A study of the effectiveness of AN-DRGs in classification of acute admitted patients with diabetes diagnoses

Rhonda Griffiths
University of Wollongong

Recommended Citation
Griffiths, Rhonda, A study of the effectiveness of AN-DRGs in classification of acute admitted patients with diabetes diagnoses, Doctor of Public Health thesis, Graduate School of Health and Medical Sciences, University of Wollongong, 1996.
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
A study of the effectiveness of AN-DRGs in classification of acute admitted patients with diabetes diagnoses

A thesis submitted in partial fulfilment of the requirements for the award of the degree of

DOCTOR OF PUBLIC HEALTH
THE UNIVERSITY OF WOLLONGONG

by

Rhonda Griffiths
Dip.Teach(Nursing) B.Ed(Nursing) M.Sc(Hons)

Graduate School of Health and Medical Sciences
University of Wollongong
1996
Abstract

The Australian National Diagnosis Related Groups (AN-DRG) classification is intended to assign acute inpatient episodes to classes which are relatively homogeneous in terms of clinical attributes and the resources used in the provision of care. The purpose of this study was to determine the extent to which this objective was met in a sample of acute admitted patients with one or more diagnoses indicating the presence of diabetes mellitus.

The sample comprised all 2094 discharges with one or more diabetes diagnoses from acute care hospitals in the Illawarra Area Health Service in 1993-94. A subsample of 386 records was selected for the purpose of more detailed analysis by chart audit. Finally, another sample of 22 admitted patients was identified who were known to have diabetes because of their contacts with a community service, but whose diabetes had not been recorded in the discharge database.

There were three major findings. First, the discharges were distributed among many AN-DRGs in a way which was neither clinically coherent nor effective in terms of prediction of resource use. The logic of AN-DRG assignment, while effective for many types of care needs, appears to be less so where there is an underlying chronic condition. Compromises are unavoidable, but there is reason to conclude that chronic conditions have been given too little attention.
Second, there were many weaknesses in the data which are routinely assembled for the purpose of AN-DRG assignment. They included errors of medical documentation, abstraction and sequencing, and coding.

Third, the AN-DRG logic appears to ignore or under-estimate the effects of diabetes as a secondary condition. One critical finding which supports this view was that, where all diabetes diagnoses were deleted and the records reassigned to AN-DRGs, only 10 records in 1945 (0.5%) were assigned to different classes. Diabetes diagnoses have so little effect for one dominant reason: that the DRG logic only takes account of one more diagnosis after the principal, and a condition like diabetes is characterised by multiple problems.

It is concluded that, if the AN-DRG classification is to become more effective for cases with serious chronic conditions like diabetes, modifications will be needed in the simple and near-universal logic of assignment to a diagnosis or procedure cluster followed by (selective) splitting on one more condition and/or age. Some preliminary ideas are presented as to how greater precision and clinical meaning might be achieved.
Acknowledgements

This thesis could not have reached its conclusion without the support and dedication of a number of people. I am particularly indebted to my supervisor, Professor Don Hindle who has been a constant source of stimulation and inspiration, and to Arthur and Stuart for their unconditioned and uncomplaining support and encouragement during the many years I have been studying. I am also very grateful to my parents for their encouragement to seek opportunities and to test established boundaries.

I also wish to acknowledge the contribution of Ms Sue Barnett who undertook the chart audits, Ms Magda Heaslip for her assistance with the formatting of this work and Ms Marian Martin for her editorial advice. Dr Ken Russell from the Department of Applied Statistics and Ms Vicki Blanch provided advice and assistance with the data management. Without their assistance the research report would not have proceeded.
TABLE OF CONTENTS

ABSTRACT

I

ACKNOWLEDGEMENTS

III

TABLE OF CONTENTS

IV

LIST OF TABLES

VIII

LIST OF FIGURES

X

GLOSSARY OF ACRONYMS

XI

DEFINITIONS OF TERMS

XII

CHAPTER 1 AN OVERVIEW OF CLASSIFICATION AND CASEMIX

1.

1.1 Aims of the study

5

1.2 Organisation of the thesis

5

1.3 Casemix and the classification of health care products

7

1.4 A brief history of Diagnosis Related Groups

10

1.4.1 DRG versions in the United States

11

1.4.2 British DRGs (Healthcare Resource Groups)

13

1.4.3 Canadian DRGs (Case Mix Groups)

13

1.5 Data requirements for DRG assignment

15

1.6 AN-DRG assignment logic

17

1.7 DRGs and resource allocation

22

CHAPTER 2 DIABETES AND THE AUSTRALIAN DRG VARIANT

29

2.1 Development of a DRG classification for Australia

30

2.1.1 AN-DRG version 1

33

2.1.2 AN-DRG version 2

35

2.1.3 AN-DRG version 3

39

2.3 Review of diabetes classifications for version 3

44
8.4 Some ideas for refinement in diabetes classification

8.4.1 Model using diabetes staging in secondary diagnosis logic

8.4.2 Model assigning all diabetes to one part of the assignment tree

8.4.3 Casemix model with first split according to major chronic condition

8.4.4 Casemix model with revised secondary diagnosis rules

8.5 Other issues relating to the DRG classification

8.6 Limitations of the study

8.7 Implications for research and design

8.8 Summary

CHAPTER 9 CONCLUSIONS AND RECOMMENDATIONS

9.1 Improved use of secondary diagnoses

9.2 Alternative classification models

9.3 Proposals for further research

9.4 Postscript

REFERENCES

APPENDIX 1 CODING OF DIABETES: CHART AUDIT FORM

APPENDIX 2 DRGS IN THE AUDIT SUBSAMPLE

APPENDIX 3 SECONDARY DIAGNOSES IN AUDIT SUBSAMPLE

APPENDIX 4 STATED DIABETIC MANIFESTATIONS

APPENDIX 5 UNCODED DIAGNOSES IN THE AUDIT SUBSAMPLE

APPENDIX 6 DIAGNOSES CODED AND NOT TREATED

APPENDIX 7 PRINCIPAL DIAGNOSIS CHANGED AFTER STUDY

APPENDIX 8 REVISED DIABETES PRINCIPAL DIAGNOSES

APPENDIX 9 REVISED DIABETES SECONDARY DIAGNOSES

APPENDIX 10 REVISED PROCEDURE CODES
List of Tables

1.1 Major diagnostic categories
2.1 AN-DRG PRE-MDC and MDC structure, version 3
2.2 Version 3 logic for AN-DRGs 67, 68, and 69 version 3 logic.
2.3 Proposed assignments for new DRG termed diabetic foot
2.4 Version 3 diabetes DRGs
5.1 Cost data for DRGs 529 and 530, National Costing Project
6.1 Initial assignment of sample cases to groups according to DRG logic
6.2 New groups as created by split of original group 4 into two parts
7.1 Descriptions and numbers of cases, the diabetes identified sample
7.2 DRGs where deletion of diabetes diagnosis affected DRG assignment
7.3 Groups in diabetes identified sample from which audit sample was selected
7.4 Mean length of stay (in days) by hospital and DRG logic group
7.5 Mean age (in years) by hospital and DRG logic group, diabetes identified
7.6 IAHS average length of stay 1993-1994 for selected DRGs
7.7 Number of records selected for audit, by hospital and group
7.8 Age (in years) by modified groups
7.9 Age distributions for diabetes identified sample and audit sub-sample
7.10 AN-DRGs most frequently assigned to the sample
7.11 Summary of results of coding for diabetes
7.12 Documentation errors, diabetes
7.13 Diabetes related managements 190
7.14 Four classification models, diabetes cases (diabetes identified sample) 191
7.15 Group attributes for model 1 (maximisation of R^2 for up to 8 DRG groupings) 192
7.16 Diabetes classification model 4 (a simple clinical model) 194
7.17 Coding for diabetes (diabetes not identified) 198
7.18 Diabetes related managements (diabetes not identified) 199
8.1 Examples of codes indicating complications of diabetes 239
List of figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>General logic of the DRG classification</td>
<td>20</td>
</tr>
<tr>
<td>2.1</td>
<td>MDC 10 - medical partition, AN-DRG version 1</td>
<td>45</td>
</tr>
<tr>
<td>2.2</td>
<td>MDC 10 - surgical partition, AN-DRG version 1</td>
<td>46</td>
</tr>
<tr>
<td>6.1</td>
<td>Flow chart for completion of chart audit</td>
<td>153</td>
</tr>
<tr>
<td>7.1</td>
<td>Average length of stay in days, 1987-1994, IAHS</td>
<td>173</td>
</tr>
<tr>
<td>7.2</td>
<td>Correlation of length of stay and age in sub-sample</td>
<td>176</td>
</tr>
<tr>
<td>7.3</td>
<td>Correlation of length of stay and age in sample</td>
<td>177</td>
</tr>
<tr>
<td>8.1</td>
<td>Overview of current AN-DRG logic</td>
<td>231</td>
</tr>
<tr>
<td>8.2</td>
<td>Alternative AN-DRG logic using staging of diabetes as secondary condition</td>
<td>234</td>
</tr>
<tr>
<td>8.3</td>
<td>Alternative AN-DRG logic using presence of complications of diabetes</td>
<td>237</td>
</tr>
<tr>
<td>8.4</td>
<td>Alternative AN-DRG logic, major chronic conditions as pre-MDC cases</td>
<td>242</td>
</tr>
<tr>
<td>8.5</td>
<td>Alternative AN-DRG logic which uses revised secondary diagnosis rules</td>
<td>243</td>
</tr>
</tbody>
</table>
Glossary of acronyms

ACCC Australian Casemix Clinical Committee
ALOS Average length of stay
AN-DRG Australian National Diagnosis Related Groups
BGL Blood Glucose Level
CCs Complications and Comorbidities
CCF Complicating Clinical Factor
CMG Case Mix Groups
DEIU Diabetes Education and Information Unit
DRG Diagnosis Related Group
EDCG Endocrine and Diabetes Clinical Group
HCFA Health Care Financing Administration
HRG Healthcare Resource Group
HIMAA Health Information Management Association of Australia
IAHS Illawarra Area Health Service
IRH Illawarra Regional Hospital
IDDM Insulin Dependent Diabetes Mellitus
LOS Length of Stay
MDC Major Diagnostic Group
NCC National Coding Centre
NIDDM Non Insulin Dependent Diabetes Mellitus
PDX Principal Diagnosis
PPS Prospective Payment System
RIV Reduction in Variance
SDX Secondary Diagnosis
TRG Technical Reference Group
Definitions of terms

- **Average Length of Stay (ALOS)**
 The mean length of stay for a group of patients (National Health Data Committee 1995:2-4).

- **Length of Stay (LOS)**
 The period of hospitalisation for an individual patient.

- **Acute Admitted inpatient**
 An inpatient whose illness is acute, and has one or more problems which require short-term health care in an inpatient setting. Now termed the acute admitted patient.

- **Admission**
 The administrative process which begins an episode of care. Also used to refer to the start of an episode of hospitalisation.

- **Comorbidity**
 A secondary condition existing at the time of admission which, because of its presence with a specific principal diagnosis, causes an increase in length of stay. In the AN-DRG classification, a comorbidity is expected to result in an increased length of stay of at least one day in 75% of patients. (Eagar & Hindle 1994b:12).

- **Complication**
 A secondary condition arising during the hospital stay which, when present in association with one or more specific diagnosis, causes an increase in length of stay. (Eagar & Hindle 1994b:12).

- **Principal Diagnosis (PDX)**
 That diagnosis or condition established after study to be chiefly responsible for occasioning the patient's admission to hospital. (National Health Data Committee 1995:3-83).
Principal Procedure

The most significant procedure that was performed for treatment of the principal diagnosis. (National Health Data Committee, 1995:3-89).

Secondary Diagnosis (SDX)

Any condition additional to the principal diagnosis which affects patient care by requiring clinical evaluation, therapeutic treatment, diagnostic procedures, extended length of stay, or increased nursing care or monitoring. Includes complications and comorbidities. (Eagar & Hindle, 1994b:39).

Cost weight

A measure of the average cost of an AN-DRG, compared with the average cost of a reference AN-DRG. Usually the average cost across all AN-DRGs is chosen as the reference value, and given a weight of 1. (Eagar & Hindle 1994b:6).

Insulin Dependent Diabetes Mellitus (IDDM)

A type of diabetes that most commonly occurs in people aged less than 35 years and is characterised by an absolute failure of the pancreas to produce insulin. The disorder is characterised by sudden onset of symptoms which include frequent urination, thirst, hunger and blurred vision. Untreated the condition can progress to ketoacidosis and death. People with IDDM depend upon insulin injections to sustain life (Dunning 1994).

Iso-Resource Group

All cases within the group cost approximately the same to treat.

Non Insulin Dependent Diabetes Mellitus (NIDDM)

A type of diabetes that most commonly occurs in people over the age of 35 years. NIDDM differs from IDDM in that the slow onset means that people can have NIDDM for several years before the condition is diagnosed.

People with NIDDM often produce adequate quantities of insulin, however because the body becomes resistant to the insulin that is produced, it is not effective. Treatment requires diet and exercise which may be supplemented by oral hypoglycaemic therapy (tablets) and/or insulin. An estimated 40% of people with NIDDM use insulin to improve control and are termed insulin requiring (Dunning 1994).
Outlier

A discharge that is outside of the normal distribution which describes the majority of cases within an AN-DRG. Removal of outliers from aggregate data results in more reliable comparisons of the frequency distribution of the remaining data (Reid 1991:7).

Australian Casemix Clinical Committee (ACCC)

A body formed in 1991 to provide clinical input to casemix issues, and particularly development of the AN-DRG classification.

International Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-CM)

A modification of the international standard classification of diagnoses and procedures (ICD-9), which is maintained by the US government. It has been clinically modified for morbidity coding, and especially for use in acute care.

Major Diagnostic Categories (MDCs)

A high level of grouping of patients according to principal diagnoses, use in the Diagnosis Related Groups (DRG) casemix classification. The Australian National DRG variant has 23 Major Diagnostic Categories.

Trimming

The process of removal of unusual cases prior to production of statistics. For example, analysis of trimmed DRG data would involve prior removal of (say) patients who were in hospital for unusually short or long periods.

Trim point

The value of a variable above or below which patient care episodes may be trimmed.

Variance explained, reduction in variance (RIV)

In the classification design context, the proportion of total variance which is between (rather than within) classes. A measure of the effectiveness of the classification. Also know by the statistic R^2 (the coefficient of multiple determination).