Adaptive low-complexity MB-OFDM for ultra-wideband wireless communication

Darryn W. Lowe
University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses

Recommended Citation
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
ADAPTIVE LOW-COMPLEXITY MB-OFDM FOR ULTRA-WIDEBAND WIRELESS COMMUNICATION

A thesis submitted in fulfilment of the requirements for the award of the degree

DOCTOR OF PHILOSOPHY

from

UNIVERSITY OF WOLLONGONG

by

Darryn W. Lowe
School of Electrical, Computer and Telecommunications Engineering
2010
Ultra-wideband (UWB) is seen as the foundation of future pervasive, wireless personal area networks (WPANs). The ability to provide tremendous capacity without the expense of multiple antennas or the power of narrowband transmissions makes it ideal for low-cost high-speed wireless communications. The realization of WPANs that encompass these UWB properties, however, hinges on solutions to the following key challenges.

The high data rates demanded of multimedia WPANs mean that spectral resources must be used efficiently. This requires an UWB device to be able to accurately estimate channel conditions. Unfortunately, current signal processing algorithms cannot be applied directly without prohibitively increasing receiver complexity given the tremendous bandwidth of UWB systems. The result is that first-generation UWB receivers are using simple zero-forcing (ZF) approaches that work poorly in short impulsive channels. Accordingly, this thesis proposes several low-complexity channel estimation techniques that perform comparably to optimal minimum mean square error (MMSE) estimation.

UWB WPANs must be reliable even when channels are highly frequency-selective or suffer from interference. With cost constraints limiting the current ECMA-368 UWB standard to low-complexity block-spreading and convolutional codes, this thesis adopts a holistic approach that exploits the interactions between diversity techniques to reduce packet error rates and improve error recovery. Furthermore, this
thesis proposes and investigates the following novel heuristics for mitigating interference: adaptive sizing the overlap-add window so as to balance recovery of delayed signal energy with noise; adaptive changing the time-frequency interleaving pattern to avoid interfering signals; and adapting the degree of companding to minimize both nonlinear distortions from clipping and noise.

The contributions of this thesis grant significant performance and reliability improvements whilst minimizing incremental complexity and maintaining backwards compatibility with existing UWB devices. Furthermore, specific recommendations to revise the ECMA-368 standard are justified through theoretical analyses and Monte Carlo simulations.
Statement of Originality

I, Darryn W. Lowe, declare that this thesis, submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy – Research, in the School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged.

The document has not been submitted for qualifications at any other academic institution.

Darryn W. Lowe
16 May 2010
Contents

1 Overview

1.1 Introduction ... 1
 1.1.1 UWB ... 1
 1.1.2 UWB Channels ... 4
 1.1.3 UWB, OFDM and ECMA-368 6
1.2 Motivations .. 7
1.3 Contributions .. 9
1.4 Publications ... 12
1.5 Thesis Structure ... 14

2 Background

2.1 UWB ... 17
 2.1.1 The ECMA-368 UWB Standard 17
 2.1.2 Evaluating and Improving UWB Systems 26
2.2 Channel Estimation ... 27
 2.2.1 Ideal Receivers 28
 2.2.2 Challenges of UWB Channel Estimation 28
 2.2.3 Initial Channel Estimation in MB-OFDM UWB 32
 2.2.4 Conclusions ... 38
2.3 Modulation and Coding 38
 2.3.1 Optimal OFDM Receiver 39
 2.3.2 Using OFDM in Frequency Selective Channels 41
 2.3.3 Block Spread OFDM 44
 2.3.4 Hybrid Automatic Repeat Requests 51
 2.3.5 Conclusions .. 53
2.4 Interference Mitigation 54
 2.4.1 Narrowband Systems 55
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.2 Simultaneous Operating Piconets</td>
<td>56</td>
</tr>
<tr>
<td>2.4.3 OFDM Peak-to-Average Power Ratio</td>
<td>59</td>
</tr>
<tr>
<td>2.4.4 Conclusions</td>
<td>61</td>
</tr>
<tr>
<td>2.5 Summary</td>
<td>62</td>
</tr>
<tr>
<td>3 Channel Estimation</td>
<td>65</td>
</tr>
<tr>
<td>3.1 Low-Complexity MMSE Channel Estimation</td>
<td>65</td>
</tr>
<tr>
<td>3.1.1 MMSE Estimation for UWB Channels</td>
<td>66</td>
</tr>
<tr>
<td>3.1.2 Minimizing MMSE Estimation Complexity</td>
<td>68</td>
</tr>
<tr>
<td>3.1.3 Adaptive Filters</td>
<td>82</td>
</tr>
<tr>
<td>3.1.4 Simulation Results</td>
<td>88</td>
</tr>
<tr>
<td>3.2 Complementary Codes for MMSE Estimation</td>
<td>90</td>
</tr>
<tr>
<td>3.2.1 Motivation</td>
<td>91</td>
</tr>
<tr>
<td>3.2.2 Limits on Channel Estimation with SS</td>
<td>92</td>
</tr>
<tr>
<td>3.2.3 Improving ACF via Complementary Codes</td>
<td>94</td>
</tr>
<tr>
<td>3.2.4 Time-Domain Channel Estimation in OFDM Systems</td>
<td>95</td>
</tr>
<tr>
<td>3.3 Selection of CES for an Existing SS</td>
<td>97</td>
</tr>
<tr>
<td>3.3.1 Desired Properties</td>
<td>97</td>
</tr>
<tr>
<td>3.3.2 Evolutionary Search</td>
<td>99</td>
</tr>
<tr>
<td>3.3.3 Optimal Channel Estimation Sequences</td>
<td>105</td>
</tr>
<tr>
<td>3.3.4 Results</td>
<td>105</td>
</tr>
<tr>
<td>3.3.5 Conclusions</td>
<td>110</td>
</tr>
<tr>
<td>3.4 Joint Selection of CES and SS</td>
<td>110</td>
</tr>
<tr>
<td>3.4.1 Golay-Paired Hadamard Matrices</td>
<td>111</td>
</tr>
<tr>
<td>3.4.2 Using Golay-Paired Hadamard Matrices</td>
<td>113</td>
</tr>
<tr>
<td>3.4.3 Optimal Training Sequences</td>
<td>118</td>
</tr>
<tr>
<td>3.4.4 Synchronization Performance</td>
<td>118</td>
</tr>
<tr>
<td>3.4.5 Channel Estimation Performance</td>
<td>121</td>
</tr>
<tr>
<td>3.4.6 Conclusions</td>
<td>126</td>
</tr>
<tr>
<td>3.5 Summary</td>
<td>126</td>
</tr>
<tr>
<td>4 Modulation and Coding</td>
<td>129</td>
</tr>
<tr>
<td>4.1 Block-Spread OFDM</td>
<td>129</td>
</tr>
<tr>
<td>4.1.1 Maximizing Theoretical Capacity with Complexity Constraints</td>
<td>131</td>
</tr>
<tr>
<td>4.1.2 Frequency-Diversity of Practical UWB Systems</td>
<td>133</td>
</tr>
<tr>
<td>4.1.3 Summary</td>
<td>140</td>
</tr>
<tr>
<td>4.2 Hybrid Automatic Repeat Requests</td>
<td>140</td>
</tr>
</tbody>
</table>
List of Figures

1.1 Spectral map of UWB and related systems. 2
1.2 FCC emissions limits for UWB and unintentional radiators. 3
1.3 UWB channel model block diagram. 4
1.4 Channel delay profiles for IEEE CM1 through CM4. 5

2.1 ECMA-368 preamble sequence. 22
2.2 Rate dependent stages of an MB-OFDM transmitter. 23
2.3 Constellation pattern for dual-carrier modulation. 25
2.4 MB-OFDM Transceiver ... 32

3.1 MSE for MMSE vs ZF channel estimation in UWB channels. 66
3.2 Impact of channel auto-covariance on MSE for MMSE channel estimation. ... 67
3.3 Examples of impulse response for several MMSE smoothing filters. . 71
3.4 MSE for truncated MMSE smoothing filters 72
3.5 First-order IIR filter. .. 75
3.6 Second-order IIR filter. ... 76
3.7 PPP realization of a first-order MMSE IIR filter. 79
3.8 Frequency responses for several smoothing filters. 79
3.9 MSE comparison for several MMSE IIR filters. 80
3.10 Reductions in MSE as filter adaptivity increases. 86
3.11 Example coefficients for an IIR MMSE smoothing filter. 87
3.12 PER comparison of ZF and adaptive IIR MMSE estimation. 89
3.13 ACFs for synchronization and channel estimation sequences 94
3.14 MSE in channel estimation with respect to channel delay spread ... 103
3.15 MSE of best chromosomes throughout evolution. 104
3.16 MSE comparison of TDE and FDE channel estimation algorithms. 106
3.17 PER in CM1 for time/frequency channel estimation. 108
3.18 PER in CM4 for time/frequency channel estimation. 109
3.19 Magnitudes of peak ACF sidelobes for all candidate sequences. . . 114
3.20 ACF sidelobes for complementary CES vs. ECMA-368. 117
3.21 Comparison of mean capture efficiency for different training sequences.119
3.22 Example capture efficiency CDF for different training sequences . . 120
3.23 MSE of channel estimation approaches given equal power sequences.122
3.24 MSE of channel estimation approaches given the ECMA-368 preamble.123
3.25 PER of channel estimation approaches at 53.3 Mbps. 124
3.26 PER of channel estimation approaches at 480 Mbps. 125

4.1 Capacity of alternative block-spreading modulations in CM2. 132
4.2 Theoretical BER for alternative block-spreading matrices. 135
4.3 PER of block-spreading matrices at 480 Mbps in CM2. 136
4.4 Impact of modulation density on PER at 480 Mbps in CM2. 138
4.5 PER at 480 Mbps in CM2 for ideal ML and simplified demodulation. 139
4.6 Puncturing patterns used in the ECMA-368 standard 141
4.7 Delay line for a rate-$\frac{1}{3}$ convolutional coder. 144
4.8 Theoretical BER for selected high data-rate puncturing patterns. . . 152
4.9 Simulated PER for selected high data-rate puncturing patterns. . . 153
4.10 Theoretical BER for selected medium data-rate puncturing patterns. 154
4.11 Simulated PER for selected medium data-rate puncturing patterns. . 156
4.12 Theoretical BER for selected high data-rate puncturing patterns. . . 157
4.13 Simulated PER for selected low data-rate puncturing patterns. . . . 158
4.14 Optimal puncturing patterns for ECMA-368 Type-III HARQ 159
4.15 PER for Type-III HARQ at 480 Mbps in CM1. 160
4.16 PER for Type-III HARQ at 400 Mbps in CM3. 160
4.17 PER for Type-III HARQ at 80 Mbps in CM3. 161

5.1 PDFs for analytically optimal window sizes in CM1 through CM4. . . 172
5.2 Accuracy of practical OLA estimation algorithm in CM1. 175
5.3 Accuracy of practical OLA estimation algorithm in CM4. 176
5.4 Probability of practical OLA algorithm being theoretically optimal. . 177
5.5 Reduction in PER from adaptive OLA in CM1 and CM4. 178
5.6 Reduction in PER from adding five samples to the OLA window. . . 178
5.7 Bound on PER with regard to the number of corrupted symbols. . . 189
5.8 PDFs for likelihood of symbol corruption given TFC combination. . 191
5.9 Bound on PER for adaptive TFCs vs. number of corrupted symbols. 195

xii
5.10 Example of symbol-based IPI detection. 196
5.11 Improvements in PER for adaptive symbol skipping 200
5.12 PER of adaptive symbol skipping vs. TFC, power and channel model 202
5.13 Illustration of the impact of clipping on OFDM 205
5.14 Relationship between degree of clipping and MSE. 206
5.15 Illustration of hyperbolic companding transforms 208
5.16 Block diagram showing realization of hyperbolic companding. 209
5.17 PDF of amplitude of a OFDM signal using hyperbolic companding . 210
5.18 PDF of receiver noise for several degrees of clipping. 213
5.19 SNR for a OFDM signal using hyperbolic companding 214
5.20 SNR relative to degree of companding when SNR is 5 dB. 216
5.21 SNR relative to degree of companding when SNR is 10 dB. 217
5.22 SNR relative to degree of companding when SNR is 20 dB. 217
5.23 PER of hyperbolic companding at 160 Mbps 220
5.24 PER of hyperbolic companding at 480 Mbps in CM1. 221
5.25 PER of hyperbolic companding with legacy receivers at 160 Mbps . 222
List of Tables

1.1 UWB channel model parameters. 5
2.1 Specifications for MB-OFDM subbands 1 through 14 in ECMA-368. . 18
2.2 TFCs used in band group 1. 19
2.3 Summary of key ECMA-368 parameters. 21
2.4 Modulation and codings used to vary ECMA-368 data rates. 24
3.1 Comparison of implementation complexity of filtering options. 81
4.1 Complexity with regard to spreading matrix and symbol alphabet. . 133
4.2 Puncturing patterns for 480 Mbps with regard to constellation order. 137
4.3 Expanded generator matrices. 149
4.4 Distance spectra for selected $T = 3$ puncturing patterns. 151
4.5 Distance spectra for selected $T = 5$ puncturing patterns. 154
4.6 Distance spectra for selected $T = 1$ puncturing patterns. 156
5.1 TFC-expanded generator matrices. 185
5.2 Free distance for various erasure conditions. 187
5.3 Mapping of TFC pairs to probability distribution. 192
5.4 Optimal linearity coefficient C_L. 218
A.1 Recommended IIR channel estimate smoothing filters. 256
B.1 Channel Estimation Sequences for existing ECMA-368 SS. 262
B.2 Complementary CES and SS. 265
Acknowledgements

What can change the nature of a man?

Thanks to my supervisors, my family and my friends.