Polyhedral models and geometric structures for nanotubes

Koon Fung Richard Lee
University of Wollongong
2010

Polyhedral models and geometric structures for nanotubes

Koon Fung Richard Lee

University of Wollongong

Recommended Citation
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
Polyhedral Models and Geometric Structures for Nanotubes

A thesis submitted in fulfillment of the requirements for the award of the degree of

Doctor of Philosophy

from

University of Wollongong

by

Koon Fung Richard LEE

Bachelor of Science, University of Wollongong

Nanomechanics Group,
School of Mathematics and Applied Statistics
2010
CERTIFICATION

I, Koon Fung Richard Lee, declare that this thesis, submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Mathematics and Applied Statistics, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. This document has not been submitted for qualifications at any other academic institution.

Koon Fung Richard LEE

June, 2010
I gratefully acknowledge the people who provided enormous assistance in the preparation of this thesis. First of all I would like to acknowledge the tireless assistance of my principal supervisor, Professor Jim Hill. His unswerving support and direction throughout the course of my candidature has enabled me to present the best thesis I possibly can. Additionally, my co-supervisor Dr Barry Cox has likewise been a great support and he has always selflessly provided assistance, advice and friendship whenever it was needed. I am also grateful to Dr. Xiaobao Yang for providing the actual numerical data of their study [1, 2] which has been especially beneficial for the work of Chapters 5 and 6. Last but not least, I must thank mom, daddy, wife Kooly and brother Mozart for their support and encouragement; without them, it would have been impossible for me to come to study in Australia. This thesis is dedicated to all of these people.
Abstract

In this thesis, some new polyhedral models for nanotubes are examined. The conventional rolled-up model for carbon nanotubes assumes that a flat sheet of graphene is rolled into a seamless right circular cylinder and therefore in terms of the geometric parameters, the curvature inherent in the structure of nanotubes is not taken into account. The conventional rolled-up model of nanotubes completely ignores any effects due to curvature while the existing ideal polyhedral models for single-walled carbon nanotubes and boron nitride nanotubes, which are both hexagonal structures, are known to give predictions for the geometric parameters of the tube which are in excellent agreement with computational studies (molecular dynamics simulations and ab initio calculations). In this thesis the notion of an ideal polyhedral model is extended to silicon and boron nanotubes, which adopt respectively squares or skew rhombi and flat equilateral triangles as their structure. The silicon nanotubes considered here are assumed to be formed by sp^3 hybridization and thus the nanotube lattice is assumed to comprise only squares or skew rhombi. The boron nanotubes considered here are assumed to be formed by complex bonding type and therefore the nanotube lattice is assumed to comprise a triangular pattern. From molecular dynamics simulation results for carbon nanotubes and silicon nanotubes, the bond lengths are known to vary depending upon the bond direction. Often this aspect can not be ignored and therefore in this thesis both the conventional and the ideal polyhedral models are extended to include distinct bond lengths, and specifically for carbon, silicon and boron nanotubes. These general models are shown to be in excellent agreement with computational studies.

We first present the standard geometric parameters for the conventional nanotube model. Noting again that the curvature inherent in this model is completely ignored, for the ideal polyhedral model for silicon nanotubes we begin with three
fundamental postulates, while for boron nanotubes we begin with two fundamental postulates. After some application of straightforward geometry, trigonometry and algebra, new formulae are derived which provide precise analytical expressions for geometric parameters such as radii, bond angles and thickness. Asymptotic expansions of these equations for quantities up to the first two orders of magnitude show that the first term gives the conventional model, while the second term may be viewed as a first-order correction to the conventional model. Geometric properties of ultra-small nanotubes are examined which have certain extreme faceted structures.

Both the conventional and the ideal polyhedral models are then extended to include distinct bond lengths, including a general rolled-up model and a general polyhedral model. The general polyhedral model is similar to the ideal polyhedral model in that it is also based on certain well-defined postulates. For carbon nanotubes there are two general polyhedral models, termed Model I and II. Model I is a polyhedral model with distinct bond lengths and distinct bond angles. Model II is a polyhedral model with distinct bond lengths but with equal bond angles. In other words, the difference between the two carbon models is the assumed values of the bond angles. Model I assumes three prescribed distinct bond angles while Model II assumes that all the bond angles are the same. For both the silicon and boron nanotubes, there is only one general polyhedral model. From asymptotic expansions, the general polyhedral models include the rolled-up and ideal models or corresponding general cases, and therefore the general polyhedral model incorporates both rolled-up models and the ideal polyhedral model. Finally, the ideal polyhedral model and the general polyhedral model are compared with results obtained from molecular dynamics simulations and ab initio calculations. The ideal polyhedral models appear to be in good agreement with simulation results, and the results for the general polyhedral models and other computational studies are also in excellent agreement.

In summary, the major original contribution contained in this thesis is a development of the existing ideal polyhedral models to encompass squares or skew rhombi and flat equilateral triangles for silicon and boron nanotubes respectively. We also provide new general polyhedral models for hexagonal, skew rhombi and flat equilateral triangular structures which incorporate distinct bond lengths.
Contents

1 Introduction 1

1.1 Overview .. 1

1.1.1 Background .. 1

1.1.2 Conventional rolled-up model for carbon nanotubes 2

1.1.3 Ideal polyhedral model for carbon nanotubes 5

1.1.4 Ideal polyhedral model for boron nitride nanotubes 8

1.1.5 Analysis of conventional and ideal polyhedral models 11

1.2 Thesis structure .. 13

1.3 List of Symbols ... 15

2 General rolled-up and polyhedral models for carbon nanotubes 18

2.1 Introduction ... 18

2.2 Rolled-up model with distinct bond lengths and same bond angle . 21

2.3 Polyhedral model with distinct bond lengths and distinct bond angles (Model I) ... 24

2.4 Polyhedral model with distinct bond lengths and same bond angle (Model II) ... 30

2.5 Asymptotic expansions for polyhedral model with distinct bond lengths and distinct bond angles 31

2.6 Results .. 33

2.7 Conclusion .. 36

3 Ideal polyhedral model for silicon nanotubes 44

3.1 Introduction ... 44

3.2 Ideal polyhedral model for silicon nanotubes 47
3.3 Asymptotic expansions for ideal polyhedral model 54
3.4 Geometric structure of ultra-small silicon nanotubes 57
3.5 Results .. 59
3.6 Conclusion .. 68

4 Silicon nanotubes with distinct bond lengths 72
4.1 Introduction ... 72
4.2 Rolled-up model with distinct bond lengths 74
4.3 Polyhedral model with distinct bond lengths 77
4.4 Asymptotic expansions for general polyhedral model 81
4.5 Results .. 83
4.6 Conclusion .. 90

5 Ideal polyhedral model for boron nanotubes 95
5.1 Introduction ... 95
5.2 Ideal polyhedral model for boron nanotubes 98
5.3 Asymptotic expansions for ideal polyhedral model 105
5.4 Geometric structure of ultra-small boron nanotubes 109
5.5 Results .. 111
5.6 Conclusion .. 121

6 Boron nanotubes with distinct bond lengths 125
6.1 Introduction ... 125
6.2 Rolled-up model with distinct bond lengths 128
6.3 Polyhedral model with distinct bond lengths 132
6.4 Asymptotic expansions for general polyhedral model 136
6.5 Results .. 140
6.6 Conclusion .. 146

7 Summary .. 149
7.1 Introduction ... 149
7.2 Carbon nanotubes .. 152
7.3 Silicon nanotubes ... 161
7.4 Boron nanotubes ... 165
7.5 Results and conclusions .. 167

A Appendix for carbon nanotubes ... 170
 A.1 Asymptotic expansions of exact formulae for polyhedral model with
distinct bond lengths and distinct bond angles 170
 A.2 Chiral angle estimate for carbon nanotube armchair tubes \((m = n)\) . 171

B Appendix for silicon nanotubes .. 173
 B.1 Asymptotic expansions of exact formulae for ideal polyhedral model . 173
 B.2 Asymptotic expansions of exact formulae for general polyhedral model 175

C Appendix for boron nanotubes .. 178
 C.1 Asymptotic expansions of exact formulae for ideal polyhedral model . 178
 C.2 Asymptotic expansions of exact formulae for general polyhedral model 180

Bibliography ... 183

List of the author’s publications ... 195
List of Figures

1.1 CNT constructed from two dimensional sheet. 3
1.2 Ideal polyhedral model for CNTs for zigzag, chiral and armchair type. 5
1.3 Ideal polyhedral model for BNNTs for zigzag, chiral and armchair tubes. .. 10

2.1 General polyhedral model (Model I) for CNTs for zigzag, chiral and armchair tubes. 20
2.2 CNT constructed from two dimensional sheet with distinct bond lengths. .. 22
2.3 Points lying on two helices and forming a triangle in three-dimensional space. ... 25
2.4 Points forming a triangular pyramid. .. 26
2.5 Points forming PQQ’ in three-dimensional space. 27
2.6 Points forming rotated pyramid projected onto xy-plane. 29
2.7 Percentage relative error (r – r*)/r* for the data from Table 2.1 as a function of the radius r* arising from Jiang et al. [65] 40
2.8 Percentage relative error (r – r*)/r* for the data from Table 2.2 as a function of the radius r* arising from Kurti et al. [68]. 40

3.1 Pentagonal prism and antiprism. .. 46
3.2 SiNTs for ideal polyhedral model for prismatic, chiral and antiprismatic type. ... 47
3.3 SiNT constructed from two dimensional sheet. 47
3.4 Points lying on three helices and forming an equilateral skew rhombus in three-dimensional space. 49
3.5 Points forming PQQ’ in three-dimensional space. 52
3.6 Antiprismatic SiNTs (2, 2), (3, 3), (4, 4). 58
3.7 Chiral SiNTs (2, 1), (3, 1), (4, 1). 58
3.8 Prismatic SiNTs (2, 0), (3, 0), (4, 0). 58
3.9 Subtended angle 2ψ for SiNTs of type prismatic: (3,0)-(10,0), chiral: (2,1)-(10,5) and antiprismatic: (2,2)-(10,10). 62
3.10 Chiral angle θ for SiNTs of type prismatic: (3,0)-(10,0), chiral: (2,1)-(10,5) and antiprismatic: (2,2)-(10,10). 63
3.11 Adjacent bond angle ϕ for SiNTs of type prismatic: (3,0)-(10,0), chiral: (2,1)-(10,5) and antiprismatic: (2,2)-(10,10). 64
3.12 Opposite bond angle μ_1 for SiNTs of type prismatic: (3,0)-(10,0), chiral: (2,1)-(10,5) and antiprismatic: (2,2)-(10,10). 64
3.13 Opposite bond angle μ_2 for SiNTs of type prismatic: (3,0)-(10,0), chiral: (2,1)-(10,5) and antiprismatic: (2,2)-(10,10). 65
3.14 Percentage difference between polyhedral model and conventional radius ($r-r_{re}/r_{re}$) [%] for SiNTs of type prismatic: (3,0)-(10,0), chiral: (2,1)-(10,5) and antiprismatic: (2,2)-(10,10). 66
3.15 Percentage difference between polyhedral model and conventional unit cell length ($L-L_{re}/L_{re}$) [%] for SiNTs of type prismatic: (3,0)-(10,0), chiral: (2,1)-(10,5) and antiprismatic: (2,2)-(10,10). 67
3.16 Thickness δ for SiNTs of type prismatic: (3,0)-(10,0), chiral: (2,1)-(10,5) and antiprismatic: (2,2)-(10,10). 68
3.17 Thickness δ for CNTs of type zigzag: (2,0)-(10,0), chiral: (2,1)-(10,5) and armchair: (2,2)-(10,10). 69
4.1 General polyhedral model for SiNTs for prismatic, chiral and antiprismatic tubes with $\sigma_1 = 2.35\text{Å}$ and $\sigma_2 = 2.75\text{Å}$. 74
4.2 SiNT constructed from two dimensional sheet with distinct bond lengths. 75
4.3 Points lying on three helices and forming a skew rhombus in three-dimensional space. 78
4.4 Points forming PQQ' in three-dimensional space. 79
4.5 Variation of SiNTs r_λ/σ_1 with $\lambda = \sigma_1/\sigma_2$ for $n = 3$ and 4 (a) (3, m) and (b) (4, m). 84
4.6 Variation of SiNTs r_λ/σ_2 with $\lambda = \sigma_1/\sigma_2$ for $n = 3$ and 4 (a) $(3,m)$ and (b) $(4,m)$. 85

4.7 Comparison of SiNTs r_λ/σ_1 as a function of $\lambda = \sigma_1/\sigma_2$ for various models (polyhedral, asymptotic, conventional) (a) $(4,0)$, (b) $(4,2)$ and (c) $(4,4)$. ... 86

4.8 Comparison of SiNTs r_λ/σ_2 as a function of $\lambda = \sigma_1/\sigma_2$ for various models (polyhedral, asymptotic, conventional) (a) $(4,0)$, (b) $(4,2)$ and (c) $(4,4)$. ... 87

4.9 Molecular dynamics result for SiNTs at 100K (a) $(4,0)$, (b) $(4,1)$ and (c) $(4,2)$. ... 90

5.1 Ideal polyhedral model for BNTs for zigzag, chiral and armchair type. 98

5.2 BNT constructed from two dimensional sheet. 99

5.3 Points lying on three helices and forming an equilateral triangle in three-dimensional space. 101

5.4 Points forming PQQ’ in three-dimensional space. 103

5.5 Armchair BNTs $(1,1)$, $(2,2)$, $(3,3)$. 110

5.6 Chiral BNTs $(2,1)$, $(3,1)$, $(4,1)$. 110

5.7 Zigzag BNTs $(2,0)$, $(3,0)$, $(4,0)$. 110

5.8 Subtended angle 2ψ for BNTs of type zigzag: $(3,0)$-$(10,0)$, chiral: $(2,1)$-$(10,5)$ and armchair: $(2,2)$-$(10,10)$. 114

5.9 Chiral angle θ for BNTs of type zigzag: $(3,0)$-$(10,0)$, chiral: $(2,1)$-$(10,1)$, $(2,1)$-$(10,5)$ and $(2,1)$-$(10,9)$ and armchair: $(2,2)$-$(10,10)$. 115

5.10 Next neighbour bond angle ω_1 for BNTs of type zigzag: $(3,0)$-$(10,0)$, chiral: $(2,1)$-$(10,5)$ and armchair: $(2,2)$-$(10,10)$. 116

5.11 Next neighbour bond angle ω_2 for BNTs of type zigzag: $(3,0)$-$(10,0)$, chiral: $(2,1)$-$(10,5)$ and armchair: $(2,2)$-$(10,10)$. 116

5.12 Next neighbour bond angle ω_3 for BNTs of type zigzag: $(3,0)$-$(10,0)$, chiral: $(2,1)$-$(10,5)$ and armchair: $(2,2)$-$(10,10)$. 117

5.13 Opposite bond angle μ_1 for BNTs of type zigzag: $(3,0)$-$(10,0)$, chiral: $(2,1)$-$(10,5)$ and armchair: $(2,2)$-$(10,10)$. 117

5.14 Opposite bond angle μ_2 for BNTs of type zigzag: $(3,0)$-$(10,0)$, chiral: $(2,1)$-$(10,5)$ and armchair: $(2,2)$-$(10,10)$. 118
5.15 Opposite bond angle μ_3 for BNTs of type zigzag: (3,0)-(10,0), chiral: (2,1)-(10,5) and armchair: (2,2)-(10,10). .. 118

5.16 Percentage difference between polyhedral model and conventional radius $((r - r_{re})/r_{re})$ [%] for BNTs of type zigzag: (1,0)-(10,0), chiral: (2,1)-(10,5) and armchair: (1,1)-(10,10). 119

5.17 Percentage difference between polyhedral model and conventional unit cell length $((L - L_{re})/L_{re})$ [%] for BNTs of type zigzag: (1,0)-(10,0), chiral: (2,1)-(10,5) and armchair: (1,1)-(10,10). 120

5.18 Thickness δ for BNTs of type zigzag: (3,0)-(10,0), chiral: (2,1)-(10,5) and armchair: (2,2)-(10,10). .. 120

5.19 Thickness δ for CNTs of type zigzag: (2,0)-(10,0), chiral: (2,1)-(10,5) and armchair: (2,2)-(10,10). .. 121

6.1 General polyhedral model for BNTs for zigzag, chiral and armchair tubes. .. 126

6.2 Polyhedral model for BNTs with 1/9 hexagonal holes for zigzag, chiral and armchair tubes. 127

6.3 BNT constructed from two dimensional sheet. 128

6.4 Points lying on three helices and forming a triangle in three-dimensional space. .. 132

6.5 Points forming PQQ' in three-dimensional space. 134

6.6 Indication of adjacent, next nearest neighbour and opposite bond angles. .. 134

6.7 BNT (4,0) of r/σ_3 with $\lambda_1 = \sigma_1/\sigma_3$ and $\lambda_2 = \sigma_2/\sigma_3$. .. 140

6.8 BNT (4,2) of r/σ_3 with $\lambda_1 = \sigma_1/\sigma_3$ and $\lambda_2 = \sigma_2/\sigma_3$. .. 143

6.9 BNT (4,4) of r/σ_3 with $\lambda_1 = \sigma_1/\sigma_3$ and $\lambda_2 = \sigma_2/\sigma_3$. .. 144

6.10 BNT radius versus $\csc(\pi/2n)$ for special case of armchair ($n = m$) and $\sigma_1 = \sigma_2$. .. 145

A.1 Points forming the chiral angle estimate. .. 172
List of Tables

1.1 Comparison of CNT radii from conventional rolled-up model (r_{re}), ideal polyhedral model (r) and \textit{ab initio} calculations of Cabria \textit{et al.} (r^*) \cite{59} using $\sigma = 1.44\text{Å}$. .. 12

1.2 Comparison of BNNT angles from polyhedral model (ϕ, ϕ_{1N}, ϕ_{2N}, ϕ_{3N}, $\bar{\phi}_N$) and density functional theory results from Barnard \textit{et al.} (ϕ^*_B, ϕ^*_N) \cite{55}. .. 13

2.1 Comparison of CNT radii for general polyhedral model with distinct bond lengths and distinct bond angles (Model I) (r, θ) and interatomic potential method of Jiang \textit{et al.} (r^*, θ^*) \cite{65}. .. 37

2.2 Comparison of CNT radii for polyhedral model with distinct bond lengths and distinct bond angles (Model I) (r, θ) and exchange-correlation functional theory of Kurti \textit{et al.} (r^*, θ^*) \cite{68}. .. 38

2.3 Comparison of CNT radii for polyhedral model with distinct bond lengths and distinct bond angles (Model I) (r, θ) and Tersoff potential of Jindal \textit{et al.} (r^*) \cite{66}. .. 39

2.4 Comparison of CNT radii for polyhedral model with distinct bond lengths and distinct bond angles (Model I) (r, θ) and local-density approximation of Kanamitsu \textit{et al.} (r^*) \cite{67}. .. 39

2.5 Comparison of CNT radii for general polyhedral model with distinct bond lengths and the same bond angle (Model II) (r, θ, ϕ) and the various methods of Budyka \textit{et al.} (r^*) \cite{61}. .. 39

2.6 Main formulae for CNTs general rolled-up model. 42

2.7 Main formulae for CNTs general polyhedral model. 43

3.1 Results of SiNTs ideal polyhedral model using $\sigma = 2.35$ Å. 60
3.2 Comparison of SiNT radii from traditional rolled-up model (r_{re}), ideal polyhedral model (r) and theoretical studies of Li et al. [60] using $\sigma = 2.305\text{Å}$. .. 60
3.3 Main equations for SiNTs ideal polyhedral model. 70
4.1 Results of molecular dynamics simulations for meta-stable SiNTs at 100K. .. 90
4.2 Results of bond angles from molecular dynamics simulations for meta-stable SiNTs at 100K. .. 91
4.3 Results of molecular dynamics simulations for SiNT (4, 0) at different temperatures. .. 92
4.4 Main equations for SiNTs general rolled-up model. 93
4.5 Main equations for SiNTs general polyhedral model $\lambda = \sigma_1/\sigma_2$. .. 94
5.1 Results of BNTs ideal polyhedral model using $\sigma = 1.67 \text{Å}$. 112
5.2 Comparison of BNT radii from traditional rolled-up model (r_{re}), ideal polyhedral model (r) and local density approximation method of Cabria et al. [109, 112]. .. 113
5.3 Comparison of BNT diameter from conventional model (r_{re}), polyhedral model (r) and density functional theory study of Lau et al. [104] using $\sigma = 1.68 \text{Å}$. .. 113
5.4 Comparison of BNT radii from conventional model (r_{re}), polyhedral model (r) and first-principles method of Yang et al. [1, 2] using $\sigma = 1.67 \text{Å}$. .. 113
5.5 Main equations for BNTs ideal polyhedral model. 122
6.1 Comparison of BNT radii from general rolled-up model (r_{rd}), general polyhedral model (r) and first-principles method of Yang et al. [1, 2]. 141
6.2 BNTs different bond lengths for first-principles method of Yang et al. [2]. .. 142
6.3 Main equations for BNTs general rolled-up model. 147
6.4 Main equations for BNTs general polyhedral model. 148