2008

Hybrid laser arc welding with high power diode laser

Justino Bernardo Mulima

University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
HYBRID LASER ARC WELDING WITH HIGH POWER DIODE LASER

A thesis submitted in fulfillment of the requirements of
The award of the degree

Doctor of Philosophy (PhD)

UNIVERSITY OF WOLLONGONG

Justino Bernardo Mulima
Msc In Mechanical Engineering

FACULTY OF ENGINEERING
ACKNOWLEDGEMENTS

I would like to acknowledge several people for their assistance and support over the course of the present work. First of all I must thank Prof. John Norrish for technical advice and support whenever needed. I would also like to express my gratitude to Dr. Paul Di Pietro for his invaluable support. Thanks are extended to Dr. Gary Dean, Dr. Dominic Cuiuri, and Dr. Alexander Nicholson who assisted with the experimental design and offered advice whenever needed.

And finally I would like to thank Mr. Joe Abbott, Mr. Greg Tillman and the staff of the mechanical engineering workshop for sharing their expertise on the construction and assembly of the hybrid welding head.
DISCLAIMER

I declare that this work submitted for fulfillment of the requirements for the award of Doctor of Philosophy in the Faculty of Engineering, University of Wollongong is my own work unless otherwise referenced or acknowledged. This thesis has not been submitted for qualifications at any other academic institution.

Justino Bernardo Mulima
20/07/08
CONTENTS

CHAPTER 1 INTRODUCTION ... 1-1

CHAPTER 2 LITERATURE REVIEW .. 2-1

2.1 Gas Metal Arc Welding .. 2-1
 2.1.2 Process Principles .. 2-1
 2.1.3 Metal Transfer Mechanisms ... 2-2
 2.1.4 Globular transfer .. 2-3
 2.1.5 Spray Transfer ... 2-3
 2.1.6 Dip Transfer .. 2-4
 2.1.7 Controlled Dip Transfer ... 2-6
 2.1.8 Shielding Gas .. 2-9
 2.1.9 Summary-GMAW .. 2-11

2.2 Laser Systems .. 2-12
 2.2.1 Principle Of operation Of Lasers .. 2-13
 2.2.2 CO₂ Lasers .. 2-15
 2.2.3 Nd:YAG Lasers .. 2-18
 2.2.4 The Nd:YAG Laser Versus The CO₂ laser .. 2-21
 2.2.5 High Power Laser Diode ... 2-22
 2.2.6 Fibre Lasers .. 2-28
 2.2.7 Focusing Optics ... 2-28
 2.2.8 Radiation Losses within the Optical Components ... 2-31
 2.2.9 Reflection and Transmittance ... 2-32
 2.2.9.1 Light Intensity .. 2-32
 2.2.9.2 External and Internal Reflection at a Dielectric Interface 2-33

2.3 Laser Beam Welding .. 2-38
 2.3.1 Principle of LBW Operation ... 2-38
 2.3.2 Welding Modes .. 2-39
 2.3.3 Lasers Systems for Welding Process .. 2-41
 2.3.4 Characteristics of Laser Welding .. 2-42
 2.3.5 Effect of the Laser Power .. 2-42
2.3.6 Effect Welding Speed ... 2-44
2.3.7 Effect of Focal Position ... 2-45
2.3.8 Laser Induced Plasma Generation and Its effect 2-47
2.3.8 Effect of Shielding Gas in LBW ... 2-54
2.4 Laser Safety .. 2-54
2.5 LBW Summary .. 2-57
2.6 Hybrid Laser Arc Welding ... 2-58
 2.6.1 Principle of Laser Hybrid Arc Welding 2-59
 2.6.2 Hybrid and Serial Methods .. 2-60
 2.6.3 The Effect of Hybrid Welding Parameters on Bead Geometry 2-63
 2.6.4 The Effect of Arc Power .. 2-64
 2.6.5 The effect Of Laser Power ... 2-65
 2.6.6 The effect of the Distance between the Arc and Laser Beam 2-66
 2.6.7 The Effect of Laser Beam Focal Point 2-67
 2.6.8 Mutual effect Of Laser Beam and Electric Arc 2-69
 2.6.9 Effect of Gas Composition ... 2-70
 2.6.10 The Effect of the Laser on the Arc .. 2-71
 2.6.11 The Effect of the Arc on Laser Beam 2-73
 2.6.12 Hybrid Welding Heads ... 2-74
 2.6.13 Dual Laser and Coaxial Hybrid Heads 2-75
 2.6.14 Process Limitations ... 2-78
2.7 Aim ... 2-80

CHAPTER 2 EXPERIMENTAL EQUIPMENT AND METHODOLOGY 3-1

3.1 Introduction .. 3-1
3.2 Controlled Dip Transfer GMAW Welding 3-1
3.3 Experimental Equipment GMAW .. 3-2
 3.3.1 GMAW .. 3-2
 3.3.2 Welding Power Source ... 3-4
 3.3.3 DSP Control System ... 3-5
 3.3.4 Signal Conditioning ... 3-6
 3.3.5 Voltage Feedback Isolation ... 3-6
3.3.6 Current Feedback Isolation ... 3-7
3.3.7 Data Acquisition ... 3-7
3.3.8 Software Description Of current Controlled dip transfer 3-9
3.3.9 Operator Interface .. 3-10
3.3.10 Ancillary Test Equipment ... 3-11
 3.3.10.1 Welding Table .. 3-11
3.3.11 High Power Diode Laser System .. 3-13
 3.3.11.1 Supply Unit Structure .. 3-13
 3.3.11.2 Laser Source Basic Structure and Beam Generation 3-13
 3.3.11.3 Laser Operation .. 3-17
 3.3.11.4 Ancillary Laser Text Equipment .. 3-19
 3.3.11.5 Laser Welding Head ... 3-20
3.3.13 Digital High-speed video recording .. 3-24
3.4 Experimental Procedure ... 3-24
 3.4.1 Experiment Results .. 3-28
 3.4.2 Butt Joints on Plates .. 3-78
 3.4.2.1 Experiment ... 3-78
 3.4.3 Results .. 3-80
3.5 High Speed Filming ... 3-82
 3.5.1 Results High Speed Filming ... 3-84
3.6 Summary – Conventional and Hybrid Welding 3-91

CHAPTER 4 HYBRID LASER-ARC WELDING WITH DUAL SPOT 4-1
 4.1 Introduction .. 4-1
 4.2 Coaxial Hybrid Laser MIG/MAG Welding Head 4-1
 4.3 Methodology .. 4-2
 4.5 Optical System Design ... 4-2
 4.6 Optical Components Diagnostic .. 4-6
 4.7 Coaxial Hybrid Head Technical Evaluation 4-10
 4.7.1 Beam path tracking .. 4-10
 4.7.2 Beam Profile and Experimental Methodology 4-12
 4.7.3 Results .. 4-13
4.7.4 Discussion ... 4-17
4.8 The Effect of Dual Spot with Different Incident Angles on Enhanced Controlled Dip Transfer GMAW .. 4-17
 4.8.1 Experiment Procedure ... 4-18
 4.8.2 Results ... 4-20
 4.8.3 Summary ... 4-27
4.9 The Effect of Coaxial Laser Radiation at Equal Incident Angle on Enhanced controlled Dip Transfer GMA Mode ... 4-28
 4.9.1 Introduction .. 4-28
 4.9.2 Hybrid Welding Head Modification 4-28
 4.9.3 Beam Path Tracking, Profiles and Results 4-29
 4.9.4 Radiation Density Measurements 4-32
 4.9.4.1 Experimental Procedure 4-32
 4.9.4.2 Results ... 4-34
 4.9.4.3 Discussion ... 4-34
4.10 Weld Pool Elongation .. 4-35
 4.10.1 Experiment Methodology ... 4-35
 4.10.2 Results ... 4-36
 4.10.3 Discussion .. 4-38
4.11 Process Stability Index Evaluation 4-39
 4.11.1 Results ... 4-40
 4.11.2 Discussion .. 4-43
4.12 Multidirectional Welding .. 4-44
 4.12.1 Discussion .. 4-45
 4.12.2 Conclusion .. 4-46

CHAPTER 5 THERMAL ANALYSIS IN HYBRID LASER ARC WELDING 5-1
5.1 Introduction .. 5-1
5.2 Effect of Temperature Distribution on The Parent Metal 5-1
5.3 Modeling of Welding Processes with an Elongated Heat Source 5-2
5.4 Experimental Description .. 5-5
 5.4.1 Experiment Procedure .. 5-6
 5.4.2 Results ... 5-7
5.5 Formulation of the Three Dimensional Model .. 5-10
 5.5.1 Geometry and Spatial Distribution of the Heat source 5-11
 5.5.2 Mesh ... 5-14
 5.5.3 Material Thermo Physical Properties and Phase Change 5-15
 5.5.4 Thermal Loading and Solving ... 5-17
 5.5.5 Assumptions .. 5-18
 5.5.6 Boundary Conditions .. 5-19
 5.5.7 Natural Boundary Conditions .. 5-20
 5.6.9 Transient Settings ... 5-20
 5.6 Results and Analysis ... 5-22
 5.6.1 GMA process ... 5-22
 5.6.2 Hybrid Single Spot .. 5-26
 5.6.3 Hybrid with Twin Spots ... 5-31
 5.6.4 Dimentional Model Validation ... 5-34
 5.7 Conclusion .. 5-35

CHAPTER 6 DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS...... 6-1
 6.1 Discussion .. 6-1
 6.2 Conclusions .. 6-4
 6.3 Recommendations .. 6-4

REFERENCES... 1

APPENDIX I ... 1
 1.1 Electrical Description of the controlled dip transfer Process 1
 1.2 The laser control unit .. 7
 1.2.1 Supply Unit Rear Section ... 8
 1.2.2 Supply Unit Right and Left Section ... 11
 1.2.4 Functional Buttons ... 14
 1.2.5 Operating the HPDL ... 16
 1.3 Sample Cutting and Polishing ... 19
 1.4 High speed Digital Camera .. 21
 1.3.1 Results High Speed Filming .. 23

APPENDIX II .. 27
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Transmission versus Wavelength</td>
<td>27</td>
</tr>
<tr>
<td>2.2 Thermal characteristics</td>
<td>27</td>
</tr>
<tr>
<td>2.3 Mechanical and chemical characteristics</td>
<td>28</td>
</tr>
<tr>
<td>2.4 Refractive index</td>
<td>28</td>
</tr>
<tr>
<td>2.5 Cost</td>
<td>28</td>
</tr>
<tr>
<td>2.6 Material for Optical Components</td>
<td>28</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 2-1 GMAW process Scheme ... 2-1
Figure 2-2 classification of metal Transfer in GMAW 2-2
Figure 2-3 Typical short-circuit current waveform & schematic representation of metal transfer event ... 2-5
Figure 2-4 Typical current controlled waveform ... 2-8
Figure 2-5 Effect of various shielding gases on bead geometry formation 2-11
Figure 2-6 Laser cavity ... 2-14
Figure 2-7 Gaseous amplification medium.. 2-17
Figure 2-8 Typical TEM01 mode beam profile ... 2-18
Figure 2-9 Scheme of Nd-YAG pumping .. 2-20
Figure 2-10 Nd-YAG pumping by diode arrays .. 2-20
Figure 2-11 Comparison of travel speed Vs penetration depth for 3kW Nd-YAG & CO₂ Lasers ... 2-22
Figure 2-12 Diode Laser intrinsic absorption .. 2-23
Figure 2-13 Typical structure of semiconductor DL .. 2-24
Figure 2-14 Scheme of typical HPDL bar ... 2-25
Figure 2-15 Scheme of light emission by HPDL bar .. 2-26
Figure 2-16 Scheme & photograph of HPDL stack ... 2-27
Figure 2-17 Photograph of HPDL with power supply 2-27
Figure 2-18 Transmissive focusing optics .. 2-30
Figure 2-19 Reflective focusing optics .. 2-31
Figure 2-20 Reflection & refraction at simple air/glass 2-33
Figure 2-21 External reflection of S and P polarized components at a glass surface 2-35
Figure 2-22 Schematic representation of a single-layer antireflective coating 2-36
Figure 2-23 Broadband total reflective mirror ... 2-37
Figure 2-24 Reflectivity vs. Wavelength of BS1-1064-50-45UNP High Energy Beamsplitter ... 2-37
Figure 2-25 Conduction LBW mode ... 2-40
Figure 2-26 Keyhole welding LW mode ... 2-41
Figure 2-27 Depth of fusion versus beam power density .. 2-43
Figure 2-28 Effect of welding speed on depth penetration in LW 2-44
Figure 2-29 Weld bead configuration .. 2-45
Figure 2-30 Weld Effect of focal position on penetration depth in LBW 2-46
Figure 2-31 Plasma generation and its progress .. 2-48
Figure 2-32 plasma electron frequency as a function of electron Density and equivalent number density of plasma oscillation To incident laser beam 2-50
Figure 2-33 calculated particle densities of 1 atm. Ar-plasma 2-51
Figure 2-34 Effect of wavelength on energy dissipation in laser induced plasma 2-53
Figure 2-35 Potential Hazards caused by laser material processing 2-56
Figure 2-36 Hybrid welding process .. 2-60
Figure 2-37 Two kinds of combination of hybrid process 2-61
Figure 2-38 Influence of welding method on solidification of the weld metal (a) hybrid laser -GTAW welding; (b) laser beam .. 2-61
Figure 2-39 Hybrid welding bead shape ... 2-63
Figure 2-40 Variable parameters for hybrid laser+ GMAW process 2-64
Figure 2-41 Effect of the arc power on bead .. 2-65
Figure 2-42 Effect of arc and laser on bead width penetration 2-66
Figure 2-43 Effect of relative distance on depth penetration 2-67
Figure 2-44 Effect of focal position of laser beam on bead penetration 2-68
Figure 2-45 Process comparison of GMA, Laser with filler wire and hybrid welding . 2-70
Figure 2-46 Laser radiation intensity distribution ... 2-73
Figure 2-47 Laser radiation intensity distribution ... 2-74
Figure 2-48 Conventional hybrid welding head ... 2-75
Figure 2-49 Dual laser beams arrangement .. 2-76
Figure 2-50 Coaxial Hybrid welding head ... 2-77
Figure 3-1Scheme of experimental setup representation 3-3
Figure 3-2 schematic view of control system hardware 3-4
Figure 3-3 welding power source ... 3-5
Figure 3-4 DSP Interrupt and program execution cycle 3-6
Figure 3-5 Signal conditioning box ... 3-7
Figure 3-6 Data acquired layout windows ...3-9
Figure 3-7 Example of typical control waveform parameters3-10
Figure 3-8 operator interface3-11
Figure 3-10 welding speed data log ...3-12
Figure 3-11 Supply Unit Physical layout ..3-14
Figure 3-12 Diode stack Schematic layout ...3-15
Figure 3-13 Diodes Layout ..3-17
Figure 3-14 Scheme of Laser operation in CW-mode3-19
Figure 3-15 Laser beam transmission physical layout3-20
Figure 3-16 Scheme of laser beam collimating and focusing system3-20
Figure 3-17 schematic representation of laser welding head3-21
Figure 3-18 Physical layout of the laser welding head set up3-22
Figure 3-19 Schematic representation of the video recording set-up3-23
Figure 3-20 Physical layout of video recording system3-24
Figure 3-21 Schematic representation of the experimental set-up3-26
Figure 3-22 Enhanced controlled dip transfer waveform3-27
Figure 3-23 Bead Width & Max penetration Against Travel Speed3-28
Figure 3-24 Fused Area. & reinforcement Area against Travel Speed3-29
Figure 3-25 Arc time against Travel Speed ..3-30
Figure 3-26 Process Stability against Travel Speed3-30
Figure 3-27 Fusion efficiency against Travel Speed3-31
Figure 3-28 transient waveform ..3-32
Figure 3-29 Photography of cross sectional areas3-32
Figure 3-30 schematic representation experimental GMAW set-up3-33
Figure 3-31 Bead width and Max. penetration against torch inclination3-34
Figure 3-32 Fused area. & Reinforcement area against torch inclination3-34
Figure 3-33 Arcing time against torch inclination3-35
Figure 3-34 Process stability against torch angle ..3-35
Figure 3-35 Efficiency of fusion against torch inclination3-36
Figure 3-36 Photography of cross sectional area ..3-37
Figure 3-37 schematic representation of the CTWD Variation3-38
Figure 3-38 bead width & Max penetration against CTWD .. 3-38
Figure 3-39 Fused area & reinforcement area against CTWD 3-39
Figure 3-40 Arc time against CTWD ... 3-39
Figure 3-41 Process Stability against CTWD ... 3-40
Figure 3-42 Fusion efficiency against CTWD ... 3-40
Figure 3-43 Photography of cross sectional area .. 3-41
Figure 3-44 video capture of actual welding .. 3-43
Figure 3-45 Bead width & Max. penetration against travel Speed 3-43
Figure 3-46 Fused area against travel Speed ... 3-44
Figure 3-47 Fusion efficiency against travel Speed .. 3-44
Figure 3-48 Photography of cross section .. 3-45
Figure 3-49 Bead width & Max. penetration against laser power 3-47
Figure 3-50 Fused Area Against laser power .. 3-47
Figure 3-51 Fusion Efficiency against laser power ... 3-48
Figure 3-52 Photography of cross section .. 3-49
Figure 3-53 Schematic representation of Focal Position set up 3-50
Figure 3-54 Bead width & Max penetration against Focal position 3-50
Figure 3-55 Fused area against Focal position .. 3-51
Figure 3-56 Fusion Eff. against F. Position .. 3-51
Figure 3-57 Photography of cross section .. 3-52
Figure 3-58 Schematic representation of laser head inclination 3-53
Figure 3-59 Bead width & Max. penetration against Laser head of inclination .. 3-54
Figure 3-60 Fused area against laser Head inclination 3-55
Figure 3-61 Efficiency of fusion against laser Head inclination 3-55
Figure 3-62 Photography of cross section .. 3-56
Figure 3-63 Schematic representation of the processes combination 3-57
Figure 3-64 Schematic representation of the hybrid setup geometry 3-58
Figure 3-65 Actual video captured (3mm relative Distance) 3-58
Figure 3-66 Bead width & Max penetration against Relative distance D_L 3-59
Figure 3-67 Fused area & Reinforcement against Relative distance D_L 3-59
Figure 3-68 Arcing time against Relative Distance D_L 3-60
Figure 3-69 Stability index against Relative distance D_L .. 3-60
Figure 3-70 Fusion Efficiency against Relative distance D_L ... 3-61
Figure 3-71 Photography of cross section ... 3-62
Figure 3-72 Bead width against Travel Speed... 3-63
Figure 3-73 Max penetration against Travel Speed... 3-64
Figure 3-74 Fused area against Travel Speed... 3-64
Figure 3-75 Area of reinforcement against Travel Speed.. 3-65
Figure 3-76 Arc time against Travel speed... 3-66
Figure 3-77 Stability Index against Travel speed ... 3-67
Figure 3-78 Efficiency of fusion against Travel speed.. 3-67
Figure 3-79 Cross sectional areas with Travel speed 1054mm/min 3-68
Figure 3-80 Bead width & Max penetration against Laser power 3-70
Figure 3-81 Fused Area and reinforcement against Laser power 3-70
Figure 3-82 Arcing time against Laser power .. 3-71
Figure 3-83 Stability Index against Laser power ... 3-72
Figure 3-84 Fusion efficiency against Laser power ... 3-72
Figure 3-85 Cross section .. 3-73
Figure 3-86 Bead width & Max penetration against Focal position 3-75
Figure 3-87 Fused area & reinforcement against Focal position 3-75
Figure 3-88 Arcing time Against Focal position .. 3-76
Figure 3-89 Process stability index against Focal position .. 3-77
Figure 3-90 Efficiency of fusion against Focal position ... 3-77
Figure 3-91 Cross section .. 3-78
Figure 3-92 Groove shape ... 3-79
Figure 3-93 Experiment Setup .. 3-80
Figure 3-94 Cross sectional areas .. 3-81
Figure 3-95 Energy losses .. 3-82
Figure 3-96 Schematic set up of HSF .. 3-83
Figure 3-97 Physical layout of the set up for HSF ... 3-83
Figure 3-98 frame by frame cycle of enhanced controlled dip transfer alone 3-85
Figure 3-99 frame by frame cycle of enhanced controlled dip transfer with laser at DL=3mm.. 3-87
Figure 3-100 frame by frame cycle of enhanced controlled dip transfer with laser at DL=5mm.. 3-89
Figure 4-1 Optical fiber head.. 4-3
Figure 4-2 Welding head with mirror .. 4-3
Figure 4-3 Proposed Hybrid welding head .. 4-5
Figure 4-4 Proposed hybrid welding head .. 4-5
Figure 4-5 Optical bench setup .. 4-6
Figure 4-6 welding head assembling .. 4-7
Figure 4-7 Twin beams .. 4-8
Figure 4-8 TEM00 Gaussian mode ... 4-9
Figure 4-9 Physical layout of the proposed hybrid coaxial welding head 4-9
Figure 4-10 Typical fog machine .. 4-10
Figure 4-11 Beam path ... 4-11
Figure 4-12 Schematic laser radiation spatial distribution ... 4-12
Figure 4-13 Burned acrylic plastic ... 4-13
Figure 4-14 Beam profile model .. 4-14
Figure 4-15 Burned acrylic plastic alternative view ... 4-14
Figure 4-16 Beam profile model alternative view .. 4-15
Figure 4-17 Burned acrylic plastic at 3mm relative distance ... 4-15
Figure 4-18 Beam profile model at 3mm relative distance ... 4-16
Figure 4-19 Beam profile model alternative view .. 4-16
Figure 4-20 scheme of experimental set up geometry ... 4-18
Figure 4-21 Physical layout of the experimental set up ... 4-19
Figure 4-22 Max Penetration Vs Inter-distance ... 4-20
Figure 4-23 Bead width Vs relative distance .. 4-21
Figure 4-24 fused area against relative distance ... 4-21
Figure 4-25 Area of reinforcement against Relative Distance .. 4-22
Figure 4-26 Arcing time Vs Relative Distance .. 4-23
Figure 4-27 Stability index Vs relative-distance .. 4-23
Figure 4-28 Dual beam 2mm relative distance ... 4-24
Figure 4-29 CP with 2mm relative distance .. 4-25
Figure 4-30 CP with 3mm relative distance .. 4-25
Figure 4-31 CP with 5mm relative distance .. 4-25
Figure 4-32 CP with 6mm relative distance .. 4-25
Figure 4-33 GMA weld cross section .. 4-25
Figure 4-34 LBW dual beam cross section (DL=2mm) ... 4-26
Figure 4-35 Hybrid with dual beam (DL=2mm) ... 4-26
Figure 4-36 Dual beam at 4mm inter-distance .. 4-27
Figure 4-37 Scheme of modified hybrid welding head ... 4-29
Figure 4-38 Beam path tracking .. 4-30
Figure 4-39 Coaxial Beam profile at 2 mm relative distance 4-30
Figure 4-40 Coaxial Beam profile at 4 mm relative distance 4-31
Figure 4-41 Experiment set up .. 4-33
Figure 4-42 Experimental set up (beam delivery) .. 4-33
Figure 4-43 Digital display .. 4-33
Figure 4-44 LBW weld pool DL=2mm ... 4-36
Figure 4-45 Hybrid weld pool DL=2mm ... 4-36
Figure 4-46 Beam location in the weld pool... 4-37
Figure 4-47 Hybrid weld pool DL=4mm ... 4-37
Figure 4-48 CP Cross section ... 4-37
Figure 4-49 CP Cross section ... 4-38
Figure 4-50 CP Cross section ... 4-38
Figure 4-51 Stability Index penetration against Iarc-Max 4-40
Figure 4-52 Arc time against Iarc-Max ... 4-41
Figure 4-53 Max penetration against Iarc-Max ... 4-41
Figure 4-54 Bead width against Iarc-Max ... 4-42
Figure 4-55 Fused Area against Iarc-Max .. 4-42
Figure 4-56 Reinforcement against Iarc Max ... 4-43
Figure 4-57 Cross section .. 4-45
Figure 5-1 Thin semi-infinite plate heated by arc and laser radiation in tandem 5-6
Figure 5-2 Weld bead cross sectional areas .. 5-9
Figure 5-3 Semi-infinite body ... 5-12
Figure 5-4 Double ellipsoid heat source ... 5-13
Figure 5-5 Gaussian distribution heat source .. 5-14
Figure 5-6 Refined triangular mesh .. 5-15
Figure 5-7 Applied Thermal conductivity & specific heat 5-16
Figure 5-8 Half work-piece .. 5-20
Figure 5-9 Steady state Thermal .. 5-21
Figure 5-10 Transient heat source .. 5-22
Figure 5-11 GMA surface temperature distribution .. 5-23
Figure 5-12 GMA side view of temperature distribution 5-23
Figure 5-13 GMA maximum penetration .. 5-24
Figure 5-14 GMA bead width .. 5-24
Figure 5-15 GMA HAZ ... 5-25
Figure 5-16 Temperature against time ... 5-25
Figure 5-17 Hybrid single spot surface temperature distribution 5-27
Figure 5-18 Hybrid single spot side view ... 5-28
Figure 5-19 Hybrid single spot maximal penetration 5-28
Figure 5-20 Hybrid single spot bead width ... 5-29
Figure 5-21 Hybrid single HAZ ... 5-29
Figure 5-22 Temperature against time ... 5-30
Figure 5-23 Hybrid dual spot surface temperature distribution & weld pool shape.... 5-31
Figure 5-24 Hybrid dual spot Weld pool side view .. 5-32
Figure 5-25 Hybrid dual spot maximal penetration ... 5-32
Figure 5-26 Hybrid dual spot bead width ... 5-33
Figure 5-27 Hybrid dual HAZ .. 5-33
Figure 5-28 Temperature against time ... 5-34
LIST OF TABLES

Table 2-1 Output characteristics Of Nd:YAG Laser under Different Excitation Conditions ... 2-18
Table 2-2 CO2,YAG And HPDL Comparison ... 2-24
Table 2-3 Typical data of a single DL bar ... 2-26
Table 3-1 HPDL Parameters (data from Laserline, 2003) ... 3-16
Table 3-2 Investigated parameters and welding processes ... 3-25
Table 3-3 GMAW Standard welding parameters ... 3-27
Table 3-4 Effective travel speed .. 3-28
Table 3-5 Laser Parameters .. 3-58
Table 3-6 Laser Parameters .. 3-63
Table 3-7 Laser Parameters .. 3-69
Table 3-8 Laser Parameters .. 3-74
Table 3-9 Welding Parameters for butt joint on plates ... 3-79
Table 3-10 Welding settings .. 3-83
Table 3-11 GMAW waveform ... 3-84
Table 3-12 Hybrid welding waveform with DL=3mm ... 3-86
Table 3-13 Hybrid welding waveform with DL=5mm ... 3-88
Table 4-1 Operating setting .. 4-11
Table 4-2 Operating setting .. 4-12
Table 4-3 Welding settings .. 4-19
Table 4-4 Radiation density measurements ... 4-34
Table 4-5 Radiation density losses ... 4-34
Table 4-6 Welding settings .. 4-35
Table 4-7 Operating variables ... 4-39
Table 4-8 Process variation with beam A,B leading ... 4-45
Table 5-1 GMAW Standard welding parameters .. 5-7
Table 5-2 Laser parameters .. 5-7
Table 5-3 GMAW Results .. 5-8
Table 5-4 Combined process Single beam Results.. 5-8
Table 5-5 Combined process Twin spot Results.. 5-9
Table 5-6 experimental results... 5-9
Table 5-7 Thermo-physical properties (data from Scott, 1998) 5-17
Table 5-8 comparisons of the experimental and mathematical results 5-35
NOMENCLATURE

\[A \quad \text{Wavelength} \]
\[\Phi \quad \text{Scattering angle} \]
\[P \quad \text{Mass Density} \]
\[K \quad \text{Thermal conductivity} \]
\[\omega \quad \text{Angular frequency of incident beam} \]
\[H \quad \text{Heat Transfer Thermal Efficiency} \]
\[R \quad \text{Distance from the particle} \]
\[\nu \quad \text{Travel speed} \]
\[\varepsilon_0 \quad \text{Dielectric constant} \]
\[A \quad \text{Thermal Diffusivity} \]
\[C \quad \text{Velocity of light} \]
\[E \quad \text{Electronic charge} \]
\[c_s \quad \text{Specific heat} \]
\[n_i \quad \text{Ion number density} \]
\[m_e \quad \text{Mass of electron} \]
\[n_e \quad \text{Electron number density} \]
\[\omega_{pe} \quad \text{Plasma electron frequency} \]
\[\text{Msec} \quad \text{Micro second} \]
\[\text{Atm} \quad \text{Atmosphere} \]
\[\text{Fe} \quad \text{Iron} \]
\[\text{LnA} \quad \text{Coulomb logarithm} \]
\[\nu_a \quad \text{Axial Velocity} \]
\[k_c \quad \text{Concentration factor that depends on radius of the heat source \([1/mm^2]\)} \]
\[\text{ms} \quad \text{Mil second} \]
\[^\circ \quad \text{Degree} \]
\[\text{Sa/s} \quad \text{Sample per second} \]
\[T \quad \text{Temperature} \]
\(N \) Particle density
\(V \) Particle Volume
\(Z \) Ion charge number
\(\text{Ar} \) Argon
\(D_L \) Relative Distance
\(Fa \) Measured Fused Area
\(F_L \) Focal Length
\(T_e \) Electron temperature
\(T_P \) Processing Time
\(\text{Hin} \) Process Heat input
\(\{Q\} \) Nodal heat flow vector
\([K] \) Conductivity Matrix
\([C] \) Specific heat Matrix
\(\{T\} \) Time derivative of
\(\{T\} \) Nodal Temperature
\(\text{CW} \) Continuous wave
\(\text{CP} \) Combined Process
\(\text{DC} \) Direct Current
\(\text{LP} \) Laser Power
\(\text{PC} \) Personal Computer
\(\text{AWS} \) American Welding Society
\(\text{BOP} \) Bead On Plate
\(\text{CCD} \) Charge Coupled Devices
\(\text{CNC} \) Computer Numerical Control
\(\text{CO}_2 \) Carbon Dioxide
\(\text{CAG} \) Carbon Arc Gouging
\(\text{CTWD} \) Contact Tip to Workpiece Distance
\(\text{DSP} \) Digital Signal Processor
\(\text{DCEP} \) Direct Current Electrode Positive
\(\text{EBW} \) Electron Beam Welding
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPROM</td>
<td>Erasable Programmable ROM</td>
</tr>
<tr>
<td>FCAW</td>
<td>Flux Cored Arc Welding</td>
</tr>
<tr>
<td>GMAW</td>
<td>Gas Metal arc Welding</td>
</tr>
<tr>
<td>GTAW</td>
<td>Gas Tungsten arc Welding</td>
</tr>
<tr>
<td>I/O</td>
<td>Input and Output</td>
</tr>
<tr>
<td>SMAW</td>
<td>Shielded Metal Arc Welding</td>
</tr>
<tr>
<td>VSD</td>
<td>Variable Speed Drive</td>
</tr>
<tr>
<td>MIG</td>
<td>Metal Inert Gas</td>
</tr>
<tr>
<td>MAG</td>
<td>Metal Active Gas</td>
</tr>
<tr>
<td>LASER</td>
<td>Light Amplification Stimulated by the Emission of Radiation.</td>
</tr>
<tr>
<td>LBW</td>
<td>Laser Beam Welding</td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitting Diode</td>
</tr>
<tr>
<td>Nd:YAG</td>
<td>Neodium Ytrium Aluminium Ganet</td>
</tr>
<tr>
<td>HPDL</td>
<td>High Power Diode Lasers</td>
</tr>
<tr>
<td>UFP</td>
<td>Ultra-Fine Particles</td>
</tr>
<tr>
<td>WFR</td>
<td>High Power Diode Lasers</td>
</tr>
<tr>
<td>WFR</td>
<td>Wear Feed Rate</td>
</tr>
<tr>
<td>D/W</td>
<td>Depth/Width</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>KCl</td>
<td>Potassium Chloride</td>
</tr>
<tr>
<td>HAZ</td>
<td>Heat Affected Zone</td>
</tr>
<tr>
<td>MPE</td>
<td>Maximum Permissible Exposure</td>
</tr>
<tr>
<td>NOHA</td>
<td>Normal Ocular Hazard Area</td>
</tr>
<tr>
<td>NOHD</td>
<td>Nominal Ocular Hazard Distance</td>
</tr>
<tr>
<td>PWM</td>
<td>Pulse Width Modulation</td>
</tr>
<tr>
<td>ROM</td>
<td>Read Only Memory</td>
</tr>
<tr>
<td>SiO₂</td>
<td>Silicon Dioxide</td>
</tr>
<tr>
<td>TiO₂</td>
<td>Titanium Dioxide</td>
</tr>
<tr>
<td>SMAW</td>
<td>Shielded metal arc welding</td>
</tr>
<tr>
<td>ZnSe</td>
<td>Zinc-Selenide</td>
</tr>
</tbody>
</table>
ABSTRACT

This work was carried out to address the scope for hybrid laser-GMAW process improvement using controlled dip transfer and a high power diode laser in single and twin spot modes. It is suggested that an optimum combination of the two sources of thermal energy can enhance the speed and quality of single sided butt welds. The objectives of the current work were therefore, to investigate the process control possibilities, performance characteristics and the processes interactions of twin beam hybrid laser-GMAW welding. Since no appropriate twin beam system existed it was also necessary to design and build an experimental system.

This research was made possible by using a power source which enabled flexible computer control of the GMAW current waveform and a 3kW high power diode laser. Weld beads were produced to study the basic operating parameters for the individual arc and laser processes and these were compared with those of combined process with laser in single and twin spot modes. Bead geometry and the current waveforms captured by the data acquisition system were used to evaluate the welding processes performance.

Variables such as groove shape and shielding gas were also found to be critical for full penetration of butt joints on plates. CO₂ produced weld bead with deeper penetration than with Ar based gas mixtures.

A novel hybrid welding head was design and implemented to investigate the process using an extended heat source (as in multicathode GTAW and tandem GMAW) to create an elongated weld pool through the use of laser-GMAW with dual laser spots leading and trailing the GMAW heat source.

To understand the process control mechanisms, a 3D finite element model was created and implemented to analyze the temperature distribution resulting from the arc and mutual effects of the arc and laser heat sources.

Key words: Hybrid laser GMAW welding, high power diode laser, enhanced controlled dip transfer