Trace metal contamination of soils and sediments in the Port Kembla area, New South Wales, Australia

Yasaman Jafari

University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses

Copyright Warning
You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material.

Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Recommended Citation
Jafari, Yasaman, Trace metal contamination of soils and sediments in the Port Kembla area, New South Wales, Australia, Master of Environmental Science - Research thesis, School of Earth & Environmental Sciences - Faculty of Science, University of Wollongong, 2009. https://ro.uow.edu.au/theses/3133

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
Trace Metal Contamination of Soils and Sediments in the Port Kembla area, New South Wales, Australia

A thesis submitted in (partial) fulfillment of the requirements for the award of the degree

Master of Environmental Science- Research

from

University of Wollongong

by

Yasaman Jafari

School of Earth and Environmental Sciences

2009
Preface

The information in this thesis is entirely the result of the investigations conducted by the author, unless otherwise acknowledged, and has not been submitted in part, or otherwise, for any other degree or qualification.

Yasaman Jafari
Acknowledgements

There are many people I would like to thank for their help and support throughout the project.

First and foremost I would like to thank my supervisor Associate Professor Brian Jones for all his assistance with fieldwork, his expertise, patience, and particularly for his kindness.

I would like to thank my co-supervisor Professor John Morrison, his appropriate advices throughout this project are greatly appreciated.

Thank you to John Marthic for his timeless and invaluable efforts with every GIS aspect of my thesis. José Abrantes, Mark O’Donnel, Heidi Brown, Michael Stevens and Richard Miller’s technical assistance with sample preparation and IT support was also valued immensely. I would like to thank Dr. Brian Chenhall for his information about lead pollution in Wollongong.

And finally an especial large thank you must go to my parents Mahmood and Farideh Jafari who have always supported me in the best way and to my husband Behrooz Karami who has patiently assisted me, especially over this period of study.
Abstract

Anthropogenic emissions of metals from industrial activities such as smelters are an international problem, but there is limited published information on emissions from Australian smelters. The objective of this study was to investigate the regional distribution of trace metals in soils and sediments in the vicinity of the industrial complex of Port Kembla, New South Wales, Australia, which comprises a former copper smelter, an integrated steelworks and associated industries.

Thus, 95 soil samples from the Port Kembla area and 3 vibracores from Griffins Bay in the adjacent Lake Illawarra were collected. X-Ray Fluorescence Spectrometry (XRF) was used to determine 37 trace element concentrations in both soil and sediment samples. The extent of total metal contamination by As, Cu, Pb, Se, Sn and Zn in soils was greatest in samples located close to the Port Kembla copper smelter stack, suggesting contamination due to anthropogenic activities. The mean enrichment factors for As, Cu, Pb and Zn in soil samples are higher than 4 while Se and Sn are elevated above background values by about 2.5-3.5 times. Although the enrichment factor for Cr at about 13.6 is the highest one among trace metals in soil samples of the study area, Cr concentrations increase on moving farther from the copper smelter stack. In soil samples, mean Cd and Zn concentrations exceed acceptable ranges in ANZECC and ARMCANZ (1992) soil contamination guidelines while the average Cu concentrations are significantly above both ANZECC and ARMCANZ (1992) and Dutch guidelines.

Single extraction techniques were used to determine HCl and EDTA extractable amounts of 37 trace elements in the soil samples with analysis by XRF. The amounts of extractable Cu, Pb and Zn decrease significantly with the increase of distance from the stack, with mean bioavailable percentage of 22.3, 27.6 and 42.5 in HCl and 31.5, 37.2 and 33.3 in EDTA tests, respectively.

The distribution of Cu, Pb and Zn in the upper 20 cm of sediment of the vibracores in Griffins Bay is directly related to the proportion of mud-dominated sediment and inputs from local industrial sources. Mean trace metal enrichment factors for Pb and Zn were greater than 12 in mud-dominated sediments while Cu and Ni concentrations are elevated above background values by more than 6 times. Mean enrichment factors for As, Cr and V
were between 2 and 5. Core 1 is sand-dominated and showed lower mean enrichment factors of 3.7 and 6 for Pb and Zn, respectively. Isotope dating of *Notospisula trigonella* determined sedimentation rates of about 0.30-0.78 mm/year in sediments prior to industrial activity in the area. Trace metal-depth concentration profiles have been used in conjunction with the time of industrial development, to determine sedimentation rates of 1.4-3.5 mm/year in younger sediment samples in this study. According to ANZECC & ARMCANZ (2000) guidelines, sediment samples in the current study do not exceed the high trigger value (ISQG-high). In core 1, the average concentrations of elements are obviously below the low trigger value (ISQG-low). In core 2, these values are between the low and high trigger values except for Cr and As which are below ISQG-low, while core 3 shows the same pattern as core 2 except for Pb values which are below the ISQG-low trigger. In all three cores, As concentrations are low and never exceed the low trigger values, while Cd concentrations observed are between the two trigger values.

Significant positive correlations among some trace elements such as Cu, Zn, As, Cd, Sn and Pb indicate a common but not necessarily unique source for these trace metals. Therefore, based on the results of the current study, which are in agreement with previous works, it can be concluded that distinctive, fugitive industrial particle emissions from Port Kembla industrial complex appear to have contaminated the surrounding soils and sediments.
Table of contents

Acknowledgement ..iv
Abstract ..v

Chapter 1: Introduction to this study
1.1 Sediment and soil contamination ..1
1.2 Study area ...3
 1.2.1 Location and strategy ..3
 1.2.2 Settlement history of the catchment ...3
 1.2.3 Soil samples from Port Kembla ..5
 1.2.4 Sediment samples from Lake Illawarra ...5
1.3 Climate of the region ..7
1.4 Geology of the area ...9
1.5 Aims of this project ..9

Chapter 2: Literature Review
2.1 Historical development of industry in the Illawarra region10
2.2 Selected studies of trace metal pollution and bioavailability on soils from Australian and worldwide ...13
 2.2.1 Soil formation ..14
 2.2.2 Background trace metal concentrations ..14
 2.2.3 Sources of urban soil contamination ...15
 2.2.4 Trace metal concentrations and sources in soils of the Port Kembla area15
 2.2.5 World-wide contamination from smelting activities17
 2.2.6 Trace metal extractability and bioavailability in soils18
 2.2.7 Soil quality guidelines ..21
2.3 Selected studies of trace metal contamination on sediments from local and world-wide previous investigations ...24
 2.3.1 Background trace metal concentrations ...24
 2.3.2 Trace metal abundant in Lake Illawarra ...25
 2.3.3 Sediment chronology ...26
2.3.4 Trace metal-sediment grain size relationships ...27
2.3.5 Sediment quality ..28
2.3.6 Trace metal bioavailability and toxicity ..29
2.3.7 Sediment quality guidelines ...29
2.3.8 Sources of pollution in Lake Illawarra ..30

Chapter 3: Materials and Methods
3.1 Sample collection ...33
 3.1.1 Core samples ..33
 3.1.2 Grab samples ..33
3.2 Sample preparation and analysis ..33
 3.2.1 Laboratory techniques ..33
 3.2.2 Grain size analysis ..35
 3.2.3 Trace element analysis using X-Ray Fluorescence spectrometry35
 3.2.4 Bioavailability experiments ..36
 3.2.5 GIS map for sample locations ..37
 3.2.6 Normalised trace element concentrations in sediment samples37
 3.2.7 Statistical analysis ..37

Chapter 4: Results of the study
4.1 Quality control ..38
 4.1.1 Quality controls for XRF ...38
 4.1.2 Quality controls in the extraction experiments ...38
4.2 Soil samples ..39
 4.2.1 Grain size analysis for soil samples ...39
 4.2.2 Background values for soil samples ...44
 4.2.3 Port Kembla copper smelter slag ...45
 4.2.4 Total trace elements in soil samples as measured by XRF45
 4.2.5 Spatial distribution of XRF results from soil samples46
 4.2.6 Distribution of enrichment factors for soil samples ...61
4.3 Core Sediment Samples ...69
 4.3.1 Grain size analysis for cores ...69
 4.3.2 Trace metal background concentrations in cores ..74
 4.3.3 XRF results from cores ..75
List of Tables

Table 1.1 General features of Lake Illawarra ...6
Table 1.2 Seasonal wind directions and percentage of time that winds originate from the two quadrants in the Illawarra regional area ...7
Table 2.1 Background concentrations of trace metals in surface soils from non-industrial sites in New South Wales ...14
Table 2.2 Sources of trace metal pollution in soils ...15
Table 2.3 Dutch standards for soil contamination assessment22
Table 4.1 XRF results for YH 118 ..39
Table 4.2 Average compositions of rock substrates in the Port Kembla area44
Table 4.3 Enrichment factors of the trace metals Ni, Cd, Cu, Zn, Pb, As, Sn, Se, V and Cr in soils ...45
Table 4.4 Analysed trace metals in soil samples ...46
Table 4.5 Background concentrations of some trace metals for sediment samples74
Table 4.6 Enrichment factors of some trace metals for all three cores75
Table 4.7 Sedimentation rates of three cores using amino acid dating on Notospisula trigonella ...87
Table 4.8 Background concentrations of V, Cr, Ni, Cu, Zn, As, Cd and Pb in sediments after normalization to 100% silt and clay ...88
Table 4.9 Enrichment factors of V, Cr, Ni, Cu, Zn, As, Cd and Pb for all three cores after normalization to 100% silt and clay ...89
Table 4.10 Extracted trace metals in soils ...90
Table 4.11 The percentage of bioavailability of trace metals in soils102
Table 4.12 Correlation coefficients in soil samples ...110
Table 4.13 Correlation coefficients in sediments ...111
Table 4.14 Correlation coefficients of total concentrations of trace metals in soils and sediments ..112
Table 5.1 Average concentrations of trace metals (ppm) in soil samples compared to ANZECC & Dutch soil quality guide lines ...120
Table 5.2 Current and Previous Studies on Soils ...121
Table 5.3 Background trace metal concentrations (ppm) in sediments127
Table 5.4 Average concentrations of trace metals (ppm) in upper sediments in Lake Illawarra compared to the ANZECC & ARMCANZ (2000) Sediment Quality Guidelines131
Table 5.5 Previous and current works on Lake Illawarra ..134
List of Figures

Figure 1.1 Location of the study area ...4
Figure 1.2 Illustrates wind direction and intensity for December (summer)8
Figure 1.3 Illustrates wind direction and intensity for June (winter)8
Figure 2.1 Recommended approach to the assessment and management of a potentially contaminated site (ANZECC/NHMRC, 1992) ...23
Figure 2.2 Decision tree for the assessment of contaminated sediments (ANZECC and ARMCANZ 2000) ...31
Figure 3.1 Sample locations in the study area ..34
Figure 4.1 (a-b) Sand, silt and clay content distributions in soil samples40
Figure 4.2 (A-I) Laser grain size analysis for soil samples ..41
Figure 4.4 (a) total Cu concentrations with three outliers in soils, plotted as a function of distance from the Port Kembla copper smelter stack ..47
Figure 4.4 (b) Total Cu concentrations without the outliers in soils, plotted as a function of distance from the Port Kembla copper smelter stack ..47
Figure 4.3 Total distribution of copper in soil samples ..48
Figure 4.5 (a) Total distribution of zinc in soil samples ..49
Figure 4.5 (b) Total distribution of lead in soil samples ..50
Figure 4.5 (c) Total distribution of arsenic in soil samples ..51
Figure 4.6 (a) Total concentrations of Zn in soils plotted as function of distance from the Port Kembla copper smelter stack ..52
Figure 4.6 (b) Total concentrations of Pb in soils plotted as function of distance from the Port Kembla copper smelter stack ..52
Figure 4.6 (c) Total concentrations of As in soils plotted as function of distance from the Port Kembla copper smelter stack ..52
Figure 4.8 (a) Sn total concentrations in soils plotted as function of distance from the Port Kembla copper smelter stack ..53
Figure 4.8 (b) Se total concentrations in soils plotted as function of distance from the Port Kembla copper smelter stack ..53
Figure 4.7 (a) Total distribution of tin in soil samples ..54
Figure 4.7 (b) Total distribution of selenium in soil samples55
Figure 4.9 (a) Total distribution of vanadium in soil samples56
Figure 4.9 (b) Total distribution of chromium in soil samples57
Figure 4.9 (c) Total distribution of nickel in soil samples58
Figure 4.9 (d) Total distribution of cadmium in soil samples ..59
Figure 4.10 Total concentrations of V in soils plotted as function of distance from the Port Kembla copper smelter stack ...60
Figure 4.11 (a) Total Cr concentrations with two anomalies in soils, plotted as a function of distance from the Port Kembla copper smelter stack ...60
Figure 4.11 (b) Total Cr concentrations without anomalies in soils, plotted as a function of distance from the Port Kembla copper smelter stack ...60
Figure 4.12 (a) Ni total concentrations in soils plotted as function of distance from the Port Kembla copper smelter stack ...61
Figure 4.12 (b) Cd total concentrations in soils plotted as function of distance from the Port Kembla copper smelter stack ...61
Figure 4.13 (a) Enrichment factor of copper in soil samples ...62
Figure 4.13 (b) Enrichment factor of zinc in soil samples ...63
Figure 4.13 (c) Enrichment factor of lead in soil samples ..64
Figure 4.13 (d) Enrichment factor of arsenic in soil samples ...65
Figure 4.14 (a) Cu enrichment factors in soils plotted as function of distance from the Port Kembla copper smelter stack ...66
Figure 4.14 (b) Zn enrichment factors in soils plotted as function of distance from the Port Kembla copper smelter stack ...66
Figure 4.14 (c) Pb enrichment factors in soils plotted as function of distance from the Port Kembla copper smelter stack ...66
Figure 4.14 (d) As enrichment factors in soils plotted as function of distance from the Port Kembla copper smelter stack ...66
Figure 4.15 (a) Enrichment factor of tin in soil samples ...67
Figure 4.15 (b) Enrichment factor of selenium in soil samples ..68
Figure 4.16 (a) Sn enrichment factors in soils plotted as function of distance from the Port Kembla copper smelter stack ...69
Figure 4.16 (b) Se enrichment factors in soils plotted as function of distance from the Port Kembla copper smelter stack ...69
Figure 4.17 (a) Variations with depth of percentages of sand, silt and clay in core 170
Figure 4.17 (b) Variations with depth of percentages of Rb in core 170
Figure 4.18 (a) Variations with depth of percentages of sand, silt and clay in core 270
Figure 4.18 (b) Variations with depth of percentages of Rb in core 270
Figure 4.19 (a) Variations with depth of percentages of sand, silt and clay in core 371
Figure 4.19 (b) Variations with depth of percentages of Rb in core 3 71
Figure 4.20 (A-H) Laser grain size analysis for sediment samples ... 71
Figure 4.21 (a) Variations with depth in the concentration of V in core 1 76
Figure 4.21 (b) Variations with depth in the concentration of Cr in core 1 76
Figure 4.21 (c) Variations with depth in the concentration of Sr in core 1 76
Figure 4.21 (d) Variations with depth in the concentration of Cd in core 1 76
Figure 4.22 (a) Variations with depth of values of V normalized to 100% silt + clay content in
core 1 .. 77
Figure 4.22 (b) Variations with depth of values of Cr normalized to 100% silt + clay content in
core 1 .. 77
Figure 4.23 (a) Variations with depth in the concentration of Ni in core 1 78
Figure 4.23 (b) Variations with depth in the concentration of Cu in core 1 78
Figure 4.23 (c) Variations with depth in the concentration of As in core 1 78
Figure 4.23 (d) Variations with depth in the concentration of Se in core 1 78
Figure 4.23 (e) Variations with depth in the concentration of Sn in core 1 78
Figure 4.24 (a) Variations with depth in the concentration of Zn in core 1 79
Figure 4.24 (b) Variations with depth in the concentration of Pb in core 1 79
Figure 4.25 (a) Variations with depth of values of Zn normalized to 100% silt + clay content
in core 1 .. 79
Figure 4.25 (b) Variations with depth of values of Pb normalized to 100% silt + clay content
in core 1 .. 79
Figure 4.26 (a) Variations with depth in the concentration of As in core 2 81
Figure 4.26 (b) Variations with depth in the concentration of Se in core 2 81
Figure 4.26 (c) Variations with depth in the concentration of Sr in core 2 81
Figure 4.26 (d) Variations with depth in the concentration of Cd in core 2 81
Figure 4.26 (e) Variations with depth in the concentration of Sn in core 2 81
Figure 4.27 (a) Variations with depth in the concentration of V in core 2 82
Figure 4.27 (b) Variations with depth in the concentration of Cr in core 2 82
Figure 4.27 (c) Variations with depth in the concentration of Ni in core 2 82
Figure 4.27 (d) Variations with depth in the concentration of Cu in core 2 82
Figure 4.27 (e) Variations with depth in the concentration of Zn in core 2 82
Figure 4.27 (f) Variations with depth in the concentration of Pb in core 2 82
Figure 4.28 (a) Variations with depth of values of Zn normalised to 100% silt + clay
in core 2 ...83

Figure 4.28 (b) Variations with depth of values of Pb normalised to 100% silt + clay
in core 2 ...83

Figure 4.29 (a) Variations with depth in the concentration of As in core 384
Figure 4.29 (b) Variations with depth in the concentration of Se in core 384
Figure 4.29 (c) Variations with depth in the concentration of Sr in core 384
Figure 4.29 (d) Variations with depth in the concentration of Cd in core 384
Figure 4.29 (e) Variations with depth in the concentration of Sn in core 384
Figure 4.30 (a) Variations with depth in the concentration of V in core 385
Figure 4.30 (b) Variations with depth in the concentration of Cr in core 385
Figure 4.30 (c) Variations with depth in the concentration of Ni in core 385
Figure 4.30 (d) Variations with depth in the concentration of Cu in core 385
Figure 4.30 (e) Variations with depth in the concentration of Zn in core 385
Figure 4.30 (f) Variations with depth in the concentration of Pb in core 385
Figure 4.31 (a) Variations with depth of values of Zn normalised to 100% silt + clay
in core 3 ...86
Figure 4.31 (b) Variations with depth of values of Pb normalised to 100% silt + clay
in core 3 ...86
Figure 4.32 (a) HCl-extractable copper distribution in soil samples91
Figure 4.32 (b) EDTA-extractable copper distribution in soil samples92
Figure 4.32 (c) HCl-extractable zinc distribution in soil samples93
Figure 4.32 (d) EDTA-extractable zinc distribution in soil samples94
Figure 4.32 (e) HCl-extractable lead distribution in soil samples95
Figure 4.32 (f) EDTA-extractable lead distribution in soil samples96
Figure 4.33 (a) Variation in extractable and total amounts of Cu in soils with distance from the Port Kembla copper smelter stack ...97
Figure 4.35 (b) Variation in extractable and total amounts of Zn in soils with distance from the Port Kembla copper smelter stack ...97
Figure 4.33 (c) Variation in extractable and total amounts of Pb in soils with distance from the Port Kembla copper smelter stack ...97
Figure 4.35 (a) Variations with distance from the copper smelter stack of Cr concentrations with anomalies ...98
Figure 4.35 (b) Variations with distance from the copper smelter stack of Cr concentrations without anomalies ...98
Figure 4.34 (a) HCl-extractable chromium distribution in soil samples100
Figure 4.34 (b) EDTA-extractable chromium distribution in soil samples101
Figure 4.37 (a) Variation in extractable amounts of V in soils with distance from the Port Kembla copper smelter stack ...99
Figure 4.37 (b) Variation in extractable amounts of Mn in soils with distance from the Port Kembla copper smelter stack ...99
Figure 4.37 (c) Variation in extractable amounts of Sr in soils with distance from the Port Kembla copper smelter stack ...99
Figure 4.36 (a) HCl-extractable vanadium distribution in soil samples103
Figure 4.36 (b) EDTA-extractable vanadium distribution in soil samples104
Figure 4.36 (c) HCl-extractable manganese distribution in soil samples105
Figure 4.36 (d) EDTA-extractable manganese distribution in soil samples106
Figure 4.36 (e) HCl-extractable strontium distribution in soil samples107
Figure 4.36 (f) EDTA-extractable strontium distribution in soil samples108
Figure 4.38 (a) Variation in percentages of extractable amounts of V in soils with distance from the Port Kembla copper smelter stack ..109
Figure 4.38 (b) Variation in percentages of extractable amounts of Cr in soils with distance from the Port Kembla copper smelter stack ..109
Figure 5.1 The percentage of silt and clay in soil samples ..118
Figure 5.2 Pb concentrations in sediments from Coomaditchy Lagoon125