Contextual bayesian inference for visual object tracking and abnormal behavior detection

Philippe L. Bouttefroy
philippe@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/theses

Recommended Citation

Copyright Warning
You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
Contextual Bayesian Inference for Visual Object Tracking and Abnormal Behavior Detection

A thesis submitted in fulfilment of the requirements for the award of the degree

Doctor of Philosophy

from

THE UNIVERSITY OF WOLLONGONG

by

Philippe Loïc Marie Bouttetfroy
Masters of Engineering Studies
(Telecommunications and Computer Science),
Diplôme d’ingénieur

SCHOOL OF ELECTRICAL, COMPUTER AND TELECOMMUNICATIONS ENGINEERING
2010
To my hair†
Visual object tracking has been extensively investigated in the last two decades for its attractiveness and profitability. It remains an active area of research because of the lack of a satisfactory holistic tracking system that can deal with intrinsic and extrinsic distortions. Illumination variations, occlusions, noise and errors in object matching and classification are only a fraction of the problems currently encountered in visual object tracking. The work developed in this thesis integrates contextual information in a Bayesian framework for object tracking and abnormal behavior detection; more precisely, it focuses on the intrinsic characteristics of video signals in conjunction with object behavior to improve tracking outcomes.

The representation of probability density functions is essential for modeling stochastic variables. In particular, parametric modeling is convenient since it makes possible the efficient storage of the representation and the simulation of the underlying stochastic process. The Gaussian mixture model is employed in this thesis to represent the pixel color distribution for segregation of foreground from background. The model adapts quickly to fast changes in illumination and resolves the problem of "pixel saturation" experienced by some existing background subtraction algorithms. The technique leads to better accuracy in the extraction of the foreground for higher-level tasks such as motion estimation.

The solution of the Bayesian inference problem for Markov chains and, in particular, the well-known Kalman and particle filters is also investigated. The integration of contextual inference is of paramount importance in the aforementioned estimators;
it results in object-specific tracking solutions with improved robustness. The vehicle tracking problem is explored in detail. The projective transformation, imposed by the environment configuration, is integrated into the Kalman and particle filters, which yields the “projective Kalman filter” and the “projective particle filter”. Extensive experimental results are presented, which demonstrate that the projective Kalman and particle filters improve tracking robustness by reducing tracking drift and errors in the estimated trajectory. The constraint on the known nature of the environment is then relaxed to allow general tracking of pedestrians. A mixture of Gaussian Markov random fields is introduced to learn patterns of motion and model contextual information with particle filtering. Such inference results in an increased tracking robustness to occlusions.

The local modeling with the Markov random fields also provides inference on abnormal behavior detection. Since local patterns are unveiled by the Markov random field mixture, detecting abnormal behavior is reduced to the matching of an object feature vector to the underlying local distribution, whereas the global approach, introducing generalization errors, involves complex, cumbersome and inaccurate decisions. Experimental evaluation on synthetic and real data show superior results in abnormal behavior detection for driving under the influence of alcohol and pedestrians crossing highways.
Résumé

Le suivi d’objets visuel a été un domaine de recherche intense durant ces deux dernières décennies pour son attrait scientifique et sa rentabilité. Il reste un sujet de recherche ouvert de par le manque de système de suivi holistique satisfaisant, prenant en compte les distorsions intrinsèques et extrinsèques. Variations d’éclairement, occlusions, bruits et erreurs dans la correspondance et la classification d’objets ne sont qu’une partie des problèmes actuellement rencontrés en suivi d’objets. Le travail développé dans cette thèse intègre l’information contextuelle dans le cadre Bayesien pour le suivi d’objets et la détection de comportements anormaux. Plus précisément, la recherche porte sur les caractéristiques intrinsèques du signal vidéo en conjonction avec le comportement d’objets dans le but d’améliorer les résultats du suivi.

La représentation de fonctions de densité de probabilité est cruciale pour modéliser les variables aléatoires. En particulier, les modèles paramétriques sont pratiques puisqu’ils permettent un stockage compact de la représentation ainsi que la simulation du processus aléatoire sous-jacent. La mixture de Gaussiennes est utilisée dans cette thèse pour représenter la distribution de couleur d’un pixel dans le but de séparer l’avant-plan de l’arrière-plan. Le modèle s’adapte aux changements rapides d’éclaircements et résout le problème de “saturation de pixels” rencontré avec certains algorithmes de soustraction d’arrière-plan. Il résulte de cette technique une meilleure précision lors de l’extraction de l’avant-plan pour des tâches de plus haut niveau telles que l’estimation du mouvement.
La solution au problème d’influence Bayésienne pour les chaînes de Markov, et en particulier, les filtres de Kalman et particulaire, est étudiée. L’intégration d’une influence contextuelle dans ces estimateurs est primordiale pour améliorer le suivi d’objet. Il en découle des solutions propres à un contexte spécifique. Le problème de suivi de véhicules est également exploré en détails dans cette thèse. La transformation projective, imposée par la configuration de l’environnement, est intégrée dans les filtres de Kalman et particulaire, engendrant le “filtre de Kalman projectif” et le “filtre particulaire projectif”. Des résultats expérimentaux exhaustifs sont présentés pour démontrer l’amélioration de la robustesse au suivi par les filtres de Kalman et particulaire projectifs. L’amélioration est caractérisée par la réduction de la dérive du suiveur et la réduction de l’erreur dans l’estimation de la trajectoire. La contrainte sur le caractère connu de l’environnement est ensuite supprimée pour permettre le suivi de piétons. Une mixture de champs aléatoires de Markov Gaussiens est introduite dans l’objectif d’apprendre les motifs de mouvements et de modéliser l’information contextuelle pour le filtrage particulaire. Une augmentation de la robustesse du suivi sous occlusion résulte d’une telle influence.

La modélisation locale avec les champs aléatoires de Markov fournit également une influence pour la détection de comportements anormaux. Puisque les motifs locaux sont révélés par la mixture de champs aléatoires de Markov, la détection de comportements anormaux est réduite à l’étude de la correspondance entre le vecteur de caractéristiques et la distribution locale sous-jacente. L’approche globale, quant à elle, introduit des erreurs de généralisation et implique des décisions complexes, peu élégantes et imprécises. L’évaluation expérimentale de la méthode proposée sur des données synthétiques et réelles présente des résultats supérieurs pour la détection des comportements anormaux de conducteurs en état d’ébriété et de piétons traversant les autoroutes.
Statement of Originality

This is to certify that the work described in this thesis is entirely my own, except where due reference is made in the text.

No work in this thesis has been submitted for a degree to any other university or institution, to the exception of the University Paris 13 (France) with which a cotutelle agreement (Joint Doctorate) has been signed.

Signed

Philippe Loïc Marie Bouttefroy

21\textsuperscript{st} of January, 2010
I would like to express my gratitude to all of those who provided me with the resources to complete my thesis. First, I would like to thank my supervisors, Prof. A. Bouzerdoum and Prof. A. Beghdadi as well as my co-supervisor Dr. Phung, for their insights on my research progresses throughout the thesis. More importantly, I acknowledge their open-mindedness towards postgraduate research that enabled me to explore fields of personal interests rather than being trapped in a predefined path leading to the completion of my thesis. I also owe my genuine appreciation to Prof. A. Bouzerdoum who financially supported me during the first year of this journey, in particular. Second, my deepest expression of gratitude goes to my family. Dad and Mom for their relentless efforts to make me grow as a person, for their support in tough moments and also, for their financial help throughout my education; Aymeric, Marjorie, Séverine and Alice for their brotherhood and for saying the right word at the right moment. The love and care of the family were always shining in the distance to guide and comfort me along the different steps of the thesis. Third, my postgraduate experience wouldn’t have been the same without Weerona College. The distractions and the support of the community, in particular Leanne, the SR team and the residents, most definitely helped me to keep my sanity during the thesis. Fourth, I would like to specially thank two people who are very dear to me: Tracey and Rachel. Tracey, thank you for pushing me back to the top of the roller coaster that the thesis writing stage is. Rachel, thank you for the insightful and non-technical conversations we had during our Friday meetings at the North Wollongong pub and the now famous G&T’s on the balcony. Fifth, my thoughts go
to Laëtitia who has taught me more than I could ever understand and who pushed me to always aim for excellence by her attitude. I would most certainly not be where I am now had our paths not met. Finally, I am indebted to a number of university groups and members, namely the ICT postgraduate students and Roslyn, for their support and joy.
Contents

1 Preliminaries .................................................. 1

1.1 Introduction .................................................. 1

1.2 Representation of Video Signals .............................. 2
  1.2.1 Concepts and Notation .................................. 2
  1.2.2 Video Acquisition ....................................... 4
  1.2.3 Information Distortion .................................. 5
  1.2.4 Research Motivation and Assumptions ................... 8

1.3 Contributions of the Thesis ................................. 9

1.4 Publications .................................................. 11

2 Roadmap for the Object Tracking Maze ....................... 13

2.1 Introduction .................................................. 13

2.2 Object Modeling .............................................. 14
  2.2.1 Parametric Representations ............................. 15
  2.2.2 Non-parametric Representations ....................... 18
  2.2.3 Object Features ....................................... 20
  2.2.4 Summary of Object Modeling ........................... 24

2.3 Object Identification ......................................... 25
## 2.3 Object Detection using Supervised Learning

2.3.1 Object Detection using Supervised Learning .................................... 25

2.3.2 Distribution Representation for Object Detection ............................. 28

2.3.3 Object Segmentation ........................................................................ 32

2.3.4 Summary of Object Identification ..................................................... 36

## 2.4 Object Tracking

2.4.1 Deterministic Tracking ...................................................................... 37

2.4.2 Probabilistic Tracking ...................................................................... 39

2.4.3 Occlusion Handling .......................................................................... 44

2.4.4 Summary of Object Tracking ............................................................ 46

## 3 Semi-Constrained Gaussian Mixture Model for Background Subtraction

3.1 Introduction ......................................................................................... 49

3.2 Density Representation with Gaussian Mixture Model ....................... 50

3.3 Background Modeling using the Gaussian Mixture Model .................. 52

3.3.1 Background/Foreground Classification ............................................ 56

3.3.2 State of the Art and Current Shortcomings .................................... 57

3.3.3 Analysis of Background Subtraction with GMM ............................. 58

3.4 Semi-Constrained Gaussian Mixture Model ........................................ 64

3.4.1 Mean Variable Learning Rate ......................................................... 65

3.4.2 Standard Deviation Learning Rate .................................................. 66

3.4.3 Performance Analysis on Synthetic Data ......................................... 67

3.5 Experiment Results ........................................................................... 70

3.5.1 Experimental Setup ......................................................................... 70

3.5.2 Controlled Environment .................................................................. 72

3.5.3 Natural Changes in Illumination ..................................................... 78
3.6 Summary of the GMM for Background Modeling .............. 80

4 Projective Kalman Filter for Vehicle Tracking ............... 83

4.1 Introduction .................................................. 83

4.2 Constraining the Tracking with the Environment ............ 84

4.2.1 Motivations .................................................. 85

4.2.2 Linear Fractional Transformation .......................... 86

4.3 The Kalman Filter.............................................. 89

4.3.1 Closed-form Solution to the Bayesian Problem .......... 90

4.3.2 The Extended Kalman Filter ............................... 91

4.3.3 The Unscented Kalman Filter .............................. 92

4.4 Projective Kalman Filter ..................................... 93

4.4.1 State and Observation Updates ............................. 95

4.4.2 The Mean-shift Procedure ................................. 96

4.4.3 Extended versus Unscented Kalman Filter ............. 97

4.5 Vehicle Tracking System .................................... 98

4.5.1 Tracker Initialization and Pruning ........................ 101

4.5.2 PKF Initialization and Vehicle Detection ............... 101

4.6 Performance Analysis on Vehicle Tracking .................. 103

4.6.1 Experimental Setup and Data ............................. 103

4.6.2 Comparison of the PKF and the EKF ..................... 105

4.6.3 Effects of the Frame Rate on Tracking .................. 106

4.6.4 Mean-shift Convergence Speed at Low Frame Rates .... 108

4.7 Summary of the Projective Kalman Filter .................... 111

5 Projective Particle Filter for Vehicle Tracking ............. 113
CONTENTS

5.1 Introduction ....................................................................................... 113
5.2 Sequential Monte Carlo and Particle Filtering ................................. 114
  5.2.1 A Sub-optimal Bayesian Solution: The Particle Filter .............. 116
  5.2.2 Samples Degeneracy and Resampling ....................................... 118
  5.2.3 Particle Filter Summary .............................................................. 119
5.3 Projective Particle Filter ................................................................. 120
  5.3.1 Importance Density and Prior ................................................. 120
  5.3.2 Likelihood Estimation .............................................................. 122
  5.3.3 System Implementation .......................................................... 123
5.4 Experiments and Results ............................................................... 124
  5.4.1 Mean Square Error Performance ............................................ 125
  5.4.2 Importance Sampling Evaluation ......................................... 128
  5.4.3 Tracking Performance and Discussion .................................... 128
5.5 Summary of the Projective Particle Filter ....................................... 130

6 Tracking Through Occlusion with Markov Random Fields ............... 131
6.1 Introduction ....................................................................................... 131
6.2 Integration of Contextual Information ............................................. 132
  6.2.1 Occlusion Handling .............................................................. 132
  6.2.2 Importance of Contextual Information .................................... 133
  6.2.3 Markov Random Fields .......................................................... 134
6.3 Gaussian Markov Random Field Mixture ....................................... 137
  6.3.1 Learning and Posterior Diffusion for Sparse Random Fields .... 139
  6.3.2 Simulated Annealing .............................................................. 141
  6.3.3 MRF Parameters Update ....................................................... 141
6.4 Performance Analysis and Discussion ............................................ 142
CONTENTS

6.4.1 Object Tracking System Implementation .................. 142
6.4.2 Experimental Procedure .................................... 143
6.4.3 Mean Square Error Analysis ................................. 145
6.4.4 Performance with Total Spatio-temporal Occlusion .......... 146
6.4.5 When Will the Algorithm Fail? .............................. 147
6.5 Summary of Tracking Through Occlusion ...................... 148

7 Abnormal Behavior Detection with Markov Random Fields 153

7.1 Introduction ...................................................... 153
7.2 Abnormal Behavior Modeling ................................. 154
7.3 Related Work .................................................... 156
  7.3.1 Object Descriptor Extraction .............................. 156
  7.3.2 Activity Modeling ........................................... 157
  7.3.3 Complexity Reduction ...................................... 158
  7.3.4 Behavior Classification ..................................... 158
7.4 Modeling Behavior with MRFs ................................. 159
  7.4.1 Feature Vector Dimensionality Reduction .................. 159
  7.4.2 Integration of Contextual Information in the MRF .......... 161
  7.4.3 Stochastic Clustering Algorithm .......................... 162
7.5 Analysis of the Stochastic Learning Algorithm ................ 164
  7.5.1 Experimental Setup ......................................... 164
  7.5.2 Distance Measure Selection ................................ 166
  7.5.3 Performance Analysis ...................................... 171
7.6 Abnormal Behavior Detection on Highways .................... 174
  7.6.1 Experimental Setup ......................................... 174
  7.6.2 Performance Analysis ...................................... 175
CONTENTS

7.6.3 Discussion ...................................................... 178
7.7 Summary of Abnormal Behavior Detection ...................... 180

8 Conclusions and Future Research ................................ 183
8.1 Thesis Summary .................................................. 184
8.2 Suggestions for Improvements and Future Research .......... 186

Bibliography ......................................................... 189
List of Figures

1.1 Video formation process ...................................................... 2
1.2 Video structure and representation ...................................... 3
1.3 Scene projection and distortion .......................................... 4
1.4 Fixed camera versus moving camera .................................... 6
1.5 Displays of an original video and its compressed version ........... 7
1.6 Histogram representations of the spatial and temporal noise ....... 7

2.1 Functional diagram of visual object tracking ........................... 14
2.2 Example of rectangular and elliptic shapes ............................. 16
2.3 Non-parametric representations of a person ........................... 18
2.4 Profile of the 1D and 2D Laplacian of Gaussians. ..................... 22
2.5 Maximization of the distance between two hyperplanes ............. 27
2.6 Color histogram representation ........................................ 29
2.7 Representation of the hidden Markov chain model .................... 40
2.8 Three different types of occlusion ...................................... 45

3.1 Pixel probability density represented by a mixture model ........... 53
3.2 Original and foreground segmentation with saturated zone ......... 60
3.3 Display of the pixel saturation phenomenon ........................... 61
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4</td>
<td>Percentage of saturated pixels in a video sequence</td>
<td>61</td>
</tr>
<tr>
<td>3.5</td>
<td>Background adaptation time for a new mixture component</td>
<td>64</td>
</tr>
<tr>
<td>3.6</td>
<td>Performance on synthetic data</td>
<td>68</td>
</tr>
<tr>
<td>3.7</td>
<td>Estimated mean to true mean MSE</td>
<td>69</td>
</tr>
<tr>
<td>3.8</td>
<td>Number of foreground pixels under illumination changes</td>
<td>73</td>
</tr>
<tr>
<td>3.9</td>
<td>Foreground segmentation of the HighwayII video sequence</td>
<td>74</td>
</tr>
<tr>
<td>3.10</td>
<td>Foreground segmentation of the People_Walking_1 video</td>
<td>75</td>
</tr>
<tr>
<td>3.11</td>
<td>Foreground segmentation for office scenes</td>
<td>77</td>
</tr>
<tr>
<td>3.12</td>
<td>Foreground segmentation in outdoor environment</td>
<td>79</td>
</tr>
<tr>
<td>3.13</td>
<td>Foreground segmentation in indoor environment</td>
<td>81</td>
</tr>
<tr>
<td>4.1</td>
<td>Examples of vehicle trajectories</td>
<td>86</td>
</tr>
<tr>
<td>4.2</td>
<td>Vehicle projection on the camera plane</td>
<td>87</td>
</tr>
<tr>
<td>4.3</td>
<td>Background subtraction on a low definition image</td>
<td>96</td>
</tr>
<tr>
<td>4.4</td>
<td>Contribution of the Hessian matrix $\mathcal{H}_h$</td>
<td>99</td>
</tr>
<tr>
<td>4.5</td>
<td>Pixel position mean square error for EKF and UKF</td>
<td>100</td>
</tr>
<tr>
<td>4.6</td>
<td>Overview of the vehicle tracking algorithm with PKF</td>
<td>101</td>
</tr>
<tr>
<td>4.7</td>
<td>Example of tracking in dense vehicle flow</td>
<td>102</td>
</tr>
<tr>
<td>4.8</td>
<td>Sequence showing the drift of a tracker</td>
<td>106</td>
</tr>
<tr>
<td>4.9</td>
<td>Comparison of the and the proposed tracking algorithm</td>
<td>107</td>
</tr>
<tr>
<td>4.10</td>
<td>Effects of the frame rate on the tracking performances</td>
<td>107</td>
</tr>
<tr>
<td>4.11</td>
<td>Tracking rate for the PKF and the EKF</td>
<td>109</td>
</tr>
<tr>
<td>4.12</td>
<td>Tracking robustness in low frame rate</td>
<td>110</td>
</tr>
<tr>
<td>4.13</td>
<td>Mean-shift iterations for PKF and the EKF</td>
<td>111</td>
</tr>
<tr>
<td>5.1</td>
<td>Example of vehicle track for PKF and standard filter</td>
<td>125</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------------------------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>5.2</td>
<td>Alignment of calculated and extracted trajectories</td>
<td>126</td>
</tr>
<tr>
<td>5.3</td>
<td>Position mean square error vs. number of particles</td>
<td>127</td>
</tr>
<tr>
<td>5.4</td>
<td>Position mean square error for 5 ground truth labeled vehicles</td>
<td>127</td>
</tr>
<tr>
<td>5.5</td>
<td>Position mean square error without resampling step</td>
<td>129</td>
</tr>
<tr>
<td>5.6</td>
<td>Drift tracking rate for projective and standard particle filters</td>
<td>129</td>
</tr>
<tr>
<td>6.1</td>
<td>Representation of vehicle motion by local mixture of Gaussians</td>
<td>135</td>
</tr>
<tr>
<td>6.2</td>
<td>Examples of neighborhoods in a graph</td>
<td>136</td>
</tr>
<tr>
<td>6.3</td>
<td>Examples of cliques for the 8-neighborhood</td>
<td>136</td>
</tr>
<tr>
<td>6.4</td>
<td>MRFs update with integration and with diffusion</td>
<td>140</td>
</tr>
<tr>
<td>6.5</td>
<td>GMRFMPF and CONDENSATION tracking rates</td>
<td>145</td>
</tr>
<tr>
<td>6.6</td>
<td>Tracking with GMRFMPF and CONDENSATION through occlusion</td>
<td>149</td>
</tr>
<tr>
<td>6.7</td>
<td>Examples of pedestrian tracking through occlusion</td>
<td>150</td>
</tr>
<tr>
<td>6.8</td>
<td>Examples of vehicle tracking through occlusion (case A)</td>
<td>151</td>
</tr>
<tr>
<td>6.9</td>
<td>Examples of vehicle tracking through occlusion (case B)</td>
<td>152</td>
</tr>
<tr>
<td>7.1</td>
<td>Example of marginal densities of a feature vector</td>
<td>160</td>
</tr>
<tr>
<td>7.2</td>
<td>Example of generated vehicle tracks</td>
<td>165</td>
</tr>
<tr>
<td>7.3</td>
<td>ROC curves for ABD based on distance</td>
<td>167</td>
</tr>
<tr>
<td>7.4</td>
<td>ROC curves for ABD based on local density ( p(r</td>
<td>\Theta) )</td>
</tr>
<tr>
<td>7.5</td>
<td>ROC curves for ABD based on Mahalanobis distance measure</td>
<td>170</td>
</tr>
<tr>
<td>7.6</td>
<td>ROC curves of stochastic learning algorithm for ABD</td>
<td>171</td>
</tr>
<tr>
<td>7.7</td>
<td>ROC curves for the proposed technique and the SOM.</td>
<td>173</td>
</tr>
<tr>
<td>7.8</td>
<td>Examples of abnormal behavior on highways</td>
<td>175</td>
</tr>
<tr>
<td>7.9</td>
<td>ROC curve for ABD on highway</td>
<td>176</td>
</tr>
<tr>
<td>7.10</td>
<td>Abnormal behavior detection rendering on real data</td>
<td>178</td>
</tr>
</tbody>
</table>
List of Tables

3.1 GMM Parameter Initializing Values ........................................ 71

4.1 Vehicle Tracking Dataset ..................................................... 104

4.2 Vehicle Tracking System and PKF Parameter Initializing Values .... 105

5.1 Linear Fractional Transformation Parameters ............................... 125

5.2 MSE for the Standard and the Projective Particle Filters ............... 126

6.1 GMRFM Particle Filter Parameter Initializing Values ..................... 144

6.2 Comparison of the MSE for GMRFMPF and CONDENSATION ............ 146

6.3 Recovery Rate Under Occlusion .............................................. 146

7.1 Correct ABD Rate with MRFs ............................................... 173

7.2 Correct ABD Rate versus Size of SOM .................................... 174

7.3 Correct ABD Rate on the Video Dataset .................................. 177
## List of Algorithms

<table>
<thead>
<tr>
<th>Section</th>
<th>Algorithm</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Generic Gaussian Mixture Algorithm</td>
<td>55</td>
</tr>
<tr>
<td>4.1</td>
<td>Generic Projective Kalman Filter Algorithm</td>
<td>100</td>
</tr>
<tr>
<td>5.1</td>
<td>Resampling Algorithm</td>
<td>119</td>
</tr>
<tr>
<td>5.2</td>
<td>Projective Particle Filter Algorithm</td>
<td>123</td>
</tr>
<tr>
<td>6.1</td>
<td>GMRFM Particle Filter Algorithm</td>
<td>143</td>
</tr>
</tbody>
</table>
Nomenclature

ABD  Abnormal Behavior Detection
ADABOOST  Adaptive Boosting
ANN  Artificial Neural Network
AVC  Advanced Video Coding
BAC  Breath Alcohol Content
CCD  Charge-Coupled Device
CMOS  Complementary Metal Oxide Semiconductor
CONDENSATION  Conditional Density Propagation
DCT  Discrete Cosine Transform
DUI  Driving Under the Influence
DWT  Discrete Wavelet Transform
EKF  Extended Kalman Filter
EM  Expectation-Maximization
EPF  Extended Particle Filter
GMM  Gaussian Mixture Model
GMPHDF  Gaussian Mixture Probability Hypothesis Density Filter
GMRF  Gaussian Markov Random Field
GMRFM  Gaussian Markov Random Field Mixture
GMRFMPF  Gaussian Markov Random Field Mixture Particle Filter
HMM  Hidden Markov Model
JPDAF  Joint Probability Data Association Filter
LOG  Laplacian Of Gaussians
MAP  Maximum A Posteriori
MCM  Motion Correspondence Matrix
ML  Maximum Likelihood
MLP  Multi Layer Perceptron
MMSE  Minimum Mean Square Error
MPDA  Merged Probabilistic Data Association
MPEG  Moving Picture Experts Group
MRF  Markov Random Field
MSE  Mean Square Error
OOP  Object-Oriented Programming
PCA  Principle Component Analysis
PCNSA  Principal Component Null Space Analysis
pdf  probability density function
PF  Particle Filter
PHD  Probability Hypothesis Density
PKF  Projective Kalman Filter
PPF  Projective Particle Filter
ROC  Receiver Operating Characteristic
SIR  Sampling Importance Resampling
SIS  Sequential Importance Sampling
SOM  Self Organizing Map
SSD  Sum of Squared Differences
SVD  Singular Value Decomposition
SVM  Support Vector Machine
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UKF</td>
<td>Unscented Kalman Filter</td>
</tr>
<tr>
<td>UPF</td>
<td>Unscented Particle Filter</td>
</tr>
<tr>
<td>UT</td>
<td>Unscented Transform</td>
</tr>
<tr>
<td>WB</td>
<td>White Balance</td>
</tr>
</tbody>
</table>