Initiation of invasive disease in M1T1 group A streptococcus

Andrew Hollands

University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses

Recommended Citation

Hollands, Andrew, Initiation of invasive disease in M1T1 group A streptococcus, Doctor of Philosophy thesis, School of Biological Sciences, Faculty of Science, University of Wollongong, 2009.
https://ro.uow.edu.au/theses/3070

University of Wollongong

Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
Initiation of Invasive Disease in M1T1
Group A Streptococcus

A Thesis Submitted in Fulfilment of the Requirements
For the Award of the Degree

Doctor of Philosophy (PhD)

From the

University of Wollongong

By

Andrew Hollands

School of Biological Sciences

2009
DECLARATION

I, Andrew Hollands, declare that this thesis, submitted in fulfilment of the requirements for the award of Doctor of Philosophy (PhD), in the School of Biological Sciences, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The document has not been submitted for qualifications at any other academic institution.

Andrew Hollands

30 November, 2009
ABSTRACT

Streptococcus pyogenes (group A streptococcus; GAS) is an important human pathogen that colonizes epithelial and mucosal surfaces. Group A streptococcal disease can be relatively minor, such as streptococcal pharyngitis, or severe and life-threatening, such as necrotizing fasciitis. There has been a resurgence of severe infection with GAS since the mid-1980s that has been paralleled by the emergence of a globally disseminated clone, M1T1. The M1T1 clone of GAS presents as the most common cause of streptococcal pharyngitis in developed countries and are also overrepresented in cases of severe infection.

Most invasive bacterial infections are caused by species that more commonly colonize the human host with minimal or no symptoms. Although phenotypic or genetic correlates underlying a bacterium’s shift to enhanced virulence potential have been studied, the *in vivo* selection pressures governing such shifts are poorly understood. The globally disseminated M1T1 clone of GAS is linked with the rare but life-threatening syndromes of necrotizing fasciitis and toxic shock syndrome. Mutations in the group A streptococcal control of virulence regulatory sensor kinase *(covR/S)* operon are associated with severe invasive disease, abolishing expression of a broad spectrum cysteine protease (SpeB) and allowing the recruitment and activation of host plasminogen on the bacterial surface. This study describes how a bacteriophage-encoded group A streptococcal DNase (Sda1), which facilitates the pathogen’s escape from neutrophil extracellular traps (NETs), can serve as a selective force for *covR/S* mutation. The results provide a paradigm whereby horizontal gene transfer and natural selection exerted by the innate immune system
generate hypervirulent bacterial variants with increased risk of systemic dissemination.

This study sought to investigate if there was a cost of fitness associated with \textit{covR/S} mutation that counterbalances the dramatic increase in virulence. It was found that \textit{covR/S} mutant bacteria had reduced capacity to bind fibronectin and collagen, both components of the extracellular matrix bound by streptococcal adhesins. The \textit{covR/S} mutant strain examined in this study also showed reduced capacity to bind to epithelial cell layers as a consequence of increased capsule expression. This mutant strain displayed reduced capacity to form biofilms. An animal model of skin colonization was used to show that the \textit{covR/S} mutant strain has a colonization defect. This reduced capacity to colonize presents an explanation as to why hypervirulent \textit{covR/S} mutant M1T1 group A streptococci are not rapidly spread amongst the community.

The role of SpeB in the course of infection is still unclear. This study utilized a SpeB-negative M1T1 clinical isolate, 5628, with a naturally occurring mutation in the gene encoding the regulator RopB, to elucidate the role of RopB and SpeB in systemic virulence. Allelic exchange mutagenesis was used to replace the mutated \textit{ropB} allele in 5628 with the intact allele from the well characterized isolate 5448. The inverse allelic exchange was also performed to replace the intact \textit{ropB} in 5448 with the mutated allele from 5628. An intact \textit{ropB} was found to be essential for SpeB expression. While the \textit{ropB} mutation was shown to have no effect on haemolysis of RBCs, extracellular DNase activity or survival in the presence of neutrophils, strains with the mutated \textit{ropB} allele were less virulent in murine systemic models of
infection. An isogenic SpeB knockout strain containing an intact RopB showed similarly reduced virulence. Microarray analysis found genes of the SpeB operon to be the primary target of RopB regulation. These data show that an intact RopB and efficient SpeB production are necessary for systemic infection with GAS.
ACKNOWLEDGEMENTS

First and foremost I would like to thank my supervisors, Prof. Mark Walker, and Prof. Victor Nizet, for their support and guidance throughout my PhD candidature. I would also like to thank the members of the Walker lab and the Nizet lab for their friendship, support, guidance and encouragement over the last few years.

I extend my thanks to all contributors and co-authors of the work contained in this thesis: Ramy Aziz, John Buchanan, Gursharan S. Chhatwal, Jason Cole, Katrin Dinkla, Anna Henningham, Rita Kansal, Josh Kirk, Malak Kotb, Jason McArthur, Sarah R Osvath, Morgan Pence, Martina Sanderson-Smith, Amelia Simpson, Anjuli Timmer, Lynne Turnbull and Cynthia B Whitchurch. I would also like to thank the following for their assistance: Arthur Jeng and Kalpana Chalasani for constructing the isogenic mutant 5448Δsmez; Ramy Attia for assisting with real-time PCR; Grant Ellmers and Robert Dinnervill for illustrating Figure 2.5; Anna Cogen for her assistance with a murine model of colonization; William L. Taylor (University of Tennessee, Molecular Resource Center) for his help and guidance in hybridizing and scanning microarrays.

Last but definitely not least, I wish to express my deep gratitude to my family and my wife Terrie for their understanding and encouragement that has helped me maintain dedication throughout the course of my PhD.
TABLE OF CONTENTS

Title... i
Declaration... ii
Abstract.. iii
Acknowledgements.. vi
Table of Contents ... vii
List of Figures .. xiii
List of Tables ... xv
Abbreviations .. xvi
Publications ... xviii
Conference Presentations ... xix

1. INTRODUCTION .. 1
 1.1 Overview .. 1
 1.2 The Genus Streptococcus .. 2
 1.3 Group A Streptococcus ... 3
 1.4 Classification of GAS ... 4
 1.5 Epidemiology of GAS ... 7
 1.6 Group A Streptococcal Infection and Disease .. 9
 1.6.1 Superficial group A streptococcal disease ... 10
 1.6.2 Toxin-mediated disease ... 10
 1.6.3 Immune-mediated sequelae ... 11
 1.6.4 Group A streptococcal invasive disease ... 12
 1.7 Virulence Factors .. 13
1.7.1 M-protein ... 13
1.7.2 Hyaluronic acid capsule ... 14
1.7.3 C5a peptidase ... 14
1.7.4 Extracellular matrix binding proteins and lipoteichoic acid 15
1.7.5 Hyaluronidase ... 18
1.7.6 Streptokinase ... 19
1.7.7 Extracellular DNases .. 19
1.7.8 Streptococcal inhibitor of complement ... 20
1.7.9 IL-8 protease ... 21
1.7.10 Streptolysin O and streptolysin S .. 21
1.7.11 Streptococcal superantigens ... 22
1.7.12 SpeB ... 23

1.8 The CovR/S Regulatory System .. 24
1.9 Project Aims .. 27

2. DNASE-MEDIATED RESISTANCE TO NEUTROPHIL KILLING
 PROVIDES SELECTION PRESSURE FOR A GENETIC AND
 PHENOTYPIC SWITCH, PROMOTING INVASIVE GROUP A
 STREPTOCOCCAL INFECTION ... 28

 2.1 Introduction ... 28
 2.2 Materials and Methods ... 29
 2.2.1 Culture of group A streptococci .. 29
 2.2.2 Construction of recombinant group A streptococcal strains 29
 2.2.3 DNA sequence analysis of the covR/S operon ... 32
 2.2.4 SpeB activity assays ... 33
2.2.5 Western blot analysis .. 33
2.2.6 Plasminogen binding and cell surface plasmin activity.................. 34
2.2.7 Virulence of group A streptococci in a humanised plasminogen transgenic mouse model.. 36
2.2.8 Tissue chamber implantation and fluid recovery.......................... 36
2.2.9 DNase activity assays.. 37
2.2.10 Live cell imaging for visualization of NETs.............................. 37
2.2.11 Neutrophil killing assays.. 38
2.2.12 Monitoring the in vivo phase-shift of group A streptococcal strains..... 39
2.2.13 Statistical analyses... 39
2.2.14 Ethics approvals... 40
2.2.15 Experimental acknowledgements.. 40
2.3 Results .. 42
2.3.1 covS mutation results in loss of SpeB expression.......................... 42
2.3.2 covS mutation group A streptococci accumulate greater levels of surface plasmin ... 43
2.3.3 covS mutation confers increased virulence and dissemination to organs 43
2.3.4 covS mutation results in increased DNase activity in vitro and in vivo 45
2.3.5 covS mutation results in increased clearance of NETs and increased resistance to killing by neutrophils .. 46
2.3.6 sda1 is essential for the in vivo switch to a SpeB-negative phenotype 46
2.4 Discussion ... 50
3. THE COST OF EVOLUTION TO A HYPERVIRULENT PHENOTYPE BY M1T1 GROUP A STREPTOCOCCUS IS REDUCED CAPACITY TO COLONIZE

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>53</td>
</tr>
<tr>
<td>3.2</td>
<td>Materials and Methods</td>
<td>55</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Bacterial strains, media and growth conditions</td>
<td>55</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Allelic exchange mutagenesis</td>
<td>55</td>
</tr>
<tr>
<td>3.2.3</td>
<td>ECM binding assays</td>
<td>56</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Epithelial cell adherence assays</td>
<td>56</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Hyaluronic acid capsule assay</td>
<td>57</td>
</tr>
<tr>
<td>3.2.6</td>
<td>Biofilm quantification assay</td>
<td>57</td>
</tr>
<tr>
<td>3.2.7</td>
<td>In vivo adherence assay</td>
<td>58</td>
</tr>
<tr>
<td>3.2.8</td>
<td>Growth curves</td>
<td>58</td>
</tr>
<tr>
<td>3.2.9</td>
<td>Chain length assays</td>
<td>59</td>
</tr>
<tr>
<td>3.2.10</td>
<td>Anti-microbial peptide resistance assays</td>
<td>59</td>
</tr>
<tr>
<td>3.2.11</td>
<td>Ethics approval</td>
<td>60</td>
</tr>
<tr>
<td>3.2.12</td>
<td>Experimental acknowledgements</td>
<td>60</td>
</tr>
<tr>
<td>3.3</td>
<td>Results</td>
<td>61</td>
</tr>
<tr>
<td>3.3.1</td>
<td>covS mutant M1T1 group A streptococci have reduced capacity to bind ECM components</td>
<td>61</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Ability to adhere to epithelial cells is reduced in covS mutant M1T1 group A streptococci</td>
<td>62</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Biofilm formation is reduced in covS mutant M1T1 group A streptococci</td>
<td>63</td>
</tr>
<tr>
<td>3.3.4</td>
<td>covS mutant M1T1 group A streptococci have reduced capacity to colonise</td>
<td>64</td>
</tr>
</tbody>
</table>
4. A NATURALLY OCCURRING MUTATION IN ROPB SUPPRESSES SPEB EXPRESSION AND REDUCES M1T1 GROUP A STREPTOCOCCAL SYSTEMIC VIRULENCE..........................70

4.1 Introduction ..70

4.2 Materials and Methods..72

4.2.1 Bacterial strains, media and growth conditions ..72

4.2.2 Sequencing ..73

4.2.3 Allelic exchange mutagenesis ..73

4.2.4 SpeB activity assays ...75

4.2.5 SpeB western blot ...75

4.2.6 Haemolytic activity assay ..76

4.2.7 DNase activity assays ..76

4.2.8 Neutrophil killing assays ..77

4.2.9 In vivo SpeB switching studies ...77

4.2.10 Tissue cage implantation and in vivo bacterial growth78

4.2.11 Expression microarrays ...78

4.2.12 cDNA preparation and microarray hybridization ..79

4.2.13 Analysis of microarray data ..79

4.2.14 Murine systemic infection models ..80

4.2.15 Experimental acknowledgements ...80

4.3 Results ...81

4.3.1 Sequence analysis of clinical isolate 5628 reveals intact speB and covR/S
but mutation in ropB ..81
4.3.2 Repair of the 5628 ropB allele restores SpeB expression and activity 82
4.3.3 ropB mutation does not affect bacterial growth, haemolysis, DNase activity or resistance to neutrophil killing .. 82
4.3.4 SpeB-positive bacteria revert to a SpeB-negative phenotype on subcutaneous infection ... 84
4.3.5 SpeB is the principal target of RopB regulation in vivo 85
4.3.6 RopB is required for virulence in systemic infection 86
4.4 Discussion .. 88

5. CONCLUSIONS .. 92

6. REFERENCES ... 95

7. APPENDIX .. 116
LIST OF FIGURES

Figure 1.1 Schematic diagram of the fibrillar coiled-coil streptococcal M-protein .. 5
Figure 1.2 Hypothetical two-step model of adhesion of group A streptococcus with host tissue.. 16
Figure 1.3 Proposed model for group A streptococcal systemic disease initiation .. 26
Figure 2.1 DNA sequence analysis and SpeB expression of GAS strains 5448 and 5448AP ... 42
Figure 2.2 Molecular and phenotypic analyses of GAS strains 5448 and 5448AP ... 42
Figure 2.3 Virulence in humanised plasminogen transgenic mice ... 45
Figure 2.4 DNase activity assays in vitro and in vivo ... 46
Figure 2.5 Clearance of NETs by group A streptococci and resistance to killing by neutrophils ... 47
Figure 2.6 The capacity of group A streptococci to phase-shift to a SpeB-negative phenotype .. 48
Figure 2.7 Model for group A streptococcal invasive disease initiation and progression ... 52
Figure 3.1 covR/S mutation results in reduced binding to the extracellular matrix .. 61
Figure 3.2 covR/S mutation results in reduced capacity to adhere to epithelial cells .. 63
Figure 3.3 covR/S mutation reduces biofilm formation ... 64
Figure 3.4 covR/S mutation results in reduced colonization capacity65
Figure 3.5 covR/S mutation doesn not alter growth characteristics...............65
Figure 4.1 Mutation in ropB results in truncation of the RopB protein and
abrogation of SpeB expression...83
Figure 4.2 ropB mutation doesn not affect in vitro growth, haemolytic
activity, extracellular DNase activity or resistance to neutrophil
killing ..84
Figure 4.3 Microarray analysis emphasizes the down-regulation of speB
operon...86
Figure 4.4 RopB- and SpeB-negative bacteria show reduced cirulence in
systemic infection models...87
LIST OF TABLES

Table 1.1 Streptococcal adhesins and their host target molecules 16
Table 2.1 Oligonucleotide primers used for construction of recombinant group A streptococcal strains ... 31
Table 2.2 Oligonucleotide primers used in this study for covR/S PCR and sequence analysis ... 32
Table 2.3 Acknowledgement of experimental assistance provided for this section .. 41
Table 2.4 covR/S DNA sequence analysis of selected group A streptococcal M1T1 SpeB-negative derivates ... 49
Table 3.1 Acknowledgement of experimental assistance provided for this section .. 60
Table 3.2 Resistance to killing by the human cathelicidin antimicrobial peptide LL-37 ... 66
Table 4.1 Primers used for sequencing the ropB locus (including speB), the covR/S locus, luxS, rofA and ropA. ... 74
Table 4.2 Acknowledgement of experimental assistance provided for this section .. 81
Table 4.3 covR/S DNA sequence analysis of selected group A streptococcal M1T1 SpeB-negative derivates ... 85
Table 7.1 Genes differentially regulated greater than 2-fold from microarray analysis of GAS strains 5448 and 5448R- ... 116
ABBREVIATIONS

°C degrees Celsius
aa amino acid
Ab antibody
ANOVA analysis of variance
APSGN acute post-streptococcal glomerulonephritis
ARF acute rheumatic fever
BLAST basic local alignment search tool
bp base pair
CCD charge-coupled device
cDNA complementary DNA
CFU colony forming units
Cm chloramphenicol
Co collagen
CovR/S control of virulence regulator/sensor
DNA deoxyribonucleic acid
DTT dithiothreitol
E. coli *Escherichia coli*
ECM extracellular matrix
EDTA ethylenediaminotetraacetic acid
Erm erythromycin
FBP fibronectin binding protein
FCT fibronectin-binding, collagen-binding, T-antigen
Fn fibronectin
g acceleration due to gravity (9.8 m s$^{-2}$)
GAPDH glyceraldehyde-3-phosphate dehydrogenase
GAS group A streptococcus
GEO Gene Expression Omnibus
h hours
HRP horseradish peroxidase
IgA immunoglobulin A
IgG immunoglobulin G
kDa kilodaltons
LA Luria-Bertani agar
LB Luria-Bertani broth
LTA lipoteichoic acid
M molar
MBC minimum bactericidal concentration
MF mitogenic factor
MHC major histocompatibility complex
MIAME minimum information about a microarray experiment
MIC minimum inhibitory concentration
min minutes
ml millilitres
mM millimolar
mm millimetres
Mrp M-related protein
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCBI</td>
<td>National Center for Biotechnology Information</td>
</tr>
<tr>
<td>NET</td>
<td>neutrophil extracellular trap</td>
</tr>
<tr>
<td>ng</td>
<td>nanogram</td>
</tr>
<tr>
<td>nm</td>
<td>nanometres</td>
</tr>
<tr>
<td>nt</td>
<td>nucleotide</td>
</tr>
<tr>
<td>OD</td>
<td>optical density</td>
</tr>
<tr>
<td>ORF</td>
<td>open reading frame</td>
</tr>
<tr>
<td>PAI</td>
<td>plasminogen activator inhibitor</td>
</tr>
<tr>
<td>PAM</td>
<td>plasminogen-binding group A streptococcal M-like protein</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>Prp</td>
<td>PAM-related protein</td>
</tr>
<tr>
<td>RBC</td>
<td>red blood cell</td>
</tr>
<tr>
<td>RGD</td>
<td>arginine-glycine-aspartic acid</td>
</tr>
<tr>
<td>RPMI</td>
<td>Roswell Park Memorial Institute</td>
</tr>
<tr>
<td>S. pyogenes</td>
<td>Streptococcus pyogenes</td>
</tr>
<tr>
<td>SCP</td>
<td>streptococcal C5a peptidase</td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation</td>
</tr>
<tr>
<td>Sda1</td>
<td>streptodornase 1</td>
</tr>
<tr>
<td>SDH</td>
<td>streptococcal surface dehydrogenase</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>sodium dodecyl sulphate polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>SEN</td>
<td>streptococcal surface enolase</td>
</tr>
<tr>
<td>SIC</td>
<td>streptococcal inhibitor of complement-mediated lysis</td>
</tr>
<tr>
<td>Ska</td>
<td>streptokinase</td>
</tr>
<tr>
<td>SLO</td>
<td>streptolysin O</td>
</tr>
<tr>
<td>SLS</td>
<td>streptolysin S</td>
</tr>
<tr>
<td>SmeZ</td>
<td>streptococcal mitogenic exotoxin Z</td>
</tr>
<tr>
<td>SOF</td>
<td>serum opacity factor</td>
</tr>
<tr>
<td>Spe</td>
<td>streptococcal pyrogenic exotoxin</td>
</tr>
<tr>
<td>SpyCEP</td>
<td>Streptococcus pyogenes cell envelope protease</td>
</tr>
<tr>
<td>SSA</td>
<td>streptococcal superantigen</td>
</tr>
<tr>
<td>STSS</td>
<td>streptococcal toxic shock syndrome</td>
</tr>
<tr>
<td>TCA</td>
<td>trichloroacetic acid</td>
</tr>
<tr>
<td>TCF</td>
<td>tissue chamber fluid</td>
</tr>
<tr>
<td>THA</td>
<td>Todd-Hewitt agar</td>
</tr>
<tr>
<td>THB</td>
<td>Todd-Hewitt broth</td>
</tr>
<tr>
<td>THY</td>
<td>Todd-Hewitt broth supplemented with 1% (w/v) yeast extract</td>
</tr>
<tr>
<td>TNF</td>
<td>tumor necrosis factor</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>V</td>
<td>volts</td>
</tr>
<tr>
<td>v/v</td>
<td>volume/volume</td>
</tr>
<tr>
<td>w/v</td>
<td>weight/volume</td>
</tr>
<tr>
<td>WT</td>
<td>wildtype</td>
</tr>
<tr>
<td>µl</td>
<td>microlitres</td>
</tr>
<tr>
<td>µm</td>
<td>micrometres</td>
</tr>
<tr>
<td>µM</td>
<td>micromolar</td>
</tr>
</tbody>
</table>
PUBLICATIONS

CONFERENCE PRESENTATIONS