Some mathematical models arising in nano- and bio-technology

Yue Chan
ychan@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/theses

Recommended Citation
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
Some mathematical models arising in nano- and bio-technology

A thesis submitted in (partial) fulfillment of the requirements for the award of the degree

Doctor of Philosophy

from

UNIVERSITY OF WOLLONGONG

by

Yue Chan

Master of Mathematics
University of Wollongong

Bachelor of Science
University of Melbourne

Nanomechanics Group
School of Mathematics and Applied Statistics

2009
I, Yue Chan, declare that this thesis, submitted in fulfillment of the requirements for the award of Doctor of Philosophy, in the School of Mathematics and Applied Statistics, University of Wollongong. This thesis is wholly my own work unless otherwise referenced or acknowledged below. The document has not been submitted for qualifications at any other University or Institution.

Yue Chan

Oct, 2009
Acknowledgements

I gratefully acknowledge the people who provided enormous assistance in preparing of this thesis. First of all, I would like to express my deep gratitude to my supervisors, Dr Ngamta Thamwattana and Professor Jim Hill, without their advice and assistance, this thesis would have never been completed. I would also like to thank my previous supervisor Dr Grant Cox as well as all the current and the former members at the Nanomechanics Group. Last but not least, I must thank my mom for her support and encouragement; without her, it would have been impossible for me to come to study in Australia. This thesis is dedicated to all of these people.
Abstract

In this thesis, three mechanical models arising from nanoscale and biological systems are investigated, namely the dynamics of various nanostructures, the axial buckling of carbon nanotubes and nanopeapods, and the worm-like chain model for stretched semi-flexible molecules and the utilization of such a model for investigating molecular stretching in the connective tissue extracellular matrix.

In nanomechanics, we investigate the motion of both a carbon atom inside a carbon nanotube and a C_{60} fullerene inside a carbon nanotube. We assume a continuous model for which the atoms are assumed to be smeared across the surface of the molecule, so that the pairwise molecular energy can be approximated by performing surface integrals. The spiral path of the atom is found to be stable, but the spiral path of the C_{60} fullerene is shown to only exist for a few pico seconds.

Next, we investigate the motion of a nano tippe top spinning on the interior of a single-walled carbon nanotube in the presence of a variable magnetic field. Unlike the classical tippe top, the nanoscale tippe top does not flip over since the gravitational effect is insignificant at the nanoscale. After the precession, if we apply an opposite retarding magnetic force at the contact point, then the molecule will return to its original standing up position. We next investigate some nanoscale orbiting systems, and in particular, we study an atom and a C_{60} fullerene orbiting around a single infinitely long carbon nanotube and a C_{60} fullerene orbiting around a C_{1500} fullerene. We find that the circular orbiting frequencies of the proposed nano systems are in the gigahertz range and the classification of their orbiting paths are determined numerically.
For the axial buckling of carbon nanotubes and nanopeapods, we investigate the buckling behavior of doubly clamped multi-walled carbon nanotubes and nanopeapods as nano-electromechanical systems. We incorporate the bending curvature of the tube into the elastic energy and determine the nanotube’s maximum displacement for all bending regimes. We find that while the approximate solution (without curvature) underestimates the maximum displacement of the buckled carbon nanotube in the weak bending regime, our numerical solution provides an entirely different prediction in comparison to the approximate solution in the strong bending regime. Furthermore, we derive an instability condition for multi-walled carbon nanotubes and nanopeapods under an axial load by taking into account the van der Waals forces between molecules. We observe that the critical force derived from the axial buckling stability criterion decreases as a result of the molecular interactions between adjacent layers of the nanotubes and the molecular interactions between the embedded fullerenes and the inner carbon nanotube.

The worm-like chain model arises as a model for stretched semi-flexible molecules and for its applications to molecular stretching in the extracellular matrix, we adopt a variational principle to examine the model and then we utilize the model to describe anionic glycosaminoglycan between collagens. The worm-like chain model has been proposed assuming that each monomer resists the bending force. We determine a force-extension formula for the worm-like chain model analytically, and find that our formula suggests new terms such as the free energy and the cut-off force for a molecule. In addition, we predict two possible phase changes for a stretched molecule, and show theoretically that a molecule must undergo two phase changes when they are stretched beyond their total contour lengths. Furthermore, we adopt the worm-like chain model to describe the mechanical properties of a collagen pair in the connective tissue extracellular matrix. We find that the growth of fibrils is intimately related to the maximum length of the anionic glycosaminoglycan and the relative displacement of two adjacent fibrils.
Contents

1 Introduction ... 1
 1.0.1 Mathematical modeling 1
 1.0.2 Carbon nanotubes 3
 1.0.3 Fullerenes .. 4
 1.0.4 Nano-electromechanical systems 5
 1.0.5 Gigahertz oscillators 6
 1.0.6 Connective tissue extracellular matrix 8
 1.0.7 Thesis structure 10

2 Nanomechanics ... 12
 2.1 Spiral motion of carbon atoms and C_{60} fullerenes inside single-walled carbon nanotubes 12
 2.1.1 Potential energy between molecules 13
 2.1.2 Oscillatory motion of carbon atom inside a single-walled carbon nanotube 15
 2.1.3 Frictional force at nanoscale 23
 2.1.4 Oscillatory motion of C_{60} fullerene inside a single-walled carbon nanotube 26
 2.1.5 Conclusion .. 34
 2.2 Magnetic field driven nano tippe top 34
 2.2.1 Equations of motion 37
 2.2.2 Numerical results and discussion 39
2.2.3 Conclusion ... 43
2.3 Mechanics of nanoscale orbiting systems 44
 2.3.1 Equations of motion ... 45
 2.3.2 Atom–carbon nanotube system 46
 2.3.3 Circular orbiting frequency of atom–carbon nanotube system 49
 2.3.4 Numerical locus for atom–carbon nanotube system 51
 2.3.5 Perturbation solution for atom–carbon nanotube system 55
 2.3.6 Fullerene–carbon nanotube system 58
 2.3.7 Fullerene–fullerene system 63
 2.3.8 Conclusion ... 65
2.4 List of Symbols .. 66

3 Axial buckling of carbon nanotubes and nanopeapods 70
 3.1 Single-walled carbon nanotubes as a nonlinear buckled beam for nano-
 electromechanical systems ... 70
 3.1.1 Total energy of nanotube with incorporation of curvature 72
 3.1.2 Displacement for buckled nanotube with \(y' \approx 0 \) 76
 3.1.3 Displacement for a buckled nanotube with incorporation of
 curvature ... 78
 3.1.4 Numerical results and discussion 81
 3.1.5 Conclusion ... 86
 3.2 Axial buckling of multi-walled carbon nanotubes and nanopeapods . 87
 3.2.1 Axial buckling stability analysis 89
 3.2.2 Buckling of nanopeapods utilizing Euler-Bernoulli beam equa-
 tion ... 102
 3.2.3 Conclusion ... 108
 3.3 List of Symbols .. 109

4 Worm-like chain model and applications 112
4.1 Force-extension formula for the worm-like chain model from a variational principle .. 112
 4.1.1 Worm-like chain model .. 113
 4.1.2 An analytical force-extension formula for the WLC model by utilizing the variational principle 114
 4.1.3 Phase changes of a stretched molecule 121
 4.1.4 Numerical results ... 126
 4.1.5 Conclusion ... 130
4.2 Mechanical model for a collagen fibril pair in the connective tissue extracellular matrix .. 130
 4.2.1 Theory ... 131
 4.2.2 Numerical results and analysis 138
 4.2.3 Conclusion ... 141
4.3 List of Symbols ... 142

5 Conclusion ... 144

6 Appendix .. 147
 6.1 Equations of motion ... 147
 6.2 Stability analysis .. 149
 6.3 Asymptotic expansion for \(\theta = \pi/2 \) 150
 6.4 Retarding magnetic force as step function 155
 6.5 Elastic energy .. 157
 6.6 Capacitance of the system ... 160
 6.7 Derivation of first integral for \(F(y, y', y'') \) 163
 6.8 Compatibility between the numerical and approximate solutions 164
 6.9 Derivation of the constant \(c \) from molecular interactions 165
 6.10 Obtaining \(\epsilon \) from minimization 167

Bibliography ... 170
List of Figures

1.1 Chirality in graphene sheet. Each pair of integers \((n, m)\) represents a possible nanotube structure. Thus, the chirality can be expressed as \(C = na_1 + ma_2\), where \(a_1\) and \(a_2\) are the unit cell base vectors. While \(m = 0\) represents for all zig-zag tubes, \(n = m\) represents for all armchair tubes. All the other combinations of \(n\) and \(m\) are chiral type (left) and carbon nanotube (right). .. 3

1.2 \(C_{60}\) fullerene. ... 5

1.3 \(4C_1\) chair configuration. \(4C_4\) chair configuration can be viewed by flipping vertices \(C_1\) and \(C_4\) upside down (all the notations \(C_i\) and \(O_i\) we adopt here, are just for the sake of clarification). In addition, \(F\) and \(I\) denote applied force and lever respectively. 9

1.4 \(1,4B\) boat configuration. .. 10

2.1 Atom-nanotube system. .. 16

2.2 Interaction energy \(E\) of carbon atom at distance \(r\) from the axis of (a) (6,6) and (b) (10,10) carbon nanotube. 21

2.3 Atomic force \(F_{vdW}\) of carbon atom at distance \(r\) from the axis of (a) (6,6) and (b) (10,10) carbon nanotube. 22

2.4 Circumferential velocity \(v\) of carbon atom at preferred radius \(r_s\) from the axis of (a) (6,6) and (b) (10,10) carbon nanotube. 23

2.5 Schematic of electromagnetic interactions between a carbon atom and a graphite layer (left) and between a \(C_{60}\) and the graphite layer (right), moving parallel with \((x,y)\) plane. 25
2.6 Frictional force against the translational velocity of C_{60} inside (10,10)
with $T = 300K$ and $r = 0$. ... 27
2.7 Fullerene-nanotube system. ... 28
2.8 Interaction energy E of C_{60} at distance r from the axis of (a) (10,10)
and (b) (16,16) carbon nanotube. ... 30
2.9 Molecular force F of C_{60} at distance r from the axis of (a) (10,10)
and (b) (16,16) carbon nanotube. ... 31
2.10 Circumferential velocity v of C_{60} at preferred radius r_s from the axis
of (a) (10,10) and (b) (16,16) carbon nanotube. 32
2.11 Schematic of nano tippe top. ... 37
2.12 Nutation angle θ for $g = 0, 9.8$ and 100 ms^{-2} during precession. ... 40
2.13 Angular frequency Ω about the Z-axis during precession. 41
2.14 Angular frequency ω about the z-axis during precession. 41
2.15 Precession of nano tippe top. ... 42
2.16 Nutation angle θ after applying the reversed retarding magnetic field
at P. ... 43
2.17 Atom–carbon nanotube system. ... 47
2.18 Comparison between angular kinetic energy, molecular potential en-
ergy and effective potential energy for atom–carbon nanotube system. 51
2.19 Locus for $E = -1.14 \text{ meV}$ with initial position 3.8 Å. Atom is orbiting
in its stable circular orbit. .. 52
2.20 Loci for $E = -0.6 \text{ meV}$ with initial positions 3.6 Å, 3.8 Å and 4 Å
from left to right respectively. Atom is bounded between 3.58 Å and
4.191 Å for all these initial positions. ... 53
2.21 Loci for $E = 0 \text{ eV}$ with initial positions 3.6 Å, 3.8 Å and 4 Å from
left to right respectively. Atom is swirling away from its bounded loci
gradually for all these initial positions. 53
2.22 Loci for $E = 0.5$ meV with initial positions 3.6 Å, 3.8 Å and 4 Å from left to right respectively. Atom is oscillating between $r = 3.46$ Å and $r = 4.86$ Å for all these initial positions. 54

2.23 Locus for $E = 0.5$ meV with initial position 12 Å. Atom escapes from its initial position to infinity very quickly. 54

2.24 Loci for $E = 1.1$ meV with initial positions 3.8 Å and 10 Å from left to right respectively. Atom escapes from its initial position to infinity very quickly for all these initial positions. 55

2.25 Orbiting path described by Eq. (2.56). 56

2.26 Fullerene orbiting around a carbon nanotube. 59

2.27 Molecular potential energy (2.64) and its approximation (2.65) for fullerene–carbon nanotube system. 60

2.28 Fullerene’s angular energy, ensemble molecular energy and effective potential energy. 61

2.29 Geometry of a C_{60} molecule orbiting around a C_{1500} fullerene. 63

2.30 Molecular potential energy, angular kinetic energy and effective potential energy for $C_{60}–C_{1500}$ system. 64

3.1 Schematic of experimental setup. 72

3.2 Numerical results for buckled nanotube in weak bending regime, where the upper line represents the numerical solution with the incorporation of curvature into the elastic energy of the buckled nanotube, the middle line represents Eq. (6.50) and the lower line represents the approximate solution without curvature. 83

3.3 Stress for buckled nanotube in the corresponding weak bending regime shown in Fig. 3.2. 84

3.4 Numerical results for buckled nanotube in strong bending regime, where the flatter curve represents the approximate solution while the other curve represents the numerical solution. 84
3.5 Stress for buckled nanotube in the corresponding strong bending
regime shown in Fig. 3.4 and Fig. 3.7. 85
3.6 Numerical results for buckled nanotube in both weak and strong
bending regimes, where the crossing between both bending regimes
occurs around \(n = 100 \). .. 85
3.7 Numerical results for buckled nanotube in both weak and strong
bending regimes with the maximum \(n = 10000 \). 86
3.8 Experimental setup for doubly clamped suspended nanopeapods... 88
3.9 Nanopeapods. ... 91
3.10 An atom on a carbon nanotube interacting with a \(C_{60} \) fullerene. . . . 95
3.11 Radial force for an atom on a carbon nanotube interacting with a \(C_{60} \)
fullerene. ... 96
3.12 Applied force \(T \) for different \(k \) and \(\tau \) for \((10,10)\). 97
3.13 Applied force \(T \) for different \(k \) and \(\tau \) for \(C_{60}@(10,10) \). 98
3.14 Applied force \(T \) for different \(k \) and \(\tau \) for \((10,10)@(16,16)\). 98
3.15 Applied force \(T \) for different \(k \) and \(\tau \) for \(C_{60}@(10,10)@(16,16) \). 99
3.16 Applied force \(T \) for \(k=1 \) for all proposed systems. 101
3.17 Maximum displacement \(y_{max} \) as a function of applied force \(T_{ext} \) for
the approximate case. .. 104
3.18 Displacements of \((10,10)\) and \(C_{60}@(10,10) \) for \(T_{ext} = 1 \times 10^{-10} \) N with
the corporation of curvature. ... 106
3.19 Variation of \(y_{max} \) with applied force \(T_{ext} \) from \(1 \times 10^{-10} \) to \(5 \times 10^{-10} \) N. 106
3.20 Variation of \(y_{max} \) with applied force \(T_{ext} \) from \(1 \times 10^{-10} \) to \(1 \times 10^{-8} \) N. 107
3.21 Difference between maximum displacements as a function of the ap-
pplied force \(T_{ext} \). .. 107
4.1 Worm-Like Chain model. An external force is applied to the molecule
in the \(z \)-direction. The position vector of each monomer is parametrized
by \(s \) with tangential vector \(t(s) \). 117
4.2 Schematic of super-helix, soliton and twisted vertical lines are shown from left to right. ... 123

4.3 The fitting of the new force-extension formula with the experimental data. The applied force ranges from 0 nN to 0.7 nN and the extension has been normalized by its total contour length L, which is equal to 75.85 nm. ... 127

4.4 The fitting of the new force-extension formula with the experimental data. The applied force ranges from 0 nN to 8 nN. 127

4.5 A force-extension curve of the WLC model with $b = 1.87, 1.89, \ldots, 1.99$ with an increment of 0.02, which correspond to the curves from bottom to top respectively. 128

4.6 Error analysis of the new force-extension formula subject to thermal fluctuations. ... 129

4.7 Collagen pair before stretching, where L_1 and L_2 denote the collagens 1 and 2 respectively, $v_1 \ldots v_N$ and $u_1 \ldots u_N$ denote the position coordinates of oligomers in L_1 and L_2 respectively, l_c and l_g are the natural lengths of the collagens and GAGs respectively and N is the total number of oligomers that could exist in each collagen. 131

4.8 Collagen pair after stretching, by an applied force F assumed to be acting on L_1 causing an induced force F' in L_2, while s denotes the offset length between L_1 and L_2, Δ_1 and δ_1 denote the length of the first oligomer in L_1 and L_2 respectively and so on. 132

4.9 Potential energy of GAG, V_g, versus extension, δ ranging from 0 to 100 nm, for $N_{max1} = 1$ K, $N_{max2} = 10$ K and $N_{max3} = 0.1$ M respectively. 139

4.10 Potential energy of the collagen pair, E_{max}, versus extension, δ ranging from 0 to 100 nm, for $N_{max1} = 1$ K, $N_{max2} = 10$ K and $N_{max3} = 0.1$ M respectively. 139

4.11 The breaking fraction of the collagen pair. 140

6.1 Nutation angle θ for classical macro scale tippe top. 149
6.2 Asymptotic expansion for ω. .. 151
6.3 Asymptotic expansion for Ω. .. 152
6.4 Asymptotic expansion for u_x (6.19)$_1$ in comparison with numerical result. .. 154
6.5 Asymptotic expansion for u_y (6.19)$_2$ in comparison with numerical result. .. 154
6.6 Nutation angle θ for nano top when $H_x = 0$ and $H_y = HH(t_0 - t)$
where $t_0 = 0.8 \times 10^{-5}$ s. .. 155
6.7 Angular frequency ω for nano top when $H_x = 0$ and $H_y = HH(t_0 - t)$
where $t_0 = 0.8 \times 10^{-5}$ s. .. 156
6.8 Nutation angle θ for nano top when $H_x = 0$ and $H_y = HH(t_0 - t)$
where $t_0 = 10^{-6}$ s. ... 156
6.9 Angular frequency ω for nano top when $H_x = 0$ and $H_y = HH(t_0 - t)$
where $t_0 = 10^{-6}$ s. ... 157
6.10 A geometric picture of the real charge and its image charge. 161
6.11 Method of images. .. 162
6.12 Schematic of tube layers. ... 166
List of Tables

2.1 Numerical values of constants utilized in Section 2.1 and Section 2.3. 15

3.1 Numerical values of constants utilized in Section 3.2. 95

3.2 Comparison between our continuum model and MD results. 100