Complete interoperability in healthcare: technical, semantic and process interoperability through ontology mapping and distributed enterprise integration techniques

Amanda Joanne Ducrou

Follow this and additional works at: https://ro.uow.edu.au/theses

Recommended Citation

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
COMPLETE INTEROPERABILITY IN HEALTHCARE

Technical, Semantic and Process Interoperability through Ontology Mapping and Distributed Enterprise Integration Techniques

A thesis submitted in fulfilment of the requirements for the award of the degree

DOCTOR OF PHILOSOPHY

from

UNIVERSITY OF WOLLONGONG

by

AMANDA JOANNE DUCROU
BE (software), MDigMMedia (distinction)

FACULTY OF INFORMATICS
2009
Certification

I, Amanda J. Ducrou, declare that this thesis, submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the Faculty of Informatics, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. This document has not been submitted for qualifications at any other academic institution.

Amanda J. Ducrou
25th May, 2009
Acknowledgements

I would like to acknowledge my supervisor, Peter Eklund, for giving me the opportunity to attain a PhD and for his ongoing supervision. Peter always trusts me to complete any task he gives me without constantly checking up on me, but is always available for a discussion if needed. Peter has given me some great advice over the years, for which I thank him.

I would like to take this opportunity to thank Pen Computer Systems, and chiefly managing director John Johnston for his guidance in the field of Health Informatics and for supporting my work. I would also like to thank Tarkhan Shahho for helping on the technical side of the ePOC project, and Brett Esler for introducing me to HL7 Version 3 and being available for endless discussions on how to represent clinical constructs.

Also in conjunction with the ePOC project, I would like to thank my colleague Jason Sargent for all his hard work in that area, and also Damian Ryan and the rest of the TACT staff for their support for the ePOC field trial and for their consultations on clinical knowledge employed in that project.

My parents, Jeff and Janelle Ryan, have always believed in me beyond all reason and I am just glad to make them proud. Thanks, Mum and Dad, for always being supportive.

Last but not least, I thank my husband, Jon, for all his support, advice and proof-reading which has helped me to finally complete this thesis. Thank you for always having faith in me.
Contents

Abstract 17

1 **Introduction** 19
1.1 Facets of Health Informatics 21
1.1.1 Electronic Patient Care Records 22
1.1.2 Clinical Terminologies 26
1.1.3 Clinical Information Models 29
1.1.4 Decision Support Systems 30
1.1.5 Medical Imaging 31
1.2 Methodology 32
1.3 Health Informatics Standards Focused On in This Work 34
1.4 Defining The Problem: Integration and Interoperability 35
1.4.1 Defining Interoperability 38
1.5 Enterprise Integration Background 42
1.5.1 Enterprise Service Bus 42
1.5.2 Advantages of XML 43
1.6 Previous Work 44
1.6.1 Terminologies 44
1.6.2 HL7 and Ontology Mapping 46
1.6.3 Interoperability Frameworks 47

2 **Health Standards Background** 49
2.1 Health Level Seven 50
2.1.1 HL7 Version 2 51
2.1.2 HL7 Version 3 55
2.1.3 HL7 Version 2 and Version 3 Compatibility 61
2.1.4 Conclusions on HL7 63
2.2 openEHR 65
2.2.1 The openEHR Information Model 65
2.2.2 openEHR Archetypes 67
2.2.3 Archetype Description Language (ADL) 68
2.2.4 openEHR example 70
2.2.5 openEHR and HL7 75
2.2.6 Conclusions on openEHR 76
2.3 SNOMED CT .. 77
2.3.1 SNOMED CT Concepts and Relationships 78
2.3.2 SNOMED CT Example 79
2.3.3 Representation of Clinical Findings with SNOMED CT 80
2.3.4 SNOMED CT Concepts Represented in HL7 83
2.4 SNOMED CT Concepts Represented in openEHR 83
2.4.1 Conclusions on SNOMED CT 85
3 Referral Messaging Prototype 87
3.1 Referral Scenario and Workflow Model 87
3.2 Message Models ... 89
3.3 The Referral Application 93
3.3.1 Transport Protocols 94
3.3.2 User Interface ... 94
3.3.3 Registry Service 97
3.4 Conclusions from Referral Prototype 98
4 The ePOC Project .. 99
4.1 Project Background 100
4.2 Clinical Environment 102
4.3 The ePOC System .. 103
4.3.1 Module 1: Clinical Observations 104
4.3.2 Module 2: Cannula Insertion 106
4.4 SNOMED CT Subsets Used in ePOC 107
4.4.1 Clinical Observations SNOMED CT Subset 107
4.4.2 Cannula Insertion SNOMED CT Subset 108
4.5 HL7 Message Models in ePOC 109
4.5.1 Clinical Observations HL7 Model 110
4.5.2 Cannula Insertion HL7 Model 113
4.6 Software Design for ePOC 113
4.6.1 Client Entry Form 117
4.6.2 ePOC PC Control Panel 117
4.6.3 ePOC PDA Application 120
4.7 ePOC Field Trial .. 122
4.8 Conclusions from ePOC 123
5 Ontology Mapping ... 125
5.1 Definition of Ontology 125
5.2 Ontology Mapping 126
5.3 Mapping SNOMED CT to HL7 128
5.3.1 Example Manual Mapping 130
5.3.2 Extended Alignment Strategy 133
5.4 Mapping between HL7 Versions 2 and 3 135
5.4.1 Observations Messages Mapping 137
5.5 SNOMED CT and openEHR 139
5.6 Mapping between HL7 V3 and openEHR 139
5.6.1 openEHR Clinical Observations Messages 141
5.7 Ontology Mapping Conclusions

6 SNOMED CT Vital Signs XML Database
6.1 SNOMED CT Vital Signs subset
6.2 Representation of SNOMED CT
6.3 SNOMED CT XML Converter Utility
6.4 eXist Open Source Native XML Database
6.5 Conclusions on SNOMED CT

7 The Jini Health Interoperability Framework (HIF-J)
7.1 The Jini Architecture
7.1.1 Jini and JavaSpaces
7.1.2 Lookup and Discovery
7.1.3 Leasing
7.1.4 Events
7.1.5 Transactions
7.1.6 The Entry Class
7.2 Health Interoperability Framework

7.3 SNOMED CT Terminology Server
7.4 HealthSpace
7.4.1 The Message Class
7.5 Messaging protocols
7.5.1 HL7 Artifacts
7.6 Jini Translation Service
7.7 The Observation Client Application
7.8 HL7 Java Package
7.9 JavaSpace Problems
7.10 Conclusions from HIF-J

8 Health Service Bus (HSB)
8.1 ESB Background
8.1.1 Service Containers and Endpoints
8.2 Mule Open Source ESB
8.3 HSB Mule Implementation
8.4 Messaging protocols for the HSB
8.4.1 Canonical Message Model
8.5 Translation Service
8.6 Content-Based Routing
8.7 Patient Records in the HSB
8.8 SNOMED CT Terminology Service
8.9 End-to-End Example
8.10 Total Interoperability in the HSB
8.11 HSB Example
8.11.1 GP Clinic
8.11.2 Hospital
8.11.3 Pathologist
8.11.4 Radiologist
8.11.5 Pharmacy
8.11.6 Aged Care .. 201
8.11.7 Community Care 202
8.11.8 Registration Board 203
8.11.9 Complete Network 204
8.11.10 Process Interoperability 204
8.12 Conclusions on the HSB 206

9 Conclusion ... 207

Technical Acknowledgements 213
 Tooling .. 214

A The HL7 Reference Information Model 215
B Complete OpenEHR Height Archetype 217
C SNOMED CT Subset Used in ePOC 223
D Flowchart of User Interface screens in the ePOC PDA application 227
E Mapping HL7 V2 and V3 229
F Mapping HL7 V3 and openEHR 233

Bibliography ... 235
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>HL7 V2 Patient Referral Message Communications</td>
<td>53</td>
</tr>
<tr>
<td>2.2</td>
<td>Overview of the representation of a HL7 V2 Message Segment</td>
<td>53</td>
</tr>
<tr>
<td>2.3</td>
<td>Structure of a HL7 V2 Referral Message</td>
<td>54</td>
</tr>
<tr>
<td>2.4</td>
<td>HL7 V3 RIM Classes</td>
<td>56</td>
</tr>
<tr>
<td>2.5</td>
<td>Example HL7 V3 Model</td>
<td>58</td>
</tr>
<tr>
<td>2.6</td>
<td>HL7 V3 Observations DMIM</td>
<td>59</td>
</tr>
<tr>
<td>2.7</td>
<td>HL7 V3 RMIM Example</td>
<td>60</td>
</tr>
<tr>
<td>2.8</td>
<td>HL7 V3 HMD Example</td>
<td>62</td>
</tr>
<tr>
<td>2.9</td>
<td>HL7 V3 XML Example</td>
<td>62</td>
</tr>
<tr>
<td>2.10</td>
<td>The openEHR Information Model</td>
<td>66</td>
</tr>
<tr>
<td>2.11</td>
<td>openEHR ADL Archetype Structure</td>
<td>69</td>
</tr>
<tr>
<td>2.12</td>
<td>openEHR Archetype Example</td>
<td>71</td>
</tr>
<tr>
<td>2.13</td>
<td>SNOMED CT Blood Pressure Concept</td>
<td>79</td>
</tr>
<tr>
<td>2.14</td>
<td>SNOMED CT Blood Pressure Concept - Specific</td>
<td>81</td>
</tr>
<tr>
<td>3.1</td>
<td>Patient Flow</td>
<td>89</td>
</tr>
<tr>
<td>3.2</td>
<td>Referral Message Flow</td>
<td>89</td>
</tr>
<tr>
<td>3.3</td>
<td>HL7 V2 REF_I12 Message Components</td>
<td>91</td>
</tr>
<tr>
<td>3.4</td>
<td>HL7 V2 REF_I12 Message Components - Extended</td>
<td>92</td>
</tr>
<tr>
<td>3.5</td>
<td>HL7 V2 REF_I12 Message Instance</td>
<td>92</td>
</tr>
<tr>
<td>3.6</td>
<td>HL7 V2 XML Message from Prototype</td>
<td>93</td>
</tr>
<tr>
<td>3.7</td>
<td>Transport Protocols used in Prototype</td>
<td>94</td>
</tr>
<tr>
<td>3.8</td>
<td>Prototype Start-Up Screen</td>
<td>95</td>
</tr>
<tr>
<td>3.9</td>
<td>Prototype Referral Form Screen</td>
<td>96</td>
</tr>
<tr>
<td>3.10</td>
<td>Reading Message Forms in Prototype</td>
<td>96</td>
</tr>
<tr>
<td>3.11</td>
<td>Prototype Settings Screen</td>
<td>97</td>
</tr>
<tr>
<td>3.12</td>
<td>Registry Service in Prototype</td>
<td>98</td>
</tr>
<tr>
<td>4.1</td>
<td>ePOC Overall Plan</td>
<td>100</td>
</tr>
<tr>
<td>4.2</td>
<td>TACT Clinical Observations Workflow</td>
<td>105</td>
</tr>
<tr>
<td>4.3</td>
<td>SNOMED CT Observable Entity Concepts in ePOC</td>
<td>108</td>
</tr>
<tr>
<td>4.4</td>
<td>SNOMED CT Procedure Concepts in ePOC</td>
<td>108</td>
</tr>
<tr>
<td>4.5</td>
<td>SNOMED CT Cannula Insertion Concepts in ePOC</td>
<td>109</td>
</tr>
<tr>
<td>4.6</td>
<td>Clinical Observations RMIM (part 1)</td>
<td>111</td>
</tr>
<tr>
<td>4.7</td>
<td>Clinical Observations RMIM (part 2)</td>
<td>111</td>
</tr>
<tr>
<td>4.8</td>
<td>SNOMED CT to HL7 Mapping in ePOC</td>
<td>112</td>
</tr>
<tr>
<td>4.9</td>
<td>Cannula Insertion RMIM</td>
<td>113</td>
</tr>
<tr>
<td>4.10</td>
<td>Final ePOC functionality</td>
<td>114</td>
</tr>
<tr>
<td>4.11</td>
<td>ePOC HL7 Class Design</td>
<td>115</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>8.13</td>
<td>End-to-End HSB Example</td>
<td>196</td>
</tr>
<tr>
<td>8.14</td>
<td>HSB - GP System</td>
<td>198</td>
</tr>
<tr>
<td>8.15</td>
<td>HSB - Hospital System</td>
<td>199</td>
</tr>
<tr>
<td>8.16</td>
<td>HSB - Pathologist System</td>
<td>199</td>
</tr>
<tr>
<td>8.17</td>
<td>HSB - Radiologist System</td>
<td>201</td>
</tr>
<tr>
<td>8.18</td>
<td>HSB - Pharmacy System</td>
<td>201</td>
</tr>
<tr>
<td>8.19</td>
<td>HSB - Aged Care System</td>
<td>202</td>
</tr>
<tr>
<td>8.20</td>
<td>HSB - Community Care System</td>
<td>203</td>
</tr>
<tr>
<td>8.21</td>
<td>HSB - Registration Board System</td>
<td>203</td>
</tr>
<tr>
<td>8.22</td>
<td>Complete HSB Example</td>
<td>205</td>
</tr>
<tr>
<td>A.1</td>
<td>The HL7 RIM Version 2.26 – Foundation Classes</td>
<td>216</td>
</tr>
<tr>
<td>D.1</td>
<td>Complete flowchart of user interface screens in ePOC PDA application</td>
<td>228</td>
</tr>
</tbody>
</table>
List of Tables

1.1 Computer-based Handling of Clinical Information 39
2.1 HL7 V2 MSH Segment Fields 54
2.2 HL7 V3 Act Class Attributes 57
2.3 SNOMED CT Blood Pressure Concept's Relationships 80
4.1 Mapping HL7 to SNOMED CT for Observations 112
4.2 Mapping HL7 to SNOMED CT for Cannula Insertion 114
5.1 SNOMED CT to HL7 Mapping 132
5.2 Extended Mapping of SNOMED CT to HL7 135
5.3 Mapping between HL7 V2 and V3 137
5.4 Specific Mapping of HL7 V2 and V3 138
5.5 openEHR Archetypes 144
6.1 Part of the SNOMED CT Concepts File 149
6.2 Part of the SNOMED CT Descriptions File 152
6.3 Part of the SNOMED CT Relationships File 154
7.1 HIF-J Observations HMD 173
7.2 HIF-J Observations HMD (cont.) 174
C.1 ePOC SNOMED CT Subset (part 1) 224
C.2 ePOC SNOMED CT Subset (part 2) 225
C.3 ePOC SNOMED CT Subset (part 3) 226
E.1 Mapping of HL7 V2 fields to HL7 V3 230
E.2 Mapping of HL7 V3 attributes to HL7 V2 231
F.1 Mapping between HL7 V3 and openEHR 234
List of Abbreviations

HIF-J Health Interoperability Framework – Jini
ADL Archetype Description Language
ADT Admission, Discharge, Transfer
AHML Australian Healthcare Messaging Laboratory
AMR Association of Medical Receptionists
ANSI American National Standards Institute
ARC Australian Research Council
CAP College of American Pathologists
CDA Clinical Document Architecture
CEN European Committee for Standardisation
CIS Clinical Information System
CMT Convergent Medical Terminology
CTv3 Clinical Terms version 3
DICOM Digital Imaging and COmmunication in Medicine
DMIM Domain Message Information Model
DSS Decision Support System
EDI Electronic Data Interchange
EHR Electronic Health Record
ePOC electronic Point-Of-Care
ESB Enterprise Service Bus
FLWOR For, Let, Where, Order by, Return
GEHR Good European Health Record
GP General Practitioner
HL7 Health Level Seven
HMD Hierarchical Message Description
HSB Health Service Bus
ICD International Classification of Diseases
IEEE Institute of Electrical and Electronics Engineers
IHTSDO International Healthcare Terminology Standards Development Organisation
ISO International Organisation for Standardisation
ITS Implementable Technology Specification
JCA J2EE Connector Architecture
Jini Jini Is Not Initials
JMS Java Message Service
JMX Java Management eXtensions
JVM Java Virtual Machine
LOINC Logical Observation Identifier Names and Codes
MeSH Medical Subject Headings
MSMQ Microsoft Message Queue
NHS National Health Service (UK)
NLM National Library of Medicine (US)
OWL Web Ontology Language
PACS Picture Archiving and Communication Systems
PAS Patient Administration System
PDA Personal Digital Assistant
RIM Reference Information Model
RMIM Refined Message Information Model
SCTID SNOMED CT IDentifier
SDO Standards Development Organisation
SESIAHS South East Sydney and Illawarra Area Health Service
SNOMED SNOMED – Clinical Terms
SNOMED CT SNOMED – Reference Terminology
SOA Service-Oriented Architecture
SOAP Simple Object Access Protocol
SQL Structured Query Language
TACT The Ambulatory Care Team
UML Unified Modelling Language
UMLS Unified Medical Language System
WHO World Health Organisation
XML eXtensible Markup Language
XPath XML Path Language
XQuery XML Query Language
XSLT eXtensible Stylesheet Language Transformations
Abstract

Interoperability in healthcare is a requirement for effective communication between entities, to ensure timely access to up-to-date patient information and medical knowledge, and thus consistent patient care. This thesis focuses on the development of an interoperability solution for health by employing design science research methods to arrive at a final solution.

First, background topics including Health Informatics standards and formats are covered, which leads to three major Health Informatics standards being used throughout the remainder of this work – HL7 for messaging, openEHR for patient records, and SNOMED CT as a standard terminology to facilitate clarity of information, and to discourage ambiguity between communicating entities.

Ontology mapping methods between these standards designed to promote interoperability by using the standards in conjunction with each other are then presented, leading to a solution for semantic interoperability.

A technical interoperability solution is required for sending these semantically interoperable messages, which leads to the development of a framework which uses a tuple-space paradigm to share messages. This framework is shown to have some scalability issues, which leads to the final solution – a scalable interoperability framework based on the Enterprise Service Bus methodology of enterprise integration which provides a real-world answer to communication in healthcare.