2007

A strategic management and innovation approach to onshore gas transmission pipeline construction

Leone Dunn
University of Wollongong, leone@uow.edu.au

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author.

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
NOTE
This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING
You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
A STRATEGIC MANAGEMENT AND INNOVATION APPROACH TO ONSHORE GAS TRANSMISSION PIPELINE CONSTRUCTION

Leone J Dunn

Submitted as Requirements for MEng Research
Department of Mechanical Engineering
Faculty of Engineering
University of Wollongong
2007
ABSTRACT

This research investigates whether a traditional manufacturing planning and control strategy would make Onshore Gas Transmission Pipeline Construction more competitive and if so, design the strategy. An in-depth case study of Gas Transmission Pipeline Construction was carried out, along with an extensive literature review. The current pipeline construction process was analyzed from a strategic management perspective. From this perspective, it was found that the traditional 'make and sell' attitude of manufacturers has now almost entirely given way to a customer orientated 'sense and respond' service philosophy. This is compounded by the needs for waste avoidance, cost efficiency and service to the customer. This research investigates the strategic opportunities for establishing advantages over competitors by designing unique service oriented supply chain strategies. Rather than relying on functional hierarchy and command and control governance where a chain of commitments are poorly connected and difficult to reconfigure, the pipeline construction participants are challenged to develop more flexible process designs around a state of the art service based architecture. Complexity reduction has traditionally been used to deal with intricate construction supply chains. However, the architecture developed and demonstrated in this thesis will allow participants in pipeline construction to develop strategic opportunities around ideas of complexity absorption. The architecture is built on the premise that complexity absorption creates an organization that is strategically superior because it becomes a complex adaptive system that is unique to that organization. A case study is presented based on a major onshore gas transmission pipeline construction organization that illustrates an application consisting of Pipeline Construction Portal and Service Oriented Architecture. This model is internet-based and has three main constituents of Web Services, Portal and Client Services.
ACKNOWLEDGEMENTS

I acknowledge the assistance of and offer my thanks and appreciation to the following people in the preparation of this thesis:

- Associate Professor Peter Gibson, my supervisor, who provided much encouragement and enthusiasm for this project. His knowledge of all areas of engineering business management continuously challenged me;

- Professor John Norrish, my co-supervisor, who has supported my internet pipeline projects with funding and equipment as well as expertise and has introduced me to valuable industry contacts for this research;

- My family for their continuous encouragement and support.
LIST OF FIGURES

Figure 2.1 The 21st Century Buyer’s Market…………………………………..10
Figure 2.2 Managerial Frameworks for Manufacturing Organizations……11
Figure 2.3 A Static Operations Strategy……………………………………….27
Figure 2.4 Container Yard Operations Under a Static operations Strategy..27
Figure 2.5 Complex Adaptive System…………………………………………32
Figure 2.6 A Dynamic Operations Strategy……………………………………33
Figure 2.7 Static vs Dynamic Operations Strategy Example………………...33
Figure 2.8 A Gas Transmission Pipeline Capability Network………………..44
Figure 2.9 Operations Strategy in Current Pipeline Construction…………..45
Figure 2.10 Pipeline Construction Value Chain………………………………………47
Figure 2.11 Shortcoming and Waste in Current Pipeline Construction Value Chain…………………………………………………………………………48
Figure 2.12 The Construction Swamp of Complexity………………………….49
Figure 2.13 Dynamic Integrated e-Operations Strategy for Gas Transmission Pipeline Construction……………………………………………………50
Figure 4.1 Elements of a Service Oriented Architecture……………………..94
Figure 4.2 Evolution of IT Architectures………………………………………..96
Figure 4.3 Service Oriented Terminology…………………………………….97
Figure 4.4 A CRM Service and its Interfaces………………………………...98
Figure 4.5 Layered Application Architecture……………………………………99
Figure 4.6 Collaboration of Software Services…………………………………100
Figure 4.7 Purchase Order Component Model……………………………….102
Figure 4.8 Web Services Collaboration Architecture…………………………104
Figure 4.9 The WS-I Technical Architecture for Supply Chain Management………………………………………………………………………….105
Figure 4.10 Portals and Portlets………………………………………………….106
Figure 4.11 Portal Aspects………………………………………………………107
Figure 4.12 Portal layers…………………………………………………………107
Figure 4.13 Portal Types and Services………………………………………..108
Figure 4.14 An Example of a Simple Web Service Workflow…………………109
Figure 4.15 An Example of a More Complex Workflow……………………110
Figure 4.16 An Example of a Composed Workflow…………………………111
Figure 4.17 Further Example of a Web Service Workflow Composition…..112
Figure 4.18 As-Is Gas Transmission Pipeline Construction Business Architecture…………………………………………………………………113
Figure 4.19 Pipeline Construction as an Integrated Process…………………..114
Figure 4.20 A Suggested Web Service For Pipeline Construction With Private Workflow………………………………………………………………116
Figure 4.21 Proposed Pipeline Construction Portal and SOA………………….117
Figure 5.1 A Dynamic Needs/Capabilities Model for Gas Transmission Pipeline Construction………………………………………………………….122
LIST OF TABLES

Table 1.1 Compilation of Data on Construction Waste…………………………3
Table 2.1 Eisenhardt and Martin’s Reconceptualized Dynamic Capabilities………………………………………………………………………………24
Table 2.2 Mintzberg’s Ten Schools of Strategy…………………………………25
Table 3.1 Key Features of The Positivist vs Interpretivist Paradigms………..55