2010

Effects of antipsychotic drugs on the expression of neurotransmitter receptors in the rat brain

Mei Han

University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
EFFECTS OF ANTIPSYCHOTIC DRUGS ON THE
EXPRESSION OF NEUROTRANSMITTER
RECEPTORS IN THE RAT BRAIN

A thesis submitted in fulfilment of the
requirements for the award of the degree

DOCTOR OF PHILOSOPHY

From

SCHOOL OF HEALTH SCIENCES
UNIVERSITY OF WOLLONGONG

By

MEI HAN

2010
CERTIFICATION

I, Mei Han, declare that this thesis, submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Health Sciences, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged below. This document has not been submitted for qualifications at any other academic institution.

Mei Han
2009
ACKNOWLEDGEMENTS

I would like to express my appreciation to several people who have given me assistance and support throughout my PhD studies. This thesis would not appear in its present form without your kind assistance and support.

I am grateful to have such encouraging and supportive supervisors Dr Chao Deng and Professor Xu Feng Huang. I am greatly indebted to you for helping me to overcome obstacles during my studies. In particular, thanks for your support in the preparation of my published papers and thesis. Without your continuous commitment and motivational guidance it would be impossible for me to finish this project.

I give my sincere thanks to Dr Kelly Anne Newell and Dr Teresa Marie du Bois for their tremendous assistance and continuous support during the course of my study, especially for their help in the preparation of my published papers.

Thank you to Mrs Katrina L. Weston-Green, Dr Kelly Anne Newell, Dr Teresa Marie du Bois and Dr Mandy Reid for enthusiastic editorial reading of my thesis.

I would like acknowledge Dr Tracy Maddocks for allowing me to successfully carry out animal experiments.
Thanks to Dr Thomas Burne for his help in analysing and interpretation of all the
behavioural data.

I would also like to thank Dr YingHua Yu and other people in research group.
Their enthusiastic help was important for the completion of this thesis.

Acknowledgement is also given to The University Research Committee,
University of Wollongong and the Schizophrenia Research Institute (SRI) for
providing the scholarship enabling me to conduct my research.

And finally, I would like to take the opportunity to express my deep gratitude to
my parents for their support and encouragement. A special thank also goes to my
husband Zhengyi Jiang and my daughter Fan Jiang for their tremendous support,
encouragement, patience and help during my PhD study.

Thank you all!
STATEMENTS

According the guidelines of the University of Wollongong thesis committee, I have chosen to present my PhD thesis in ‘Publication Format’. This includes four series of experiments, from which three were published in peer reviewed journals and one has been accepted for publication in *Neuroscience*. I am the first author in all four publications. I would like to state that I am the primary designer of these experiments. I have carried out all experiments and performed data analysis and written up these papers. Furthermore, I have published additional seven research papers and nine conference abstracts together with my colleagues during the course of my PhD study.
PUBLICATIONS

The following publications and presentations have arisen directly from the work conducted for this thesis.

Publications in Refereed Journals

Han, M., Huang, X.F., du Bois, T., and Deng, C. The effects of antipsychotic drugs administration on 5-HT1A receptor expression in the limbic system of the rat brain. *Neuroscience*, in press, accepted for publication on 17 September, 2009.

Publications in Conference Proceedings

Additional Publications

The following publications have arisen from other projects that I have involved in throughout my doctoral study.

Weston-Green K., Deng, C., Han, M., and Huang, X.F. Effects of Antipsychotic Drugs on Weight Gain and CB1 Receptors in the Dorsal Vagal Complex of Rats. *Proceedings of the 7th IBRO World Congress of Neuroscience*, 144, 2007.

ABSTRACT

Currently, the control of schizophrenia symptoms is primarily through pharmacological intervention. However, antipsychotics can cause several side-effects, such as extrapyramidal symptoms (EPS) and body weight gain/obesity, which severely affect patient compliance to continue with medication. In addition, due to the effects of antipsychotics on neurotransmission, it is unclear whether central pathological changes observed in post-mortem tissue in schizophrenia are the real pathology of the disease or are a result of the effects of antipsychotic drugs. The aim of this study was to investigate the molecular mechanisms of the pharmacological efficacy and side-effects of antipsychotic drugs. To achieve this aim, this study examined the expression of dopamine D2, histamine H1, serotonin 5HT1A and muscarinic M1 receptors in the rat brain following short-term (1 week) and long-term (12 weeks) treatment with aripiprazole, olanzapine and haloperidol.

Aripiprazole and haloperidol both have a high affinity for dopamine D2 receptors, however aripiprazole has a lower risk of EPS than haloperidol. The aim of Chapter 2 was to understand the mechanism underlying why aripiprazole, unlike haloperidol, has a therapeutic effect but does not induce significant EPS. Results showed that aripiprazole selectively increased D2 receptor mRNA expression and decreased tyrosine hydroxylase mRNA expression (TH; a rate-limiting enzyme for the synthesis of dopamine) in the ventral tegmental area (VTA), but not the substantia nigra (SN). Aripiprazole also decreased dopamine transporter (DAT) binding density in the nucleus accumbens (NAc) and VTA. Consistent with
previous findings, haloperidol significantly increased D_{2} receptor binding density, but decreased DAT binding density in the NAc, CPU and VTA. Olanzapine had less widespread effects on D_{2} receptor expression and DAT binding density. These results suggest that aripiprazole may control schizophrenia symptoms through a novel mechanism: that is, by selectively reducing dopamine synthesis in the VTA but not SN. This may contribute to the long-term efficacy of aripiprazole in controlling schizophrenia symptoms with reduced EPS.

It has been previously reported that aripiprazole and olanzapine increased dopamine release in the prefrontal cortex via the serotonin 5-HT_{1A} receptor, which may partially explain why these drugs can improve the negative symptoms and cognitive functional deficits associated with schizophrenia. It is interesting that aripiprazole has a high affinity for 5-HT_{1A} receptors, but olanzapine has not. Therefore, the aim of Chapter 3 was to examine whether these antipsychotics affect 5-HT_{1A} receptor expression. The results showed that aripiprazole increased 5-HT_{1A} binding density in the CA1 region of the hippocampus and medial posterodorsal nuclei of the posterior amygdala (MeP), while olanzapine down-regulated the binding density of 5-HT_{1A} receptors in the cingulate cortex.

However, these changes were not apparent after 12 weeks of drug treatment. This study suggests that aripiprazole and olanzapine have different effects on the binding density of 5-HT_{1A} receptors. The results indicate that aripiprazole and olanzapine have differential effects on 5-HT1A protein expression, which may contribute to their distinct profiles in improving negative symptoms and cognitive
deficits in schizophrenia. However, they may induce adaptation and desensitisation in serotonin 5-HT\textsubscript{1A} receptor expression after long-term treatment.

Schizophrenia patients exhibit a decrease, or no change, in muscarinic M\textsubscript{1} receptor expression in certain brain regions. Olanzapine has a high affinity for the M\textsubscript{1} receptor, while aripiprazole and haloperidol have low affinities. The aim of Chapter 4 was to investigate how these antipsychotics affect M\textsubscript{1} receptor mRNA expression in regions of the brain that are implicated in the pathology of schizophrenia. This study showed that the three antipsychotics increased M\textsubscript{1} receptor mRNA expression in the hippocampus. In addition, increases in M\textsubscript{1} receptor mRNA expression were also observed in the SN following treatment with haloperidol and olanzapine, and in the NAc following treatment with aripiprazole. These results suggest that alterations of M\textsubscript{1} receptor mRNA expression in schizophrenia are unlikely to be a consequence of drug treatment, and implicate the muscarinic M\textsubscript{1} receptor as a contributor to the therapeutic effects of schizophrenia treatments.

The aim of Chapter 5 was to investigate whether the body weight gain/obesity side-effect of olanzapine was produced by regulating histamine H\textsubscript{1} receptor expression. To the best of this author’s knowledge, this study is the first to compare H\textsubscript{1} receptor expression in the rat brain following short and long-term administration of olanzapine, aripiprazole and haloperidol. Results showed that olanzapine significantly down-regulated H\textsubscript{1} receptor mRNA expression and
binding density in the ventromedial hypothalamic nucleus (VMH), and H₁ receptor mRNA expression in the arcuate hypothalamic nucleus (Arc). Consistent with their low risk of weight gain/obesity side-effect, aripiprazole and haloperidol had no effect on H₁ receptor expression in the VMH or Arc. Histamine H₁ receptor mRNA expression in the VMH and Arc were negatively correlated to body weight gain and energy efficiency, while H₁ receptor mRNA expression in the Arc showed negative correlations to food intake and total fat mass. In addition, there was a negative relationship between H₁ receptor binding densities in the VMH and total fat mass and body weight gain. This study suggests that an olanzapine-induced down-regulation of histamine H₁ receptor expression in regions of hypothalamus involved in the regulation of food intake (the Arc and VMH) may be a key factor contributing to olanzapine-induced body weight gain/obesity.

In conclusion, this study revealed that the effects of antipsychotics on specific neurotransmitter receptors contribute to the mechanisms of their pharmacological efficacy and side-effects. The binding profiles of antipsychotics for specific receptors cannot completely predict the level of their therapeutic efficacies and side-effects. Furthermore, the changes in expression of some receptors (such as 5-HT₁₅) by antipsychotic treatment may produce the adaptation and desensitisation after long-term use. These results have also provided significant information which may assist with the development of new antipsychotic drugs.
CHAPTER 1. LITERATURE REVIEW AND OVERVIEW OF THE STUDY

1.1 Introduction .. 1
1.2 Review of the literature ... 5
 1.2.1 The pharmacological effects of antipsychotics ... 5
 1.2.2 The selection of antipsychotic drugs ... 7
 1.2.3 Antipsychotics and the dopaminergic system ... 10
 1.2.3.1 The dopaminergic system ... 11
 1.2.3.2 The dopaminergic hypothesis of schizophrenia .. 13
 1.2.3.3 The effects of antipsychotic drugs on dopamine D2 receptors 14
 1.2.4 Antipsychotics and the serotonergic system ... 19
 1.2.4.1 The serotonergic system ... 20
 1.2.4.2 The involvement of the 5-HT1A receptors in schizophrenia 22
 1.2.4.3 The effects of antipsychotic drugs on serotonin 5-HT1A receptors 23
 1.2.5 Antipsychotics and the muscarinic acetylcholine system 25
 1.2.5.1 The muscarinic acetylcholine system ... 25
 1.2.5.2 The involvement of the M1 receptors in schizophrenia 26
 1.2.5.3 The effects of antipsychotic drugs on muscarinic M1 receptors 28
 1.2.6 Antipsychotics and the histaminergic system .. 30
 1.2.6.1 The histaminergic system .. 31
 1.2.6.2 The involvement of the H1 receptors in schizophrenia 32
 1.2.6.3 The role of the histamine H1 receptors in antipsychotic-induced weight gain ... 33
1.3 Aims of the study ... 35
1.4 General methods .. 37
 1.4.1 Animals .. 37
 1.4.2 The dosage selection of antipsychotic drugs ... 40
 1.4.3 Open field test .. 40
 1.4.4 Histology .. 42
 1.4.5 In situ hybridisation ... 44
 1.4.6 Receptor autoradiography .. 45
 1.4.7 Statistical analysis ... 46
1.5 Summary of this thesis

1.5.1 Aripiprazole differentially affects mesolimbic and nigrostriatal dopaminergic transmission: implications for long-term drug efficacy and low extrapyramidal side-effects

1.5.2 The effects of antipsychotic drugs administration on 5-HT$_{1A}$ receptor expression in the limbic system of the rat brain

1.5.3 Effects of antipsychotic medication on muscarinic M$_1$ receptor mRNA expression in the rat brain

1.5.4 Short- and long-term effects of antipsychotic drug treatment on weight gain and H$_1$ receptor expression

CHAPTER 2. ARIPIPRAZOLE DIFFERENTIALLY AFFECTS MESOLIMBIC AND NIGROSTRIATAL DOPAMINERGIC TRANSMISSION: IMPLICATIONS FOR LONG-TERM DRUG EFFICACY AND LOW EXTRAPYRAMIDAL SIDE-EFFECTS

CHAPTER 3. THE EFFECTS OF ANTIPSYCHOTIC DRUGS ADMINISTRATION ON 5-HT$_{1A}$ RECEPTOR EXPRESSION IN THE LIMBIC SYSTEM OF THE RAT BRAIN

3.1 Introduction

3.2 Experiment procedures

3.2.1 Animals and antipsychotic treatment

3.2.2 Histology

3.2.3 In situ hybridisation

3.2.4 Receptor autoradiography

3.2.5 Quantification

3.2.6 Statistical analysis

3.3 Results

3.3.1 5-HT$_{1A}$ receptor binding

3.3.2 5-HT$_{1A}$ receptor mRNA expressions

3.4 Discussion

3.5 Acknowledgements

CHAPTER 4. EFFECTS OF ANTIPSYCHOTIC MEDICATION ON MUSCARINIC M$_1$ RECEPTOR mRNA EXPRESSION IN THE RAT BRAIN

CHAPTER 5. SHORT-AND LONG-TERM EFFECTS OF ANTIPSYCHOTIC DRUG TREATMENT ON WEIGHT GAIN AND H$_1$ RECEPTOR EXPRESSION

CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS

6.1 Overall conclusion

6.2 Recommendations for further research

REFERENCES
LIST OF FIGURES
(Chapter 1 & Chapter 3)

Fig. 1.1 Diagram of the human brain showing four major dopamine pathways: the mesolimbic, nigrostriatal, mesocortical and tuberoinfundibular pathways............ 12

Fig. 1.2 Flowchart showing the experiment design and assignment of rats........ 38

Fig. 1.3 Administration of antipsychotic drug treatment to a female Sprague Dawley rat using the sweet ‘cookie-dough’ pellet method......................... 39

Fig. 1.4 A. Rat performing in the open field test shown crossing between zoons in the open field. B. An Ethovision trace showing rat activity in the open field test ... 41

Fig. 1.5 Diagrams of the rat brain showing the location of nuclei detected in this study .. 43

Fig. 3.1 Autoradiographs show the examples of [3H]WAY-100635 bindings on 5-HT1A receptors.. 80

Fig. 3.2 Binding densities of 5-HT1A receptors (A, B, C and D) in rats treated with aripiprazole (ARP), olanzapine (OLZ), haloperidol (HPD) and controls (CONT) .. 81

Fig. 3.3 Photographs show the examples of 5-HT1A receptor mRNA expressions in the rat brain (A and B) .. 82
LIST OF TABLES

(Chapter 1 & Chapter 3)

Table 1.1 Effects and side-effects of commonly used antipsychotics administered at therapeutic doses ... 6

Table 1.2 Receptor affinities of commonly used antipsychotics...................... 8

Table 3.1 Specific [3H]WAY-100635 binding densities in different brain regions following 1 week of treatment with aripiprazole, olanzapine, haloperidol and control... 83

Table 3.2 Specific [3H]WAY-100635 binding densities in different brain regions following 12 weeks of treatment with aripiprazole, olanzapine, haloperidol and control... 84

Table 3.3 5-HT1A receptor mRNA expression in different brain regions following 1 week of treatment with aripiprazole, olanzapine, haloperidol and control 85

Table 3.4 5-HT1A receptor mRNA expression in different brain regions following 12 weeks of treatment with aripiprazole, olanzapine, haloperidol and control..... 86
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-HT</td>
<td>Serotonin</td>
</tr>
<tr>
<td>AcbC</td>
<td>Nucleus accumbens core</td>
</tr>
<tr>
<td>AcbS</td>
<td>Nucleus accumbens shell</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>ARP</td>
<td>Aripiprazole</td>
</tr>
<tr>
<td>Arc</td>
<td>Arcuate hypothalamic nucleus</td>
</tr>
<tr>
<td>CA1</td>
<td>CA1 region of hippocampus</td>
</tr>
<tr>
<td>CA2</td>
<td>CA2 region of hippocampus</td>
</tr>
<tr>
<td>CA3</td>
<td>CA3 region of hippocampus</td>
</tr>
<tr>
<td>CART</td>
<td>Cocaine- and amphetamine-regulated transcript</td>
</tr>
<tr>
<td>Cg</td>
<td>Cingulate cortex</td>
</tr>
<tr>
<td>CNS</td>
<td>Central nervous system</td>
</tr>
<tr>
<td>CONT</td>
<td>Control</td>
</tr>
<tr>
<td>CPu</td>
<td>Caudate-putamen</td>
</tr>
<tr>
<td>DAT</td>
<td>Dopamine transporter</td>
</tr>
<tr>
<td>DM</td>
<td>Dorsomedial hypothalamic nucleus</td>
</tr>
<tr>
<td>DG</td>
<td>Dentate gyrus</td>
</tr>
<tr>
<td>HB</td>
<td>Habenular nucleus</td>
</tr>
<tr>
<td>EPS</td>
<td>Extrapyramidal symptoms</td>
</tr>
<tr>
<td>FBW</td>
<td>Final body weight</td>
</tr>
<tr>
<td>GABA</td>
<td>Gamma-aminobutyric acid</td>
</tr>
<tr>
<td>HPD</td>
<td>Haloperidol</td>
</tr>
<tr>
<td>IBW</td>
<td>Initial body weight</td>
</tr>
<tr>
<td>LHA</td>
<td>Lateral hypothalamic area</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen-activated protein kinase</td>
</tr>
<tr>
<td>MeP:</td>
<td>Medial posterodorsal nuclei of posterior amygdala</td>
</tr>
<tr>
<td>MePV</td>
<td>Medial amygdaloid nucleus, posteroverentral part</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic resonance imaging</td>
</tr>
<tr>
<td>NAc</td>
<td>Nucleus accumbens</td>
</tr>
<tr>
<td>NAcC</td>
<td>Nucleus accumbens core</td>
</tr>
<tr>
<td>NAcS</td>
<td>Nucleus accumbens shell</td>
</tr>
<tr>
<td>NMDA</td>
<td>N-methyl-D-aspartate</td>
</tr>
<tr>
<td>NRG-1</td>
<td>Neuregulin-1</td>
</tr>
<tr>
<td>NPY</td>
<td>Neuropeptide Y</td>
</tr>
<tr>
<td>PCP</td>
<td>Phencyclidine</td>
</tr>
<tr>
<td>PET</td>
<td>Positron emission tomography</td>
</tr>
<tr>
<td>POMC</td>
<td>Pro-opiomelanocortin</td>
</tr>
<tr>
<td>PVN</td>
<td>Paraventricular hypothalamic nucleus</td>
</tr>
<tr>
<td>OLZ</td>
<td>Olanzapine</td>
</tr>
<tr>
<td>RT</td>
<td>Reticular thalamic nucleus</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard error of the mean</td>
</tr>
<tr>
<td>SRI</td>
<td>Schizophrenia Research Institute</td>
</tr>
<tr>
<td>SN</td>
<td>Substantia nigra</td>
</tr>
<tr>
<td>SNC</td>
<td>Substantia nigra compacta</td>
</tr>
<tr>
<td>TE</td>
<td>Tissue equivalent</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Name</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>TH</td>
<td>Tyrosine hydroxylase</td>
</tr>
<tr>
<td>VMH</td>
<td>Ventromedial hypothalamic nucleus</td>
</tr>
<tr>
<td>VTA</td>
<td>Ventral tegmental area</td>
</tr>
<tr>
<td>ZI</td>
<td>Zona incerta</td>
</tr>
</tbody>
</table>