration by 50% increased the average optimum temperature of A_n by 2.7°C, from 26.3 to 29°C, across all six species (Fig. 4; Table 3). The T_{opt} for A_{n272}, however, remained significantly below T_{leaf} in all species except E. microcorys. The exceedance of T_{opt} for both A_{n272} and A_{n408} by T_{leaf} was largest in the two climax montane rainforest tree species C. grandiflora and E. excelsum.

Accounting also for stomatal responses to increasing VPD as temperature rises, peak daytime T_{leaf} exceeded the T_{opt} for A_n in all species under ambient CO$_2$ concentrations (Figs 3c, 4). For a +50% atmospheric CO$_2$ concentration scenario, T_{leaf} exceeded the T_{opt} for A_n in all species except E. microcorys (Figs 3d, 4).

Discussion

The overall objective of this study was to improve the limited understanding of temperature responses of photosynthesis in tropical tree species. This study has provided the first temperature response assessments of photosynthesis in tropical African montane trees and, to the best of our knowledge, the first estimates of temperature responses of photosynthetic capacities (i.e. J_{max} and V_{cmax}) in tropical tree species.

Hypothesis (1) predicted that J_{max} would be more sensitive to increased temperature than V_{cmax}, which was confirmed for the tropical montane species, with T_{opt} being 5–7°C lower for J_{max} than for V_{cmax} (Table 3). This finding conforms to the concept of a greater dependence of electron transport than of Rubisco carboxylation on thylakoid membrane stability and, thus, higher sensitivity to high temperatures (Murakami *et al.*, 2000; Sage & Kubien, 2007). It is also consistent with findings of previous studies on temperate and boreal species (Dreyer *et al.*, 2001; Medlyn *et al.*, 2002a; Kattge & Knorr, 2007). In contrast to the native montane rainforest species, the exotic plantation species had similarly high T_{opt} for both J_{max} and V_{cmax} (Table 3). The T_{opt} values for J_{max} in the exotic species were in the upper range of those reported previously (Kattge & Knorr, 2007), indicating that the photosynthesis of these species is well adapted to high temperatures.

Hypothesis (2) predicted that the native montane species would have lower optimum temperatures for photosynthesis than the exotic plantation species, as a consequence of being adapted to a cooler climate combined with expected lower acclimation ability (Cunningham & Read, 2002; Way & Oren, 2010). This was confirmed for J_{max} but not for V_{cmax} (Table 3; Figs 1, 4), suggesting that thylakoid electron transport capacity does not readily acclimate to the environmental conditions of the common garden in the native montane species. This implies that there are genetically controlled differences in photosynthetic temperature responses between the native and exotic species of this study, relating to their adaptations to a colder or warmer origin.
The apparent contradiction of native and exotic species having different T_{opt} for J_{max} but not for A_n at a common C_i (A_{n272} and A_{n408}) is caused by A_n at CO$_2$ concentrations of 272 and 408 μmol mol$^{-1}$ typically being V_{max} limited. The T_{opt} for V_{max} was not significantly different between native and exotic species (Table 3).

Hypothesis (3) predicted that limited acclimation ability of the native montane rainforest species would cause their estimated photosynthetic optimum temperatures to be frequently surpassed by their leaf temperatures, whereas the exotic plantation species, adapted to a warmer and more variable climate (Table 1), would not be as susceptible to high temperatures and thus would be better acclimated to the common garden conditions. This hypothesis was confirmed by the finding of very large ($\Delta T_{acclimated}$ to the common garden conditions. This hypothesis not be as susceptible to high temperatures and thus would be better adapted to a warmer and more variable climate (Table 1), would be by their leaf temperatures, whereas the exotic plantation species, native montane rainforest species would cause their estimated species (Table 3).

New Phytologist

The leaf energy balance (i.e. leaf size and energy balance, rather than differences in leaf T_{opt} compared with the other species were related to differences in leaf T_{opt}, the leaf energy budgets.

Our results demonstrate that photosynthesis of native montane rainforest climax tree species (i.e. C. grandiflora and E. excelsum) grown in a c. 5°C warmer habitat (Table 1) regularly operates at supraoptimal temperatures with respect to biochemical limitations (i.e. A_{n272}; Fig. 4), and that this situation is worsened if also considering stomatal limitations (A_{n15}; Fig. 3c). Our results thus support earlier suggestions that the commonly observed midday dips in photosynthesis are linked to supraoptimal temperatures and that tropical trees may be especially susceptible to warming (Clark et al., 2003; Clark, 2004; Doughty & Goulden, 2008).

The finding of tropical climax species being particularly sensitive to high temperature is also in line with evidence from investigations of warming effects on the growth of tropical South American seedlings. For example, Cheesman & Winter (2013) have demonstrated a stronger negative effect of warming on growth in seedlings of tropical climax species than in those of tropical pioneer species. While not conclusive or directly applicable to mature forest, this suggests that warmer ambient temperatures have the potential to threaten seedling growth and recruitment and potentially migration and survival rates of tropical montane rainforest climax species (Medjibe et al., 2014; Zhu et al., 2014). This may also affect not only canopy species, but co-occurring biota which may not be able to persist in nonclimax vegetation communities (Poulsen et al., 2011).

Hypothesis (4), predicting that a moderate climate change scenario (+50% increased atmospheric CO$_2$ concentration and +3°C) would have minimal effects on heat-induced reductions in photosynthesis, was corroborated by the finding that 50% increased atmospheric CO$_2$ concentration increased the optimum temperature of A_n by 2.7°C across all species (Table 3). This finding of balancing effects of projected increases in CO$_2$ and temperature on the T_{opt} exceedances of photosynthesis in tropical trees is in line with findings by Lloyd & Farquhar (2008). While heat-induced reductions in the photosynthesis of a given species may be unaltered by concurrently rising atmospheric CO$_2$ and temperature, global warming will probably affect the competitive balance between tropical tree species with different magnitudes of optimum temperature.
exceedances. Our results (Fig. 4) as well findings in earlier experiments (Cheesman & Winter, 2013; Zhu et al., 2014) indicate that such effects would be to the disadvantage of montane rainforest climax species, which may be outcompeted by species exhibiting smaller heat-induced reductions in photosynthesis; that is, pioneer species or species adapted to a warmer climate.

In conclusion, results presented here demonstrate that the photosynthesis of seedlings of cool-adapted montane rainforest climax tree species is very sensitive to high temperature. The leaf temperatures of sunlit foliage at the hottest hour of the day in these species (c. 40°C) greatly exceeded the photosynthetic optimum temperatures, as a result of low transpiratory cooling (i.e. low gs) and inefficient heat dissipation (i.e. large leaf size). Furthermore, montane rainforest tree species had lower optimum temperatures for Jmax compared with warm-adapted exotic plantation species, indicating that they do not readily acclimate to the c. 5°C warmer conditions in the common garden. Our results suggest that montane rainforest climax species may be particularly sensitive to future global warming and highlight the urgent need for more research on thermal responses of photosynthesis (considering biochemical and stomatal limitations as well as leaf energy balance) in tropical trees in order to better assess their sensitivity to global warming.

Acknowledgements

This project was supported by the Swedish International Development Cooperation Agency (Sida), Helge Axson Johnsons Stiftelse, Adlerbertska Forskningsstiftelsen and the Strategic Research Area, Biodiversity and Ecosystems services in a Changing Climate (BECC; http://www.ccc.lu.se/research/becc). We would also like to acknowledge the support of C. Bazamanka as well as the Rwanda Agriculture Board (RAB; formerly known as Rwanda Agricultural Research Institute (ISAR)), for providing plants and access to the study site.

References

Supporting Information

Additional supporting information may be found in the online version of this article.

Fig. S1 Temperature responses of net photosynthesis at an elevated atmospheric [CO$_2$] of 408 μmol mol$^{-1}$ (A_{408}) using 6% lower $V_{c,max}$ values.

Please note: Wiley Blackwell are not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing material) should be directed to the New Phytologist Central Office.