2010

Pricing volatility derivatives with stochastic volatility

Guanghua Lian

University of Wollongong

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
Pricing Volatility Derivatives with Stochastic Volatility

A thesis submitted in fulfillment of the requirements for the award of the degree of

Doctor of Philosophy

from

University of Wollongong

by

Guanghua Lian, B.Sc. (Sichuan University)
M.A. (Huazhong University of Science and Technology)

School of Mathematics and Applied Statistics

2010
CERTIFICATION

I, Guanghua Lian, declare that this thesis, submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Mathematics and Applied Statistics, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The document has not been submitted for qualifications at any other academic institution.

Guanghua Lian

March, 2010
Acknowledgements

I would like to express my sincerest gratitude and appreciation to my supervisor, Professor Song-Ping Zhu, for his insightful guidance and substantial advice throughout the research. I, in particular, appreciate him for introducing me into this wonderful research area and inspiring my numerous research ideas. His high professional standard and rigorous attitude towards research have greatly influenced me and become my principle that I will abide by in all of my life. It is he who transformed me from a raw beginner into an active researcher, which fulfills my dream of pursuing research in mathematical finance.

Also, I am especially grateful to Dr. Xiao-Ping Lu for her constant encouragements and warm care to me during my study. Without her help this thesis could not have reached its present form. I wish to thank all the fellow friends in the Center of Financial Mathematics and the School of Mathematics and Applied Statistics in University of Wollongong, particularly Professor Matt Wand and Dr. Pam Davy, who taught me statistics and Markov Chain Monte Carlo method, Professor Timothy Marchant and Dr. Mark Nelson for their encouragement to me and valuable advice for my research and career development. I trust that all other people whom I have not specifically mentioned here are aware of my deep appreciation.

Finally, the financial support from the University of Wollongong with HDR tuition scholarship and University Postgraduate Research Award is also gratefully acknowledged. I thank my parents and family for their years of dedication and support to me and for their sincere concern about my life.
Abstract

Volatility derivatives are products where the volatility is the main underlying notion. These products are particularly important for market investors as they use them to have insight into the level of volatility to efficiently manage the market volatility risk. This thesis makes a contribution to literature by presenting a set of closed-form exact solutions for the pricing of volatility derivatives.

The first issue is the pricing of variance swaps, which is discussed in Chapter 2, 3, and 4. We first present an approach to solve the partial differential equation (PDE), based on the Heston (1993) two-factor stochastic volatility, to obtain closed-form exact solutions to price variance swaps with discrete sampling times. We then extend our approach to price forward-start variance swaps to obtain closed-form exact solutions. Finally, our approach is extended to price discretely-sampled variance by further including random jumps in the return and volatility processes. We show that our solutions can substantially improve the pricing accuracy in comparison with those approximations in literature. Our approach is also very versatile in terms of treating the pricing problem of variance swaps with different definitions of discretely-sampled realized variance in a highly unified way.

The second issue, which is covered in Chapter 5, and 6, is the pricing method for volatility swaps. Papers focusing on analytically pricing discretely-sampled volatility swaps are rare in literature, mainly due to the inherent difficulty associated with the nonlinearity in the pay-off function. We present a closed-form exact solution for the pricing of discretely-sampled volatility swaps, under the framework of Heston (1993) stochastic volatility model, based on the definition of the so-called average of realized volatility. Our closed-form exact solution for discretely-sampled volatility swaps can significantly reduce the computational time in obtaining numerical values for the discretely-sampled volatility swaps, and substantially improve the computational accuracy of discretely-sampled volatility swaps, comparing with the continuous sampling approximation. We also investigate the accuracy of the well-known convexity correction approximation in pricing volatility swaps. Through both theoretical analysis and numerical examples,
we show that the convexity correction approximation would result in significantly large errors on some specifical parameters. The validity condition of the convexity correction approximation and a new improved approximation are also presented.

The last issue, which is covered in Chapter 7 and 8, is the pricing of VIX futures and options. We derive closed-form exact solutions for the fair value of VIX futures and VIX options, under stochastic volatility model with simultaneous jumps in the asset price and volatility processes. As for the pricing of VIX futures, we show that our exact solution can substantially improve the pricing accuracy in comparison with the approximation in literature. We then demonstrate how to estimate model parameters, using the Markov Chain Monte Carlo (MCMC) method to analyze a set of coupled VIX and S&P500 data. We also conduct empirical studies to examine the performance of the four different stochastic volatility models with or without jumps. Our empirical studies show that the Heston stochastic volatility model can well capture the dynamics of S&P500 already and is a good candidate for the pricing of VIX futures. Incorporating jumps into the underlying price can indeed further improve the pricing the VIX futures. However, jumps added in the volatility process appear to add little improvement for pricing VIX futures. As for the pricing of VIX options, we point out the solution procedure of Lin & Chang (2009)’s pricing formula for VIX options is wrong, and alert the research community that this formula should not be further used. More importantly, we present a new closed-form pricing formula for VIX options and demonstrate its high efficiency in computing the numerical values of the price of a VIX option. The numerical examples show that results obtained from our formula consistently match up with those obtained from Monte Carlo simulation perfectly, verifying the correctness of our formula; while the results obtained from Lin & Chang (2009)’s pricing formula significantly differ from those from Monte Carlo simulation. Some other important and distinct properties of the VIX options (e.g., put-call parity, the hedging ratios) have also been discussed.
2.2.2 Variance Swaps 40
2.2.3 Our Approach to Price Variance Swaps 43

2.3 Numerical Examples and Discussions 57
2.3.1 Monte Carlo Simulations 58
2.3.2 The Validity of the Continuous Approximation 61
2.3.3 Comparison with Other Solutions 65
2.4 Conclusion .. 70

3 Pricing Forward-Start Variance Swaps 71
3.1 Introduction 71
3.2 Our Solution Approach 73
3.2.1 Forward-Start Variance Swaps 73
3.2.2 Forward Characteristic Function 76
3.2.3 Pricing Forward-Start Variance Swaps 78
3.3 Numerical Results and Discussions 82
3.3.1 Continuous Sampling Approximation 82
3.3.2 Monte Carlo Simulations 83
3.3.3 The Effect of Forward Start 85
3.3.4 The Effect of Mean-reverting Speed 87
3.3.5 The Effect of Realized-Variance Definitions 89
3.3.6 The Effect of Sampling Frequencies 90
3.4 Conclusion .. 92

4 Pricing Variance Swaps with Stochastic Volatility and Random
Jumps .. 94
4.1 Introduction 94
4.2 Our Solution Approach 96
4.2.1 Affine Model Specification 97
4.2.2 Pricing Variance Swaps 98
4.3 Numerical Results and Discussions 103
4.3.1 Continuous Sampling Approximation 104
4.3.2 Monte Carlo Simulations 108
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.3</td>
<td>The Effect of Realized-Variance Definitions</td>
<td>110</td>
</tr>
<tr>
<td>4.3.4</td>
<td>The Effect of Jump Diffusion</td>
<td>111</td>
</tr>
<tr>
<td>4.3.5</td>
<td>The Effect of Sampling Frequencies</td>
<td>116</td>
</tr>
<tr>
<td>4.4</td>
<td>Conclusion</td>
<td>118</td>
</tr>
<tr>
<td>5</td>
<td>Pricing Volatility Swaps with Discrete Sampling</td>
<td>120</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>120</td>
</tr>
<tr>
<td>5.2</td>
<td>Our Solution Approach</td>
<td>123</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Volatility Swaps</td>
<td>123</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Pricing Volatility Swaps</td>
<td>125</td>
</tr>
<tr>
<td>5.3</td>
<td>Numerical Results and Discussions</td>
<td>129</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Monte Carlo Simulations</td>
<td>130</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Other Definition of Realized Volatility</td>
<td>132</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Continuous Sampling Approximation</td>
<td>134</td>
</tr>
<tr>
<td>5.3.4</td>
<td>The Effect of Realized-Variance Definitions</td>
<td>136</td>
</tr>
<tr>
<td>5.4</td>
<td>Conclusion</td>
<td>138</td>
</tr>
<tr>
<td>6</td>
<td>Examining the Accuracy of the Convexity Correction Approxi-</td>
<td>140</td>
</tr>
<tr>
<td>mation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>140</td>
</tr>
<tr>
<td>6.2</td>
<td>Convexity Correction and Convergence Analysis</td>
<td>143</td>
</tr>
<tr>
<td>6.3</td>
<td>Illustrations and Discussions</td>
<td>149</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Volatility Swaps in Heston Model</td>
<td>149</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Volatility Swaps in GARCH Model</td>
<td>154</td>
</tr>
<tr>
<td>6.3.3</td>
<td>VIX Futures in SVJJ Model</td>
<td>157</td>
</tr>
<tr>
<td>6.4</td>
<td>Conclusion</td>
<td>162</td>
</tr>
<tr>
<td>7</td>
<td>Pricing VIX Futures</td>
<td>164</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>164</td>
</tr>
<tr>
<td>7.2</td>
<td>VIX Futures Models</td>
<td>169</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Volatility Index</td>
<td>170</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Affine Model Specification</td>
<td>171</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Pricing VIX Futures</td>
<td>175</td>
</tr>
</tbody>
</table>
List of Figures

1.1 The cash flow of a variance swap at maturity 5
1.2 The payoffs of variance and volatility swaps for long position with strike=20 volatility points and notional amount $L=2,000,000$. . . 8
1.3 The implied volatility of ASX SPI 200 index call options 20

2.1 A comparison of fair strike values of actual-return variance swaps obtained from our closed-form solution, the continuous approximation and the Monte Carlo simulations, based on the Heston stochastic volatility model . 59
2.2 A comparison of fair strike values of log-return variance swaps obtained from our closed-form solution, the continuous approximation and the Monte Carlo simulations, based on the Heston stochastic volatility model . 60
2.3 Calculated fair strike values of actual-return and log-return variance swaps as a function of sampling frequency 63
2.4 Calculated fair strike values of actual-return and log-return variance swaps as a function of tenor . 65
2.5 The comparison of our results with those of Broadie & Jain (2008) for log-return variance swaps . 67
2.6 The effect of alternative measures of realized variance 69

3.1 Calculated fair strike values as a function of sampling frequency . 84
3.2 Calculated fair strike values as a function of the starting time of sampling while the total sampling period is held as a constant, $T_e - T_s = 1$. 85
3.3 Calculated fair strike values as a function of the starting time of sampling while the terminating time of sampling is held as a constant, $T_e = 1$ 87
3.4 Calculated fair strike values as a function of the starting time of sampling while the total sampling period is held as a constant, $T_e - T_s = 1$ 88
4.1 Calculated fair strike values in the SVJJ model as a function of the sampling frequency, which ranges from weekly (N=52) to daily (N=252) 109
4.2 Calculated fair strike values in the SV model as a function of the sampling frequency, which ranges from weekly (N=52) to daily (N=252) 111
4.3 Calculated fair strike values in the SVJ model as a function of the sampling frequency, which ranges from weekly (N=52) to daily (N=252) 112
4.4 Calculated fair strike values in the SVVJ model as a function of the sampling frequency, which ranges from weekly (N=52) to daily (N=252) 114
5.1 A comparison of fair strike prices of volatility swaps based on our explicit pricing formula and the Monte Carlo simulations 130
5.2 A comparison of fair strike prices of volatility swaps based on the two definitions of realized volatility obtained from our explicit pricing formula, the Monte Carlo simulations, and the corresponding continuous sampling approximations 136
6.1 A comparison of the exact volatility strike and the approximations based on the Heston model 151
6.2 Relative pricing errors of the second order approximation as a function of SCV ratio in Heston model 153
6.3 A comparison of the volatility strikes from the finite difference and those from approximations in the GARCH model 156
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4</td>
<td>Relative pricing errors of the second order approximation as a function of SCV ratio in GARCH model</td>
<td>157</td>
</tr>
<tr>
<td>6.5</td>
<td>A comparison of the VIX futures strikes from the exact formula and those from the convexity correction approximation in the SVJJ model</td>
<td>159</td>
</tr>
<tr>
<td>6.6</td>
<td>Relative pricing errors of the second order approximation in pricing VIX futures as a function of SCV ratio in SVJJ model</td>
<td>160</td>
</tr>
<tr>
<td>6.7</td>
<td>A comparison of VIX futures strikes obtained from the exact formula and the second-order and the third-order approximations in the Heston model</td>
<td>161</td>
</tr>
<tr>
<td>7.1</td>
<td>A comparison of VIX futures strikes obtained from our exact formula, the MC simulations and Lin (2007)’s approximation, as a function of tenor, based on the SVJJ model</td>
<td>186</td>
</tr>
<tr>
<td>7.2</td>
<td>A comparison of VIX futures strikes obtained from our exact formula, the MC simulations and Lin (2007)’s approximation, as a function of “vol of vol”, based on the SVJJ model</td>
<td>187</td>
</tr>
<tr>
<td>7.3</td>
<td>A comparison of VIX futures strikes obtained from our exact formula and the approximations in literature, as a function of tenor, based on the Heston model</td>
<td>190</td>
</tr>
<tr>
<td>7.4</td>
<td>A comparison of VIX futures strikes obtained from our exact formula and the approximations in literature, as a function of “vol of vol”, based on the Heston model</td>
<td>192</td>
</tr>
<tr>
<td>7.5</td>
<td>The historical data of VIX index and S&P500 index from Jun. 1990 to Aug. 2008</td>
<td>198</td>
</tr>
<tr>
<td>7.6</td>
<td>A comparison of the term structures of average VIX futures prices obtained from empirical market data and the four models</td>
<td>204</td>
</tr>
<tr>
<td>7.7</td>
<td>A comparison of the steady-rate VIX density functions obtained from empirical market data and the four models</td>
<td>205</td>
</tr>
<tr>
<td>8.1</td>
<td>A Comparison of the Prices of VIX Options Obtained from Our Exact Formula and the Formula in Lin & Chang (2009), as A Function of Tenor, based on the Heston Model (K = 13)</td>
<td>221</td>
</tr>
</tbody>
</table>
8.2 A Comparison of VIX Futures Strikes Obtained from Our Exact Formula and the Formulae in Literature, as A Function of Tenor, based on the Heston Model ... 223

8.3 The Delta of VIX Options with different maturities: = 5, 20, 40 and 128 days, based on the SVJJ Model. 225

8.4 The Prices of VIX Options, as A Function of the Time to Maturity, based on the SVJJ Model. ... 226

A.1 A sample term sheet of a variance swap written on the variance of S&P500. ... 231
List of Tables

2.1 The strike prices of discretely-sampled actual-return variance swaps obtained from our closed-form solution Eq. (2.36), the continuous approximation and MC simulations 60

2.2 Relative errors and computational time of MC simulations in calculating the strike prices of actual-Return variance swaps 61

2.3 The sensitivity of strike price of variance swap (daily sampling) 70

3.1 The numerical results of discrete model, continuous model and MC simulations .. 85

3.2 The sensitivity of strike price of variance swap (daily sampling) ... 91

4.1 The numerical results of discrete model, continuous model and MC simulations .. 109

4.2 The sensitivity of the strike price of a variance swap (weekly sampling) .. 118

5.1 The numerical results of volatility-average swaps obtained from our analytical pricing formula, MC simulations and continuous sampling approximation .. 131

5.2 Relative errors and computational time of MC simulations 131

5.3 The sensitivity of the strike price of a volatility swap (daily sampling) 138

6.1 Strikes of one-year maturity volatility swaps obtained from the exact pricing formula and the approximations in the Heston model 152

6.2 The relative errors of the three approximations in the three intervals 153

7.1 Parameters for SV, SVJ and SVJJ models 185
7.2 Descriptive statistics of VIX and daily settlement prices of the VIX futures across maturities ... 199
7.3 The parameters of the SV, SVJ, SVCJ, and SVSCJ models estimated from the MCMC method .. 200
7.4 The test of pricing performance of the four models 203