Investigating greenhouse gases in Australia using atmospheric measurements with Fourier transform spectrometry and atmospheric modeling

Nicholas M. Deutscher

University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
INVESTIGATING GREENHOUSE GASES IN AUSTRALIA USING ATMOSPHERIC MEASUREMENTS WITH FOURIER TRANSFORM SPECTROMETRY AND ATMOSPHERIC MODELING

A thesis submitted in fulfilment of the requirements

for the award of the degree

DOCTOR OF PHILOSOPHY

from

UNIVERSITY OF WOLLONGONG

by

Nicholas M. Deutscher, BSc(Hons), BMaths

School of Chemistry

2009
DECLARATION

I, Nicholas M. Deutscher, declare that this thesis, submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Chemistry, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged below. The document has not been submitted for qualifications at any other academic institution.

Nicholas M. Deutscher

1/12/2009
ACKNOWLEDGEMENTS

First and foremost I must acknowledge my dearest wife, Ania, for her ongoing support and tolerance with me through this long process, despite having her own PhD to complete. I must also acknowledge my parents, Graeme and Jennifer, with much gratitude, for their continual support and encouragement, and inevitable pride in my insignificant achievements. To my Nanna, Sylvia Trainor, who is much missed, and also showed considerable exaggerated pride in my accomplishments.

I must also extend my sincerest thanks to my supervisors, Professor David Griffith, Dr Rachel Law and Dr Glenn Bryant, who have helped and encouraged me along this long, and no doubt at time painful, road. Without their help, suggestions, advice, criticisms and friendship I would not have completed this journey, and they have helped me significantly in becoming a better, more-rounded, scientist and person.

To all fellow members of the Centre for Atmospheric Chemistry at the University of Wollongong, thank you for your ongoing support, friendship and distractions. To Martin Riggenbach and Graham Kettlewell for their excellent technical help. To Travis Naylor and Ronald Macatangay, who have both had to put up with me on field trips.

I am also grateful to the many collaborators that I have worked with over the course of this project. These have lead to many enjoyable and fruitful experiences, especially those involving:

- TCCON colleagues at Caltech, namely Paul Wennberg, Rebecca Washenfelder, Gretchen Keppel-Aleks, Debra Wunch, Yael Yavin and Coleen Roehl, and JPL-NASA, Geoff Toon and Jean-Francois Blavier. They have all
been extremely supportive and willing to help and answer my incessant,
ignorant questions, and shared much knowledge with me. They have been
instrumental in the column measurements made at Darwin. Also to others
involved with the OCO project, who have been incredibly positive and
supportive of the work we have been doing, and provided financial support for
the Darwin TCCON measurements. These include, but are not limited to, David
Crisp and Charles Miller.

- Colleagues at NIWA, New Zealand, especially Dan Smale and Vanessa
 Sherlock, but also John Robinson, Mike Kotkamp, Sara Mikaloff-Fletcher and
 Brian Connor, for supporting the measurements made at Lauder, and Southern
 Hemispheric TCCON collaborations.

- The ARM site staff at Darwin, Rex Pearson, Troy Culgan, John Glowacki,
 Maciej Ryczek, Krzysztof Krzton, Mike Alsop and Gary Eckert, for providing
 excellent on-site support, and putting up with my during my numerous visits.

- Harvard colleagues who were involved with TWP-ICE: Alfram Bright,
 Rodrigo Jimenez and Dan Matross, and Steve Wofsy and Bruce Daube for their
 work in providing crucial data for calibrating the Darwin column measurements.

- Support staff at the Cape Grim Baseline Air Pollution Station – Jeremy Ward
 and Chris Rickard, and John Gorman for enabling us to run the in situ FTIR on
 site for several months. Also CSIRO collaborators involved with the Cape Grim
 program – Paul Krummel, Paul Steele, Paul Fraser, Marcel van der Schoot and
 Darren Spencer – for providing data and feedback for comparing to the FTIR
 measurements.

- Brian Duffy and Shaun Crowe from Great Southern Railways, who have
 provided excellent support for measurements on the Ghan (and Indian Pacific).
Also to all the GSR staff, who were extremely friendly and helpful during the trips.

- The staff at Katherine Research Station, especially Neil MacDonald, Karley Graham, Judith Boiteau and Robyn Crowley, for hosting one of our instruments, and providing on site support.
- Rittick Borah, for providing satellite remote-sensing data for wetland coverage that were crucial to interpreting the methane measurements from on board the Ghan.

I would like to thank my thesis examiners, Prof. Dr Justus Notholt and Dr Sander Houweling, for the speedy and useful feedback on my thesis, which has helped to make it a better, more complete final product.

Finally, I would also like to thank the many people that I am lucky enough to call friends, who have inevitably seen very little of me during the course of this project, for their understanding and support.
Publications
The following are publications that have arisen from the work presented here or in work related to this project:

ABSTRACT

Anthropogenic emissions of greenhouse gases CO$_2$, CH$_4$ and N$_2$O are important drivers of changes in radiative forcing and consequent climate changes. Despite their importance, estimates of the source and sink distributions of these gases to and from the atmosphere remain uncertain, largely because more measurements are needed to adequately constrain the problem. Because of the infrared signatures of these gases, Fourier Transform (InfraRed) Spectroscopy (FTS) provides an ideal method for simultaneous measurements.

This thesis investigates the potential of new Australian measurements to constrain estimates of CO$_2$ fluxes in the Australian region. Initially, we use a pseudodata study to determine the utility of adding North-South transect measurements from Darwin to Adelaide on the Ghan train platform, as well as continuous measurements at a number of fixed sites. We see that even in the case of a transect occurring once per month, considerable constraint on the flux estimates is possible for several Australian regions, but that the train measurements fail to provide any detail about the diurnal variability of the fluxes.

The setup and calibration of a high resolution solar absorption FT spectrometer in Darwin is detailed. The instrument is shown to have high precision in measurements of column-average dry-air mole fractions, of the order of 0.1% for X_{CO_2} within clear days. A calibration factor of 0.990 ± 0.003 is necessary to bring the measurements onto the WMO global standard CO$_2$ scale.

FT spectroscopy is also used in an instrument measuring surface in situ concentrations. The instrument is described, along with a comparison to existing recognised instrumentation at Cape Grim Baseline Air Pollution Station, which shows that it is capable of continuous, high-precision simultaneous measurements of CO$_2$, CH$_4$, N$_2$O, CO and δ^{13}CO$_2$. Time series of measurements made with these instruments at Darwin, Lauder and Cape Grim are examined. We also look at a case study where one of the instruments is deployed on the Ghan railway running from Adelaide to Darwin, and used, along with a modelling study, to infer methane emissions from tropical savannah wetlands.
TABLE OF CONTENTS

DECLARATION.. II
ACKNOWLEDGEMENTS.. III
PUBLICATIONS .. VI
ABSTRACT ... VII
LIST OF FIGURES .. XII
LIST OF TABLES ... XXIII

1. CHAPTER 1 – INTRODUCTION... I
 1.1. Overview ... 1
 1.2. The carbon cycle .. 4
 1.2.1. CO₂ .. 4
 1.2.2. CH₄ ... 8
 1.3. Global state of knowledge ... 14
 1.3.1. Existing measurements ... 14
 1.3.2. Measurements Techniques – IR spectroscopy 17
 1.4. Fourier Transform InfraRed (FTIR) Spectroscopy 19
 1.5. Future directions – satellites etc. .. 21
 1.5.1. The Orbiting Carbon Observatory (OCO) 22
 1.5.2. The Greenhouse Gases Observing Satellite (GOSAT) 23
 1.5.3. The Total Carbon Column Observing Network (TCCON) 25
 1.6. Modelling trace gas concentrations to determine source strengths 27
 1.6.1. Overview .. 27
 1.6.2. Past findings ... 30
 1.7. Hypothesis + Aims ... 32

2. CHAPTER 2 – A SYNTHETIC MODELLING SENSITIVITY STUDY –
 EXPERIMENTAL SETUP AND TECHNIQUE ANALYSIS.......................... 34
 2.1. Modelling methodology .. 34
 2.2. Forward model setup .. 36
 2.2.1. Forward model - CCAM (Conformal-Cubic Atmospheric global
 transport Model) .. 36
 2.2.2. Regions .. 40
 2.2.3. Response functions .. 41
 2.2.3.1. Daytime only basis functions .. 41
 2.2.4. Source fluxes .. 42
 2.2.4.1. Ocean .. 42
 2.2.4.2. Biosphere/Ecosystem flux .. 42
 2.2.4.3. Fossil fuel ... 43
 2.2.5. Input sources (diurnal and monthly mean) 43
 2.2.6. Pseudodata uncertainties ... 45
 2.2.7. Site selection ... 47
 2.3. Inversion Setup .. 47
 2.3.1. Inverse Model – Time Dependent Inverse (TDI) method 47
 2.3.2. Prior source estimate ... 49
 2.3.3. Prior uncertainties .. 49
 2.4. Assessing Inversion Quality ... 50
 2.4.1. Source Uncertainty .. 50
 2.4.2. Source Bias .. 51
 2.4.3. Diurnal amplitude ... 52
2.5. Introductory inversion studies .. 52
 2.5.1. Current-Case .. 52
 2.5.2. Best-case .. 55
2.6. Results .. 55
 2.6.1. Uncertainty reduction ... 55
 2.6.2. Best case scenario .. 61
 2.6.3. Daytime flux assessment ... 66
2.7. Conclusions + Summary of Findings .. 67

3. CHAPTER 3 – SAMPLING STRATEGY SENSITIVITY 68
 3.1. Overview ... 68
 3.2. Ghan Railway .. 68
 3.2.1. Creating train pseudodata and response functions 69
 3.2.1.1. Train response functions .. 69
 3.3. Control-case ... 72
 3.3.1. Definition .. 72
 3.3.2. Results .. 72
 3.3.3. Sensitivity to sampling strategy .. 75
 3.3.3.1. Sample timing ... 75
 3.3.4. Train direction ... 78
 3.3.5. Transect vs fixed site (Alice Springs) ... 80
 3.4. Other sites .. 85
 3.5. Conclusions .. 88

4. CHAPTER 4 – DARWIN SOLAR FTS – SITE DESCRIPTION AND CO2 COLUMN CALIBRATION ... 89
 4.1. Introduction ... 89
 4.2. Darwin ... 89
 4.3. FTS laboratory .. 91
 4.3.1. Data acquisition and laboratory automation 102
 4.3.2. Spectral fitting/retrieval .. 103
 4.3.2.1. Spectral Microwindows .. 104
 4.3.3. Calculation of total column mixing ratios 106
 4.3.4. Airmass dependence and correction ... 108
 4.3.5. O2 and CO2 precision .. 111
 4.3.6. Validation and calibration ... 113
 4.3.6.1. O2 calibration ... 113
 4.4. Column CO2 calibration against in situ aircraft measurements 114
 4.4.1. Water vapour profile ... 117
 4.4.2. CO2 profile assumptions ... 119
 4.4.2.1. Planetary Boundary Layer ... 119
 4.4.2.2. Upper Tropopause .. 124
 4.4.2.3. Stratosphere ... 125
 4.4.3. Averaging kernels ... 129
 4.4.4. Comparison between Solar FTS and Aircraft In Situ CO2 130
 4.5. Error analysis ... 133
 4.6. Conclusions .. 134

5. TOTAL COLUMN AMOUNTS OF TRACE GASES AT DARWIN, 2005 – 2009 135
 5.1. Overview .. 135
 5.2. O2 ... 136
5.3. CO₂ .. 140
5.4. CH₄ .. 141
5.5. Stable water vapour isotopes 144
5.6. CO .. 147
5.7. N₂O .. 149
5.8. HF .. 151
5.9. Comparison to GOSAT 152
5.10. Comparison to models 157
 5.10.1. CCAM 157
 5.10.2. CarbonTracker 159
5.11. Conclusions 161

6. CHAPTER 6 – IN SITU FTIR TRACE GAS ANALYSER 162
6.1. Background 162
6.2. Analyser description 163
 6.2.1. Instrumentation overview 163
 6.2.2. Spectral analysis 166
 6.2.3. Routine operation 169
 6.2.4. Calibration 170
 6.2.5. Cross-sensitivities 172
 6.2.6. Calibration to reference gas scale 174
 6.2.7. Filtering 179
6.3. Comparison to reference instruments 180
 6.3.1. Cape Grim 180
 6.3.1.1. CO₂ 181
 6.3.1.2. N₂O, CH₄ and CO 184
 6.3.1.3. δ¹³C O₂ 191
6.4. Conclusions 192

7. CHAPTER 7 – TIME SERIES FROM FTIR TRACE GAS ANALYSER ... 193
7.1. In situ trace gas time series 193
 7.1.1. Cape Grim 194
 7.1.1.1. February 7, 2009 195
 7.1.1.2. Other events 200
 7.1.2. Lauder 203
 7.1.3. Darwin 211
 7.1.4. Katherine 216
 7.1.5. Comparison – Lauder and Darwin 217
7.2. Conclusions 219

8. CHAPTER 8 – TRAIN-BORNE MEASUREMENTS OF TROPICAL METHANE ENHANCEMENTS IN AUSTRALIA ... 220
8.1. Introduction and aims 220
8.2. Sampling on a diesel train 221
8.3. Instrumentation 222
8.4. Results 223
 8.4.1. Trip 1 – February 24 – 29, 2008 223
 8.4.2. Trip 2 – March 30 – April 4, 2008 225
 8.4.3. Trip 3 – September 28 – October 1, 2008 227
8.5. Tropical CH₄ enhancements 230
 8.5.1. CH₄ Flux Modeling 235
 8.5.1.1. Cattle and Termite Modeled Fluxes 235
 8.5.1.2. Modeling Wetland Emissions 237
8.6. Conclusions... 242
8.7. References... 243

9. CONCLUSIONS AND FUTURE DIRECTIONS......................... 263

9.1. Conclusions... 263
9.2. Future Directions... 266

10. APPENDICES .. 267

10.1. Appendix 1.1 – OCO Spectra... 267
10.2. Appendix 2.1 – sitelist for response function and pseudodata site selection 268
10.3. Appendix 2.2 – Cape Grim Model Data Site Selection...................... 276
10.4. Appendix 2.3 – list of Globalview sites contributing to GLOBALVIEW- 2007 280
10.5. Appendix 2.4 – Sites used in best case inversion.......................... 286
10.6. Appendix 2.5 – Example data list file and explanation.................... 291
10.7. Appendix 2.6 – Sample source list file and explanation 292
10.8. Appendix 2.7 – Base case regional biases and uncertainties.............. 293
10.9. Appendix 4.1. – Calculation of mercury manometer pressure in mb from reading in mm Hg. ... 294
10.10. Appendix 4.2 – Conversion of water vapour from relative humidity to mixing ratio.. 295
10.11. Appendix 4.3 – Formulation of e(T) .. 297
10.12. Appendix 8.1 – Calculation of conversion factor from mol/m³ to mol/mol 300
10.13. Appendix 8.2 – Gaussian Plume Dispersion Modelling of Train Exhaust Emissions... 301
10.13.1. Plume dispersion model.. 301

xi
LIST OF FIGURES

FIGURE 1.1 Concentrations of the key greenhouse gases over the last 2000 years from Forster et al. [2007] ... 3

FIGURE 1.2 Concentration of CO2 at Mauna Loa, Hawaii, since in situ measurements began in 1957 [Keeling et al., 2008] ... 3

FIGURE 1.3 Taken from Figure 7.3 [Denman et al., 2007] to show the natural (black) cycling of carbon between ocean, land and atmosphere, as well as the perturbed carbon cycle (red) induced by anthropogenic emissions. Units for reservoirs are in PgC, and exchange between reservoirs is in PgC/yr. 6

FIGURE 1.4 Recent (a) concentrations and (b) trends of CH4 in the atmosphere, as measured by the National Oceanic and Atmospheric Administration (NOAA) (blue) and Advanced Global Atmospheric Gases Experiment (AGAGE) (red). The thin lines are the global averages, and the thicker lines are the deseasonalised trends. For the growth rates (b), the error bars indicate 95% confidence intervals. Figure taken from Forster [2007] ... 9

FIGURE 1.5 Representations of the (a) diurnal and (b) seasonal rectifier effects. The left panel of each shows a strong convection, low CO2 case, with the right panel showing situations with high CO2 concentrations and low convection and hence minimal vertical mixing. The figures come courtesy of Scott Denning and Paul Wennberg. .. 15

FIGURE 1.6 The fundamental vibration modes of CO2: the symmetric stretch (υ1), bend (υ2), and the asymmetric stretch (υ3). ... 18

FIGURE 1.7 Example spectra of the atmosphere, obtained from Park Falls, Wisconsin [Washenfelder et al., 2006], highlighting regions in which important atmospheric gases absorb. The blue spectrum is that measured using an Indium Gallium Arsenide (InGaAs) detector, while the green is measured by a silicon diode (Si) detector. .. 18

FIGURE 1.8 A schematic diagram of the Michelson interferometer 19

FIGURE 1.9 An example of the type of global map of column average CO2 mixing ratios that will be routinely produced as part of OCO level 3 data. The figure is figure 5, Crisp et al. [2004], and illustrates for the month of May: (a) modelled monthly mean XCO2 and (b) the difference between the month mean XCO2 and the 1.15pm local time value at which time the OCO satellite will sample. 23

FIGURE 1.10 An example of a spectrum obtainable via GOSAT observation, and the individual bands and gas absorption features used to retrieve column gas abundances [National Institute for Environmental Studies, 2008] .. 25

FIGURE 1.11 Global map showing present and future sites in the TCCON. The details for these sites are given in Table 1.2 .. 26

FIGURE 2.1 A schematic representation of the synthesis inversion approach for pseudodata studies. The forward model (CCAM) is used to generate response functions from basis functions and synthetic data from a known source. These are then input, along with an a priori source estimate into the inverse model to produce estimated sources and uncertainties, and a predicted fit to the data. 35

FIGURE 2.2 The spatial resolution of the standard CCAM grid. The points on the map represent grid points in the model. The areas on the map that are densely occupied correspond to the corners of the cube. 37
FIGURE 2.3 THE (A) AUSTRALASIAN AND (B) ALL GLOBAL LAND AND OCEAN REGIONS USED FOR AGGREGATING SOURCE FLUXES. OCEAN REGIONS ARE COLOURED BLUE, LAND REGIONS BROWN AND LAND REGIONS FOR WHICH DAYTIME ONLY BASIS FUNCTIONS ARE USED ARE COLOURED GREEN. .. 40

FIGURE 2.4 AUSTRALIAN MAPS OF THE INPUT, OR ‘CORRECT’, SOURCES BY MONTH IN TGC yr\(^{-1}\). THE REGIONS APPEAR ODDLY SHAPED BECAUSE THE CCAM GRIDPOINTS ARE NOT ALIGNED N-S. 44

FIGURE 2.5 THE SELECTED AUSTRALIAN POINTS AT WHICH HOURLY RESPONSE FUNCTIONS AND PSEUDODATA ARE GENERATED. ... 47

FIGURE 2.6 MAP OF THE SITES INCLUDED IN THE CURRENT-CASE NETWORK. THE MNEMONICS USED AND OTHER SITE DETAILS ARE GIVEN IN TABLE 2.2. ... 53

FIGURE 2.7 THE AUSTRALIAN UNCERTAINTY REDUCTION MAP FOR THE CURRENT CASE INVERSION. THE MAP IS A RATIO OF THE ESTIMATED SOURCE UNCERTAINTIES RETRIEVED VIA THE INVERSION TO THE PRIOR SOURCE UNCERTAINTIES; HENCE A FIGURE OF 0.5 INDICATES THAT THE SOURCE UNCERTAINTIES HAVE BEEN REDUCED TO HALF OF THEIR A PRIORI VALUE. THE MAP IS BASED ON ANNUAL VALUES FOR REGIONAL SOURCE UNCERTAINTIES. 56

FIGURE 2.8 THE MONTHLY CORRECT (GREY), AND ESTIMATED (BLACK WITH DASHED UNCERTAINTIES) SOURCES FOR REGION 13 FOR INVERSIONS USING (A) DIURNAL AND (B) MONTHLY MEAN PSEUDODATA. .. 58

FIGURE 2.9 THE PSEUDODATA (PRIOR DATA) (GREY) AND PREDICTED (BLACK) DATA FOR THE OFFSHORE CAPE GRIM SITE WITH THE DIURNAL CURRENT CASE INVERSION FOR THE ENTIRE YEAR (TOP) AND BETWEEN OCTOBER 1 AND NOVEMBER 30 (BOTTOM). THE CIRCLES INDICATE DRAWDOWNS IN CO\(_2\) CONCENTRATION DATA NOT REPRODUCED IN THE PREDICTED MODEL DATA. 59

FIGURE 2.10 THE CORRECT (GREY) AND PREDICTED (BLACK WITH DASHED UNCERTAINTIES) DIURNAL AMPLITUDES BY MONTH FOR SOME EXAMPLE AUSTRALIAN REGIONS FOR THE DIURNAL CURRENT CASE INVERSION. .. 60

FIGURE 2.11 THE RATIO OF THE UNCERTAINTY WITH THE BEST CASE NETWORK TO THAT OF THE CURRENT CASE NETWORK, USING DIURNAL BIOSPERIC FluxES. THE IMPROVEMENT IN UNCERTAINTIES OVER THE AUSTRALIAN CONTINENT IS LARGE IN ALL CASES. THE LESSER IMPROVEMENT OVER TASMANIA IS DUE TO THE FACT THAT THE CURRENT CASE NETWORK INCLUDES CAPE GRIM, SO THIS REGION IS ALREADY CONSTRAINTED................................. 61

FIGURE 2.12 REGIONAL PLOTS OF CORRECT (GREEN) AND PREDICTED (RED WITH DASHED UNCERTAINTIES) SOURCES IN SELECTED REGIONS FOR THE DIURNAL BEST CASE INVERSION, AND PREDICTED USING ONLY THE CONSTANT BASIS FUNCTIONS (BLUE WITH DASHED UNCERTAINTIES). .. 62

FIGURE 2.13 THE CORRECT (GREY) AND AVERAGE PREDICTED (BLACK WITH DASHED UNCERTAINTIES) DIURNAL AMPLITUDES BY REGION FOR THE BEST CASE DIURNAL INVERSION. 65

FIGURE 2.14 THE PREDICTED CONSTANT FLUXES FROM INVERSIONS WITH (GREY) AND WITHOUT (BLACK) DAYTIME ONLY BASIS FUNCTIONS FOR REGION 13 USING THE CURRENT CASE INVERSIONS WITH DIURNAL PSEUDODATA.. 66

FIGURE 3.2 MAP OF AUSTRALIA WITH THE CCAM GRID POINTS USED TO REPRESENT THE GHAN TRANSECT (RED CIRCLES) AND THE APPROXIMATE REAL HOURLY TRAIN LOCATIONS (BLUE ASTERISKS). ... 70
Figure 3.3 Top - CO2 concentration pseudodata along the Ghan transect plotted against latitude, with colour scale showing the time of day (ACST – local time). Bottom – CO2 concentration with the time of week, and colour scale indicating the time of year. Hour 0 is the commencement of the trip from Adelaide. Data are only included from the transect, not while the train is stopped in either Adelaide or Darwin. 73

Figure 3.4 The uncertainty reduction map for the control-case (monthly Ghan trip) with respect to the current-case network. ... 74

Figure 3.5 The prior and predicted data for the once monthly Ghan transect over the course of a year. The inset shows the first three transects, when the data fit is poorest. ... 75

Figure 3.6 Uncertainty reduction map relative to the current-case for a train transect performed each week (left) and once per quarter (right) 76

Figure 3.7 The correct (green) and estimated source strengths for regions 3, 4 and 15, for the current-case (red), and inversions including data from quarterly (aqua), monthly (black) and weekly (blue) Ghan train trips. 76

Figure 3.8 Uncertainty reduction map for a monthly Ghan trip running Darwin – Adelaide – Darwin ... 78

Figure 3.9 The uncertainty reduction map for a fixed site in Alice Springs, sampling continuous data ... 80

Figure 3.10 The prior and predicted data at Alice Springs for January and February. 82

Figure 3.11 A sample of the CASA fluxes at various points within region 4. The upper plot shows over the entire year, the bottom plot for about 12 days at the start of the year. .. 83

Figure 3.12 Uncertainty reduction maps for (left) the control-case and Darwin, (centre) Darwin only and (right) Katherine 85

Figure 3.13 Correct (grey) and estimated diurnal flux amplitudes for region 3 including data from Katherine (red) and Darwin (blue). Dashed lines indicate uncertainties, which are the one-sigma uncertainty from the inversion. 86

Figure 3.14 Correct (thick green) and estimated source strengths for region 4 for inversions including data from a monthly train transect (black), Alice Springs (red), Darwin (green), Katherine (blue) and the combination of a monthly train trip and Darwin (grey) ... 86

Figure 4.1 Locations of sampling sites included in GLOBALVIEW-2007 (http://www.esrl.noaa.gov/gmd/ccgg/globalview/images/gvco2_2007_map.pdf), ... 90

Figure 4.2 Maps showing the location of the ARM site in Darwin, Australia. The top map shows Australia, and the bottom map shows Darwin, with the site indicated by the circle. Maps are taken from http://www.whereis.com .. 92

Figure 4.3 The Bruker IFS125HR in the Darwin container as viewed from (a) the western and (b) the eastern end of the container. The solar input tube can be seen to the bottom right of (b) .. 92

Figure 4.4 Typical InGaAs (black) and Si (grey) spectra, obtained simultaneously from Darwin on July 10, 2006 .. 93

Figure 4.5 A photograph of the source compartment of the Bruker IFS125HR. The solar beam enters at the top of the picture, passes through the 3.5cm field stop before being reflected off a plane flat mirror onto an off-axis paraboloid.
THE OAP focuses the beam onto the field stop wheel to the right of the picture, immediately after the HCl cell used for instrument lineshape monitoring. The beam then passes to the interferometer compartment, pictured in figure 4.6. The HCl cell is indicated. ... 95

Figure 4.6 The interferometer compartment of the Bruker IFS125HR. The beam enters from the upper left and exits via the aperture wheel to the right. The beamsplitter and moving mirror are pictured to the bottom left. 96

Figure 4.7 Comparison between CO₂ retrievals from DC corrected (dark circles) and the raw (light squares) spectra as a function of the relative solar intensity variation during a 90 s scan. The lower panel zooms in on relative solar intensity variation below 10%. Figure taken from Keppel-Aleks et al. 2007)..... 101

Figure 4.8 An example of a fit to the 6220 cm⁻¹ window, from a spectrum on December 20, 2005. The grey line shows the measured spectrum, while the black crosses are the fit to the measured spectrum. The black line in the upper panel is the percentage residual difference between the measured and fitted spectra. Also shown are the individual gas absorption components fitted in the spectrum: CO₂ (purple), HDO (light blue), H₂O (dark blue), CH₄ (green), solar (yellow) and that due to other gases (brown). ... 105

Figure 4.9 XCO₂ and XCO₂ anomaly as a function of solar zenith angle for Darwin and Park Falls. The black line (the dashed lines show the standard deviation) in each panel is without the airmass correction applied, while the grey line and band are the airmass corrected values and their standard deviation.. 111

Figure 4.10 XCO₂ (left axis) and XO₂ (right axis) filtered for solar intensity variation and retrieval error, and in the case of XCO₂ corrected for airmass dependence, on the 27th and 28th of June, 2006. The crosses with error bars represent the mean and standard deviation of each day’s measurements. 112

Figure 4.11 The daily relative standard deviation of XO₂ (black plusses) and XCO₂ (grey circles) plotted against the number of spectra of acquired during that day. 112

Figure 4.12 Time series of O₂ correction factors – the values by which retrieved O₂ must be divided to get the correct value of XO₂ = 0.2095. 114

Figure 4.13 Trajectory of the February 4 DoE-Proteus flight. The black dot represents the ARM site at which the FTS is located. The color scale shows the progression through time in UT, from blue at take off, through green at the upward spiral completion to red at landing. ... 117

Figure 4.14 The water vapour pressure profiles from the sonde (blue line, crosses) and as interpolated from the sonde data to the aircraft profile (red crosses). 118

Figure 4.15 The in situ CO₂ concentrations vs time of day from March 3, 2007 to November 5, 2009. The well-mixed PBL appears to be in place by approximately 1000 local time, as indicated by the reduction of CO₂ concentration to background levels and lack of variability. ... 123

Figure 4.16 Proteus aircraft CO₂ VMRs above 300mb on February 4, 2006. The tropopause height is 95.3 mb, and the average CO₂ VMR above 200mb used to extrapolate to the upper troposphere – i.e. between the aircraft ceiling at ~139mb, and the tropopause. ... 124

Figure 4.17 CO₂ profiles for the upper atmosphere on February 4, 2006 calculated using a parameterisation from Waugh et al. [1997] (red crosses) and from a profile generator based on the findings of Boering et al. [1996] (blue
CROSSES). THESE PROFILES ARE APPENDED TO THE AIRCRAFT PROFILE TO MATCH THE MOLE FRACTION AT THE AIRCRAFT CEILING

FIGURE 4.18 IN SITU CO₂ MEASURED THROUGH THE UPWARD (LEFT) AND DOWNWARD (RIGHT) SPIRALES ON FEBRUARY 4, 2006. THE CROSSES SHOW THE CONCENTRATIONS AS MEASURED BY THE AIRCRAFT INSTRUMENT, WHILE THE GREY LINE SHOWS THE PRESSURE-BINNED VALUES USED FOR INTEGRATING TO OBTAIN THE TOTAL PROFILE. THE PBL AND TROPOPAUSE HEIGHTS ARE INDICATED BY THE DASHED AND SOLID HORIZONTAL LINES, RESPECTIVELY. THE INSET SHOWS THE AIRCRAFT MEASURED CO₂ MIXING RATIOS IN THE LOWEST FRACTION OF THE PROFILE, ALONG WITH THE PBL HEIGHT.

FIGURE 4.19 AVERAGE ATMOSPHERIC AVERAGING KERNELS FOR THE 6339 CM⁻¹ AND 6220 CM⁻¹ CO₂ WINDOWS AS A FUNCTION OF PRESSURE.

FIGURE 4.20 THE RETRIEVED AVERAGE FTS XCO₂ PLOTTED AGAINST THE AIRCRAFT XCO₂ FOR ALL DARWIN AND PARK FALLS PROFILES. THE LINES SHOW THE BEST FIT TO THE RATIO OF EACH FTS WINDOW TO ALL AIRCRAFT PROFILES FOR PARK FALLS AND DARWIN, WITH EACH POINT OVERLYING THE BEST FIT LINE WITHIN THE UNCERTAINTIES.

FIGURE 5.1 TIME SERIES OF XCO₂ FROM AUGUST 28, 2005 TO AUGUST 31, 2009

FIGURE 5.2 RETRIEVED ZERO OFFSETS IN THE O₂ MICROWINDOW.

FIGURE 5.3 CALCULATED SOLAR-TERRESTRIAL SHIFTS (TOP) AND FREQUENCY SHIFTS RELATIVE TO THE LINES (BOTTOM) IN THE O₂ 7885 CM⁻¹ WINDOW.

FIGURE 5.4 THE CONTINUUM LEVEL RETRIEVED IN THE O₂ 7885 CM⁻¹ WINDOW.

FIGURE 5.5 DAILY AVERAGE XCO₂ RETRIEVED FROM THE DARWIN SOLAR FTS.

FIGURE 5.6 DAILY AVERAGE XCH₄ RETRIEVED FROM THE DARWIN SOLAR FTS. THE LIGHT BLUE OPEN CIRCLES SHOW DATA OBTAINED BEFORE A SPECTROMETER REALIGNMENT IN JANUARY 2009. THE DARK BLUE PLUSES SHOW DATA OBTAINED AFTER THE REALIGNMENT.

FIGURE 5.7 DAILY AVERAGE (A) XCO₂ AND (B) XCH₄ FROM LAUDER (BLACK) AND DARWIN (LIGHT/DARK BLUE).

FIGURE 5.8 DAILY AVERAGE TROPOSPHERIC XCH₄ FROM LAUDER (BLACK) AND DARWIN (BLUE).

FIGURE 5.9 COMPARISON OF MONTHLY AVERAGE FTS RETRIEVED Δ²H IN H₂O FROM COLUMN RETRIEVALS FROM SPECTRA ACQUIRED BY THE DARWIN SOLAR FTS (RED, RIGHT AXIS), AND BY SCIAMACHY IN 200Km (GREEN), 500Km (BLUE) AND 1000Km (BLACK) RADII AROUND DARWIN.

FIGURE 5.10 COLUMN-AVERAGE MOLE FRACTIONS OF H₂O IN DARWIN.

FIGURE 5.11 THE Δ²H IN H₂O (TOP) AND COLUMN-AVERAGE HDO (BOTTOM) MEASURED AT DARWIN.

FIGURE 5.12 TIME SERIES OF XCO MEASURED AT DARWIN.

FIGURE 5.13 MEASURED CO COLUMNS (BLACK) AND AEROSOL OPTICAL DEPTH (GREY) AT DARWIN, TAKEN FROM PATON-WALSH ET AL. [2009].

FIGURE 5.14 THE TIME SERIES OF COLUMN-AVERAGE N₂O MEASURED AT DARWIN.

FIGURE 5.15 XN₂O PLOTTED AGAINST XH₂, REVEALING THAT THERE IS A LOWER LIMIT TO THE RELATIONSHIP. THE LINEAR FIT TO THIS LOWER LIMIT IS USED TO GENERATE THE SLOPE OF XN₂O/XH₂ WHICH IS IN TURN USED TO CORRECT FOR TROPOPAUSE HEIGHT VARIATION.

FIGURE 5.16 TIME SERIES OF TROPOSPHERIC XN₂O FROM DARWIN.

FIGURE 5.17 XH₂ TIME SERIES FROM DARWIN.
Figure 5.18 Comparative time series of FTS (crosses) and NIES GOSAT retrievals (circles/triangles) of \(X_{\text{CO}_2} \) at Darwin. Three low (below 330 \(\mu \text{mol mol}^{-1} \)) GOSAT values have been removed, along with 2 FTS values with high (> 1%) errors, to reduce the range of the y-axis. ... 153

Figure 5.19 Scatter plot of GOSAT vs FTS \(X_{\text{CO}_2} \) for Darwin satellite overpasses. 153

Figure 5.20 Comparison of TCCON FTS \(X_{\text{CO}_2} \) data from Park Falls and Darwin with retrievals from GOSAT data performed using the OCO Full Physics Retrieval Algorithm, for April 26 and 28, 2009. Spectra 4 and 9 are believed to be affected by clouds. The blue and green symbols denote the retrieved \(X_{\text{CO}_2} \) values from GOSAT spectra, and the black symbols the corresponding daily average \(X_{\text{CO}_2} \) from the TCCON sites. Figure provided courtesy of Hartmut Boesch, updated from [Boesch et al., 2009]. ... 154

Figure 5.21 \(X_{\text{CO}_2} \) retrievals using the NIES (blue) and OCO (red) retrieval algorithms, on GOSAT spectra acquired over Australia between April 24 and 29, 2009. Figure taken from Boesch et al. [2009]. ... 155

Figure 5.22 A comparison of GOSAT \(X_{\text{CH}_4} \) retrievals (circles, triangles) from satellite overpasses over Darwin with retrieved values from the ground-based solar FTS (crosses). ... 156

Figure 5.23 A comparison of GOSAT \(X_{\text{CH}_4} \) retrievals made using the OCO retrieval algorithm (black diamonds) on satellite overpasses over Darwin with retrieved values from the ground-based solar FTS (grey circles). ... 156

Figure 5.24 Comparison of daily averaged \(X_{\text{CO}_2} \) (black) measured by the Darwin solar FTS to CCAM simulated \(X_{\text{CO}_2} \) based on the CASA (top, blue) and Simple Biosphere (bottom, red) ecosystem fluxes. ... 157

Figure 5.25 FTS measured and CarbonTracker modelled \(X_{\text{CO}_2} \) at Darwin. 159

Figure 6.1 Typical (mostly) dried in situ mid IR spectrum (Darwin, March 31, 2007, 0120) acquired at 1 cm\(^{-1}\) resolution and coadded over 1160 scans. ... 162

Figure 6.2 An in situ FTIR trace gas analyser. The white cell is mounted in a cradle and attached to the face of the spectrometer. The cradle and spectrometer are in turn mounted on a shock-mounted aluminium plate base. ... 163

Figure 6.3 In situ FTIR plumbing and flow diagram. ... 165

Figure 6.4 Simulated spectra and the major contributing gases at 1000 hPa and 30°C in the three commonly fitted spectral windows at (a) 2300 cm\(^{-1}\), (b) 3000 cm\(^{-1}\) and (c) 3600 cm\(^{-1}\) as fitted in the MALT spectral fitting program. ... 167

Figure 6.5 Schematic diagram showing the plumbing setup for the cross-sensitivity tests. ... 173

Figure 6.6 Nitrous oxide against water vapour cross-sensitivity test results from December 5, 2006. ... 174

Figure 6.7 Linear plots of FTIR retrievals of \(\text{CH}_4, \text{CO}_2, \text{N}_2\text{O} \) and \(\text{CO} \) against GASLAB reference values [Griffith et al., 2003]. ... 175

Figure 6.8 Filtered time series of \(\text{CAL}_\text{ref} \) values for approximately 6 months of calibration spectra obtained at Darwin. \(\text{N}_2\text{O} \) (purple), \(^{13}\text{CO}_2 \) (green), \(\text{CH}_4 \) (dark blue), \(\text{CO}_2 \) (black) and \(\text{CO} \) (grey). These demonstrate the long-term stability and repeatability of the measurement. A small long term drift is evident, but there is little peak-to-peak scatter, implying good measurement repeatability. 177
Figure 6.9 Filtered time series of $\text{CAL}_{4,5,6}$ values for approximately two years of calibration spectra obtained at Lauder. N_2O (purple), $\text{DEL}^{13}\text{CO}_2$ (green), CH_4 (dark blue), CO_2 (black) and CO (grey). A drift over time is evident, and a step can be seen in the N_2O values in late 2008, corresponding with a change to a calibration tank for which the N_2O calibration is not yet finalised. A change of calibration gas cylinder also occurred in April 2008. ... 178

Figure 6.10 Time series of the FTIR analysed $\text{CAL}_{4,5,6}$ values of the calibration gas mixture. Early values have been removed to allow time for instrument stabilisation. The data have been filtered according to the criteria discussed in section 6.2.7. 181

Figure 6.11 Ten-minute average data for the FTIR (grey) and LoFlo (black), together with the difference between the two measurements with (upper panel) and without (middle panel) empirical pressure and water corrections from November 11, 2008 to February 16, 2009. ... 182

Figure 6.12 A correlation between the hourly average LoFlo and FTIR CO_2 measurements. The error bars indicate one standard deviation on the average of the individual measurements averaged to create the hourly mean. (r=0.997)..... 184

Figure 6.13 Time series of FTIR (red) and AGAGE (black) CH_4. The black points in the upper panel gives the difference between the two measurements. AGAGE measurements are instantaneous at approximately 40 minute intervals. The FTIR averages are the weighted average of the two individual measurements spanning the AGAGE sample time, with the weighting given by equation 6.3. AGAGE errors bars are those estimated in literature, while the FTIR error bars are the average difference of the spanning measurements from the weighted mean. 186

Figure 6.14 Correlation of FTIR and AGAGE CH_4 (r=0.983)............................. 186

Figure 6.15 Time series of FTIR (red) and AGAGE (black) CO. The red line in the upper panel gives the difference between the two measurements. AGAGE measurements are instantaneous at approximately 40 minute intervals. The FTIR averages are the weighted average of the two individual measurements spanning the AGAGE sample time, with the weighting given by equation 6.3. AGAGE errors bars are those estimated in literature, while the FTIR error bars are the average difference of the spanning measurements from the weighted mean. 187

Figure 6.16 Correlation of FTIR and AGAGE CO (r=0.968) with the first AGAGE calibration tank. ... 188

Figure 6.17 Correlation of FTIR and AGAGE CO (r=0.919) with the second AGAGE calibration tank. ... 188

Figure 6.18 Time series of FTIR (grey) and AGAGE (black) N_2O. The line in the upper panel gives the difference between the two measurements. AGAGE measurements are instantaneous at approximately 40 minute intervals. The FTIR averages are the weighted average of the two individual measurements spanning the AGAGE sample time, with the weighting given by equation 6.3. AGAGE errors bars are those estimated in literature, while the FTIR error bars are the average difference of the spanning measurements from the weighted mean. 189

Figure 6.19 Correlation of FTIR and AGAGE N_2O (r=0.520). Error bars have been omitted for clarity. ... 190

Figure 6.20 The FTIR time series of $\Delta^{13}\text{CO}_2$ (grey), with the flask samples (black). 192
FIGURE 7.1 Time series of Δ^{13}CO$_2$ (green), N$_2$O (purple), CH$_4$ (blue), CO$_2$ (black) and CO (grey) measured by FTIR at Cape Grim, from November 1, 2008 to February 16, 2009.

FIGURE 7.2 Trace gas time series measured by FTIR at Cape Grim between January 25, 2009 and February 11, 2009. ... 195

FIGURE 7.3 Plot of Δ_{acq} vs C_{con} according to equation 6.9, for February 7, 2009, yielding a slope (corresponding to the Δ^{13}C of the source – Δ_s) of -29.9 ± 2.1 ‰.

FIGURE 7.4 HYSPLIT back trajectory analysis for February 7, 2009. The trajectories are completed hourly from 1400 – 1900. From 1400 – 1700, the air travels south from Victoria, where the bushfires occurred. For the final 2 hours, the air has a westerly fetch. The differing panels show back trajectories landing north of and at Cape Grim. The resolution of the meteorological data used in the back trajectory model results in somewhat different trajectories for the two locations. 198

FIGURE 7.5 Measured time series of chloroform (black), methyl chloroform (blue) and molecular hydrogen (red) from Cape Grim during the time that the FTIR was in operation. ... 200

FIGURE 7.6 Back trajectory analyses for late January, 2009. The pink trajectory corresponds to the time at which gas concentrations were at a maximum, as a result of the northerly source of air, corresponding to the urban area of Melbourne. .. 201

FIGURE 7.7 HYSPLIT back trajectory analyses for January 6, 2009, when a CH$_4$ depletion is measured by the FTIR at Cape Grim, along with enhancements of CO$_2$, CO and N$_2$O. 202

FIGURE 7.8 Time series of CO$_2$ (top), CH$_4$ (2H$_4$ top), N$_2$O (2N$_2$O bottom) and CO (bottom) from Lauder between July 2006 and February 2009. The y-axes are not full range, but shortened to show the lower (and most frequent) mixing ratios. 203

FIGURE 7.9 Baseline Lauder N$_2$O, CH$_4$, CO$_2$ and CO as measured by the in situ FTIR gas analyser. These baseline data are created by removing data collected outside the hours of 1PM – 6PM local time, when wind speed was less than 10 m/s and when the wind direction is between south-east and south-west. (& when the measurements are greater than a threshold value different from the daily minimum). 204

FIGURE 7.10 Monthly average baseline concentrations for CO$_2$, CO, CH$_4$ and N$_2$O. The lines show an harmonic plus linear fit for CH$_4$ and CO, and a double harmonic plus linear trend for N$_2$O and CO$_2$. Error bars are the standard deviation of the month’s baseline concentrations. ... 206

FIGURE 7.11 A comparison between the FTIR derived monthly mean baseline CO$_2$, and that measured at the New Zealand clean air station at Baring Head. 208

FIGURE 7.12 Example plots of nighttime changes in CH$_4$, N$_2$O, CO and 13CO$_2$ against CO$_2$ for July 15, 2007... 209

FIGURE 7.13 Ratios of (from top to bottom) CO, N$_2$O and CH$_4$ to CO$_2$, and Δ^{13}C determined from gas concentration build ups during still nights.......................... 210

FIGURE 7.14 Time series of CO$_2$ (top), CH$_4$ (2H$_4$ top), N$_2$O (2N$_2$O bottom) and CO (bottom) from Darwin between March 2007 and February 2009. The lowermost and most frequent concentrations are shown. .. 211
FIGURE 7.15 Baseline Darwin CO₂, CH₄, N₂O and CO. These baseline data include
data between 1400 and 1600 local time when wind speed is greater than 5 m s⁻¹ 212

FIGURE 7.16 Monthly average baseline concentrations, and double harmonic
plus linear fit to the time series. Error bars are the standard deviation of the
month’s baseline mole fractions. ... 213

FIGURE 7.17 Monthly mean Darwin baseline CO₂ concentrations, and those
measured at American Samoa (14°S). ... 213

FIGURE 7.18 Monthly mean Darwin baseline CH₄ concentrations and those
measured at American Samoa .. 215

FIGURE 7.19 Monthly average baseline N₂O concentrations measured by FTIR at
Darwin and AGAGE at Samoa .. 215

FIGURE 7.20 Back trajectory analyses from Darwin in April 2007 (left) and April
2008 (right). The patterns are similar, but those from 2008 spend time over south-
eastern Australia, potentially picking up polluted air, while 2007 back
trajectories are predominantly over ocean ... 216

FIGURE 7.21 Time series of CO₂, CH₄, N₂O and CO measured by FTIR at Katherine,
from September 30, 2008 to April 29, 2009. The grey shadings indicate days when
there was rainfall ... 216

FIGURE 7.22 Baseline FTIR CO₂ concentrations measured at Darwin (blue) and
Lauder (black) ... 217

FIGURE 7.23 Baseline FTIR CH₄ concentrations measured at Darwin (blue) and
Lauder (black) ... 218

FIGURE 8.1 The time series of CO₂, CH₄, N₂O and CO measured during the first
Ghan transect voyage between February 24 and 29, 2008 224

FIGURE 8.2 CO₂, CH₄, N₂O and CO measured as a function of latitude during the
first Ghan transect ... 224

FIGURE 8.3 CO measured during the first Ghan trip, plotted as a function of
CO₂, along with the linear fit between the two gases 225

FIGURE 8.4 The time series of CO₂, CH₄, N₂O and CO measured during the second
Ghan transect voyage between March 30 and April 4, 2008 225

FIGURE 8.5 CO₂, CH₄, N₂O and CO measured as a function of latitude during the
second Ghan transect .. 226

FIGURE 8.6 CO measured during the second Ghan trip, plotted as a function of
CO₂, along with the linear fit between the two gases 227

FIGURE 8.7 The time series of CO₂, CH₄, N₂O and CO measured during the second
Ghan transect voyage between September 28 and October 1, 2008 227

FIGURE 8.8 CO₂, CH₄, N₂O and CO measured as a function of latitude during the
third Ghan transect ... 228

FIGURE 8.9 CO measured during the third Ghan trip, plotted as a function of
CO₂, along with the linear fit between the two gases 229

FIGURE 8.10 The latitudinal gradients on methane as measured on the Ghan for
trip 1 (top), trip 2 (middle) and trip 3 (bottom). The grey vertical bars indicate
Alice Springs and Darwin, where the train stops and variations in CH₄ due to
local effects are evident. The colour scales show the date of each measurement.

230

xx
Figure 8.11 Back trajectory analyses for Darwin (left column) and Katherine (right column) for the dates of the transect measurements – Trip 1 (top), Trip 2 (middle) and Trip 3 (bottom). ... 232

Figure 8.12 Previously defined Ramsar and other wetlands in the Northern Territory. Image adapted from a map produced by the Environmental Reporting Tool of the Department of the Environment, Water, Heritage and the Arts (http://www.environment.gov.au/apps/boobook/mapservlet?APP=ERT)................. 234

Figure 8.13 The TAPM model regions defined as cattle (left) and termite (right) source areas. 236

Figure 8.14 The area surveyed from MODIS landcover data for wetland inundation. 238

Figure 8.15 The vectorised wetland maps for (a) January 2008 and (b) May 2008 as determined from MODIS satellite images. The wetland areas are shown in shades of blue, and the Ghan train route is shown in red. .. 238

Figure 8.16 Wetland source areas defined in TAPM for the modelling of trips 1 and 2 (left) and trip 3 (right). ... 239

Figure 8.17 Measured (open diamonds) and modelled (closed squares) CH₄ with latitude for each of the three campaigns for the northernmost latitudes, corresponding to the area modelled. .. 241

Figure 10.1 Simulated (left) and measured (right) spectra for the OCO spectrometers. (a) the O₂ A-band, (b) the 1.66 mm CO₂ band and (c) the 2.06 mm CO₂ band. The measured spectra taken by the instrument are from the first instrument thermal vacuum testing period in September, 2007. 267

Figure 10.2 Monthly correct (blue – A), apriori (green – B) and predicted (red – C) sources for (a) region 16 and (b) Australia, based on monthly mean biosphere flux data and with the base network including the Cape Grim Land point............. 276

Figure 10.3 Monthly correct (blue – A), apriori (green – B) and predicted (red – C) sources for region 16, based on diurnal biosphere flux data and with the base network including the Cape Grim Land point. ... 277

Figure 10.4 Monthly correct (blue – A), apriori (green – B) and predicted (red – C) sources for region 16, based on diurnal biosphere flux data and with the base network including the 'Aus16a' Tasmanian land point................................. 278

Figure 10.5 Monthly correct (blue – A), apriori (green – B) and predicted (red – C) sources for region 16, based on diurnal biosphere flux data and with the base network including the offshore Cape Grim point... 279

Figure 10.6 The correction factors determined for the Vaisala RS92TM humidity sensor [Vömel et al., 2007] (a) pressure dependent dry-radiation bias and (b) temperature dependent bias... 295

Figure 10.7 Simulated spectra from 2080 cm⁻¹ (4.8 mm) – 2170 cm⁻¹ (4.6 mm) – the region typically used in commercial CO analysers. The spectra were simulated to contain 400 ppm CO₂, 300 ppb N₂O, 100 ppb CO, and 100 ppb H₂O, which could be considered to be fairly typical atmospheric concentrations (in a moderately dried atmospheric sample). Both figures show the spectrum due to all gases (navy blue) and the individual gas components: CO (royal blue), N₂O (red), H₂O (turquoise), and CO₂ isotopes (green, brown and mauve) at 1000 mb, 30 °C and through a 26 m pathlength. (b) has the total atmospheric transmission spectrum offset from the individual components for clarity. .. 307
FIGURE 10.8 CO (nmol. mol\(^{-1}\)) over the trip from Sydney to Adelaide on the Indian-Pacific railway, from October 11 – 12, 2006. Several features are highlighted on the graph, which has the CO presented on a logarithmic scale. ... 308

FIGURE 10.9 Minute average CO concentrations as recorded with the Ecotech EC9830A CO analyzer on the Indian-Pacific railway from Adelaide to Sydney from October 13 – 14, 2006. .. 311

FIGURE 10.10 Carbon monoxide as recorded by three different gas analysis systems, the Ecotech EC9830A (blue), a Bomem MB100 based OOOFTI (purple) and a Bruker I RCube based OOOFTI (yellow). The measurements span October 7 – 9, 2006. 312

FIGURE 10.11 CO (nmol. mol\(^{-1}\)) as recorded by the EC9830 (blue) and retrieved from spectra collected by Skippy (purple) from October 19 – 25, 2006................. 313

FIGURE 10.12 Retrieved CO in nmol mol\(^{-1}\) from 1710 spectra collected with an OOOFTI and analysed with MALT in the 2080-2170 cm\(^{-1}\) window (y-axis) and 2150-2320 cm\(^{-1}\) window (x-axis). ... 314
List of Tables

TABLE 1.1 Radiative efficiencies, global warming potentials and lifetimes of some key greenhouse gases (sources: [Forster et al., 2007; Ramaswamy et al., 2001]). 2

TABLE 1.2 Details for locations of present and future TCCON sites. 27

TABLE 2.1 Sigma-pressures and approximate heights (in metres) above the surface of the vertical model levels in CCAM. 38

TABLE 2.2 Site mnemonic, location, latitude, longitude, altitude and inversion region number for locations with pseudodata included in the ‘current-case’ inversion. 54

TABLE 2.3 The annual RMS biases and uncertainties for all the individual Australian regions for the current case inversion. These are given for the diurnal and monthly mean pseudodata and the prior flux estimates. The biases and uncertainties have units of PgC/yr. 57

TABLE 2.4 The annual RMS biases and uncertainties for all Australian regions for the best case inversion using diurnal pseudodata (PgCyr⁻¹). Included are the biases from the inversions with and without the daytime only basis functions. 63

TABLE 3.1 Locations of the Ghan railway used to approximate the hourly locations of the train. Co-ordinates are given as degrees.minutes. 70

TABLE 3.2 Retrieved biases and uncertainties for the estimated sources for the control-case, and the control-case with the starting time offset by 6, 12 and 18 hours. The regions where there are differences are shown, and all values are in PgC yr⁻¹. 84

TABLE 3.3 Retrieved biases and uncertainties for the diurnal amplitude for the control-case, and the control-case with the starting time offset by 6, 12 and 18 hours. The regions where there are differences are shown, and all values are in PgC yr⁻¹. 84

TABLE 3.4 Retrieved biases and uncertainties for the source estimates for inversions including Katherine, Darwin, the control-case and Darwin, and the control-case only. Regions where there are differences are shown, and all values are PgC yr⁻¹. 85

TABLE 3.5 Retrieved biases and uncertainties for the diurnal amplitude for inversions including Katherine, Darwin, the control-case and Darwin, and the control-case only. Regions where there are differences are shown, and all values are PgC yr⁻¹. 87

TABLE 4.1 The manufacturer, part number, accuracy and units of the sensors on the weather station. 97

TABLE 4.2 Comparative pressure readings between the Setra 270 pressure transducer and the mercury manometer. The algorithm used to calculate the mercury manometer pressure is supplied by the manufacturer, and corrects for latitude and temperature. 99

TABLE 4.3 Microwindows used to fit H₂O from FTS solar spectra. 106

TABLE 4.4 Summary of the column average dry-air mixing ratios obtained during the intercomparison between the FTS and the in situ instrument on board Proteus. 131

TABLE 5.1 Details of windows fitted for each gas in NIR solar spectra. 135
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Range of linearity for FTIR vs GASLab standards (Griffith et al., 2003)</td>
</tr>
<tr>
<td>6.2</td>
<td>Summary of secondary standards used for FTIR calibration and GASLab calibrated values.</td>
</tr>
<tr>
<td>6.3</td>
<td>Mean CalTAC values and their standard deviations for CO₂, CH₄, N₂O and CO, for a linearity test involving 9 samples each of high- and low- spanning calibration gases.</td>
</tr>
<tr>
<td>6.4</td>
<td>Measurement reproducibility (one-sigma) and long-term drift at Darwin and Lauder, as determined by the scatter in repeated daily FTIR measurements of reference gas, with an averaging time of 10 minutes.</td>
</tr>
<tr>
<td>6.5</td>
<td>Measurement repeatability and standard deviations for repeated 1 minute and 10 minute samples of constant gas composition. Data are courtesy of Dan Smale, from the New Zealand National Institute of Water and Atmospheric Research.</td>
</tr>
<tr>
<td>6.6</td>
<td>Filter acceptance criteria applied to the sample and calibrated data at Darwin, Lauder and Cape Grim.</td>
</tr>
<tr>
<td>6.7</td>
<td>Comparative standard deviations (nmol mol⁻¹) of the FTIR and AGAGE measurements between January 1-2, 2009, a period that appears to be baseline conditions.</td>
</tr>
<tr>
<td>6.8</td>
<td>Date/times and analyzed Δ¹³CO₂ of flasks filled at Cape Grim during baseline conditions while the FTIR was operating at Cape Grim.</td>
</tr>
<tr>
<td>7.1</td>
<td>In situ FTIR locations and dates of operation.</td>
</tr>
<tr>
<td>7.2</td>
<td>Emission ratios calculated from air measured at Cape Grim on January 28-29, 2009, during which time air passes over the Melbourne urban area.</td>
</tr>
<tr>
<td>7.3</td>
<td>Emission ratios calculated from air measured at Cape Grim on January 6, 2009, when a depletion of CH₄ is observed, and back trajectory analyses indicate a westerly ocean source.</td>
</tr>
<tr>
<td>7.4</td>
<td>Fit parameters to Lauder trace gas concentration time series. $Y = a*\sin(2\pi(x+b)) + cx + d + e\sin(4\pi(x+f))$, where $x =$ years since 2005. Values given as fit ± 95% confidence interval.</td>
</tr>
<tr>
<td>7.5</td>
<td>Fit parameters to Darwin trace gas concentration time series. $Y = a*\sin(2\pi(x+b)) + cx + d + e\sin(4\pi(x+f))$. Values given as fit ± 95% confidence interval.</td>
</tr>
<tr>
<td>10.1</td>
<td>Table containing the list of sites at which response functions and pseudodata were generated. Those selected to have hourly pseudodata have a ‘1’ present in the 7th column, while the ‘99’ in the 4th column indicates that data will be saved at all model levels. Where a site is to have data saved at all model levels, hourly data is only saved at the bottom level, apart from in the case of Darwin, where all model levels are saved.</td>
</tr>
<tr>
<td>10.2</td>
<td>List of sites included in GLOBALVIEW-2007, along with their latitude, longitude and altitude, whether they are a marine boundary layer site, and the laboratory responsible for the measurements.</td>
</tr>
<tr>
<td>10.3</td>
<td>List of site names and details for the sites used in the best-case inversion.</td>
</tr>
</tbody>
</table>
Table 10.4 Regional biases and uncertainties for the base network with monthly mean and diurnal ecosystem fluxes, and using the Cape Grim land or offshore point. .. 293

Table 10.5 Co-efficients for Wexler and Wexler and Hyland formulations for calculating saturation vapour pressure of liquid and solid. ... 298

Table 10.6 Comparative calculated H₂O VMRS for a number of points on the balloon-borne sonde launched closest to the aircraft overflights on February 4, 2006. 299

Table 10.7 Modelled concentrations of CO emitted from diesel locomotive exhaust at a range of wind speeds and distances from the exhaust 303

Table 10.8 Modelled concentrations of CO₂ emitted from diesel locomotive exhaust at a range of wind speeds and distances from the exhaust 304

Table 10.9 Modelled concentrations of CO emitted from diesel locomotive exhaust at a range of low wind speeds 700m from the exhaust. 310