Inducing hydrogen assisted cold cracking in high strength steel weld metal

Rian Holdstock

University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses

Copyright Warning

University of Wollongong

Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
INDUCING HYDROGEN ASSISTED COLD CRACKING IN HIGH STRENGTH STEEL WELD METAL

A THESIS SUBMITTED IN FULFILMENT OF

THE REQUIREMENTS FOR THE AWARD OF THE DEGREE

DOCTOR OF PHILOSOPHY

FROM

THE UNIVERSITY OF WOLLONGONG

BY

RIAN HOLDSTOCK

SCHOOL OF MECHANICAL, MATERIALS AND MECHATRONICS ENGINEERING

2009
DECLARATION

This is to certify that the work presented in this thesis has been conducted by the candidate while enrolled as a full-time postgraduate student in the Department of Materials Engineering, University of Wollongong. The results obtained in this study and the conclusions drawn are those of the candidate. The work has not been submitted in total or in partial fulfilment of the requirements of any other university or educational institution.

Rian Holdstock
ACKNOWLEDGEMENTS

I would like to thank The Cooperative Research Centre for Welded Structures (CRC-WS), which provided financial support for the program. I would also like to acknowledge the effort and guidance given by Dr. David Nolan. Without his efforts my studies at The University of Wollongong, under the auspices of CRC-WS, would not have eventuated.

To my colleagues at BMT Fleet Technology, thanks for the freedom, your advice and a supportive working environment.

To Dr. Zoran Sterjovski, you gave both friendship and academic stimulus, thanks mate!

To the wonderful staff of the engineering faculty, who were always prepared to accommodate my needs. particularly: Ron, Stuart, Bob (x3), Ian, Alan, Greg, Jose, Nick, Lorelle and Joy, thank you immensely.

To, Professors John Norrish and Professor Rian Dippenaar, whose mentoring, patience and support provided much of the inspiration I needed to complete this thesis.
To my mother, Bettie, and my brother Louis. I share this achievement with you.
Finally to my patient wife, Lillian, who most likely had to endure more than I had to. You were my foundation during this momentous task. Muito obrigado minha queridinha.
ABSTRACT

The thesis explores the hydrogen assisted cold cracking in high strength steel weld metal during flux cored arc welding (FCAW) using a technique involving the deliberate introduction of hydrogen into the CO₂ shielding gas. A specific objective was to investigate weld metal cold cracking susceptibility by development of a research tool which permitted control over both the weld metal diffusible hydrogen content and the stress applied during mechanical testing of single bead on plate weld deposits.

The basis for this undertaking is twofold, and stems from the fact that crack mitigating measures traditionally address cracking in the heat affected zone, although it has been shown that weld metal hydrogen assisted cold cracking is more likely when strength matching weld metals are used to join high strength low alloy steels. As a result existing weldability test methods have a limited ability to simulate weld metal hydrogen assisted cold cracking.

The literature relevant to hydrogen assisted cold cracking (HACC) has been reviewed, and the current understanding and assertions relating to HACC have been detailed. The primary findings are that this form of cracking in high strength steel weld metal occurs by localised plastic deformation, which eventually results in fracture through bands of intense shear. The increase in alloying elements and the as-cast nature of the weld metal are also recognised as two key reasons why cracking has migrated from the heat affected zone into the weld metal.

Current welding standards and recognised weldability test methods have also been reviewed to establish the techniques and engineering guidance available. This review indicates that the majority of test methods and all of the welding standards are heat affected zone specific A further revelation is that weldability test methods typically function as a ranking tool and offer limited scope to serve as a research tool.

The initial experimental investigation of multipass welds in thick plate revealed that the majority of weld metal cold cracking occurred within 48 hours of weld completion. Crack detection was also recorded several days after welding had ceased, indicating that the
diffusion, trapping and stress-strain conditions of solute hydrogen contribute significantly to crack initiation and propagation.

Self restraint multipass weld techniques were then considered as a means of generating weld metal hydrogen assisted cold cracking test data. Subsequent research also evaluated tensile and bend testing to develop cracking in single bead on plate weld deposits. The analysis of the requirements to generate cracking in both single and multipass welds was then used to produce a single bead, applied stress test which preferentially targeted the weld metal. The test methods developed during the experimental phase subsequently allowed manipulation of the diffusible hydrogen content and the magnitude of the applied stress, which in turn facilitated weld metal cold cracking under controlled conditions.

The test specimens were produced by depositing high strength ferritic weld metal onto a strength matched martensitic base material via an automated flux cored arc welding process. In order to increase the susceptibility to cracking, 2% and 5%H₂ was deliberately added to the CO₂ shielding gas.

Both tensile and 4-point bend testing of single pass weld deposits were evaluated, although 4-point bending was ultimately selected as the most suitable test method providing preferential targeting of the weld metal. Standard bead on plate and geometrically modified bead on plate specimen geometries were employed during testing. These were assessed according to their functionality, machinability and reproducibility of the results generated.

Rising load and stress controlled test configurations were applied to observe the behaviour of the weld metal mechanical properties. Although the test configurations permitted close control over the test variables (hydrogen, stress, microstructure and time), the results indicated that variations in cold cracking delay times will occur under near identical test conditions. The variations observed are explained in terms of differences in the transport and trapping behaviour of hydrogen in the heterogeneous structure of the weld metal. The inability to generate closely matching cold cracking delay times under matching conditions suggests that a single time to fracture cannot be realised for the test conditions employed. It is therefore proposed that a maximum delay time after which fracture will not
occur be used as a research outcome, instead of defining specific or closely matching delay
times.

Metallographic analysis of the test specimens was also conducted to determine the effect of
hydrogen on the evolution of the microstructure and to establish the fracture morphology.
Image analysis revealed that a reduction of non-metallic inclusions occurred during welding
with hydrogen-rich shielding gas. The introduction of hydrogen into the shielding gas also
resulted in a coarsening of the general microstructure, believed to be the product of reduced
acicular ferrite nucleation, allowing individual grains to coarsen without being impeded by
the growth of nearby nucleated grains.

The morphology of the fractures observed under microscopy and their reliance on the
introduction of hydrogen in the shielding gas indicated that the fractures were typical of those
produced under weld metal hydrogen assisted cold cracking conditions. Ductile tearing,
microvoid coalescence, quasi cleavage and cleavage fracture facets were observed along the
fracture path. The cracks were observed to have propagated along both the columnar
solidification structure and along the prior austenite grain boundaries. Microcracks were also
observed on the fracture faces, which are believed to have contributed to the final fracture by
means of crack-linkage. Higher concentrations of impurity elements were also observed on
the boundary along which the cracks had propagated. The typical region from which cracking
would originate was associated with second phase constituents and low grain boundary ferrite
content.

Whilst it was not possible to develop a quantitative test for hydrogen cracking susceptibility;
the reasons for the test variability have been explored and show that the interaction of
hydrogen with microstructural development may play a significant role in WM HACC
susceptibility.
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td>Acoustic Emission Monitoring</td>
</tr>
<tr>
<td>AF</td>
<td>Acicular Ferrite</td>
</tr>
<tr>
<td>AS/NZS</td>
<td>Australia/New Zealand Standard</td>
</tr>
<tr>
<td>AWS</td>
<td>American Welding Society</td>
</tr>
<tr>
<td>B</td>
<td>Bainite</td>
</tr>
<tr>
<td>CEIW</td>
<td>International Institute of Welding Carbon Equivalent</td>
</tr>
<tr>
<td>CEN</td>
<td>Carbon Equivalent Number</td>
</tr>
<tr>
<td>EDS</td>
<td>Energy Dispersive Spectrometer (EDS)</td>
</tr>
<tr>
<td>FCAW</td>
<td>Flux Cored Arc Welding</td>
</tr>
<tr>
<td>GB</td>
<td>Grain Boundary</td>
</tr>
<tr>
<td>GBOP</td>
<td>Gapped Bead on Plate</td>
</tr>
<tr>
<td>HACC</td>
<td>Hydrogen Assisted Cold Cracking</td>
</tr>
<tr>
<td>HD</td>
<td>Diffusible Hydrogen</td>
</tr>
<tr>
<td>HEDE</td>
<td>Hydrogen Enhanced Decohesion</td>
</tr>
<tr>
<td>HELP</td>
<td>Hydrogen Enhanced Localised Plasticity</td>
</tr>
<tr>
<td>HSLA</td>
<td>High Strength Low Alloy</td>
</tr>
<tr>
<td>IG</td>
<td>Intergranular</td>
</tr>
<tr>
<td>LB-TRC</td>
<td>Longitudinal Bead – Tensile Restraint</td>
</tr>
<tr>
<td>MMAW</td>
<td>Manual Metal Arc Welding</td>
</tr>
</tbody>
</table>
Ms Martensite Start Temperature
MT Magnetic Particle Testing
MVC Microvoid Coalescence
NDT Nondestructive Testing
Pcm Ito and Bessyo Carbon Equivalent
PM Parent Metal
QC Quasi Cleavage
Q&T Quenched and Tempered
RT Radiography
SEM Scanning Electron Microscopy
TEM Transmission Electron Microscopy
TRC tensile Restraint Cracking
UT Ultrasonic Testing
W Widmanstätten Ferrite
WM Weld Metal
YS Yield Strength
Z Confidence Interval
α Allotriomorphic Ferrite
δ Delta-Ferrite or Deflection
γ Austenite
σ_{eff} Effective Stress
σ_{\max} Maximum Stress in Outer Fibre

ε_{\max} Maximum Strain in Outer Fibre
TABLE OF CONTENTS

DECLARATION .. ii
ACKNOWLEDGEMENTS ... iii
ABSTRACT ... iv
ABBREVIATIONS .. vii
TABLE OF CONTENTS .. x
CHAPTER 1: ... 1
INTRODUCTION ... 1
CHAPTER 2 ... 8
LITERATURE SURVEY .. 8

2.1.1 Hydrogen Entry Due to Welding .. 8
2.1.2 Hydrogen Trapping ... 11
2.1.3 Hydrogen Transport ... 17
2.1.4 Hydrogen – Dislocation Interactions .. 18
2.1.5 Hydrogen Diffusion ... 22
2.2 HIGH STRENGTH STEEL WELD METAL MICROSTRUCTURE 26

2.2.1 Solid State Transformation ... 26
2.2.2 Austenite Grain Size ... 28
2.2.3 Allotriomorphic Ferrite (Polygonal or Grain Boundary Ferrite)............................. 30
2.2.4 Widmanstätten Ferrite ... 31
2.2.5 Acicular Ferrite ... 32
2.2.6 Weld Metal Inclusions ... 35
2.2.7 Austenite Grain Size and Martensite Start Temperature ... 39
2.2.8 Acicular Ferrite and Hardenability .. 42
2.3 HYDROGEN ASSISTED COLD CRACKING .. 44
2.3.1 Hardness ... 45