Vertical profiles of nitrous oxide isotopomer fractionation measured in the stratosphere

D W. T Griffith
University of Wollongong, griffith@uow.edu.au

Geoffrey Toon
California Institute of Technology

Bhaswar Sen
California Institute of Technology

Jean-Francois Blavier
California Institute of Technology

Robert A. Toth
California Institute of Technology

Follow this and additional works at: https://ro.uow.edu.au/smhpapers

Part of the Medicine and Health Sciences Commons, and the Social and Behavioral Sciences Commons

Recommended Citation
Griffith, D W. T; Toon, Geoffrey; Sen, Bhaswar; Blavier, Jean-Francois; and Toth, Robert A., "Vertical profiles of nitrous oxide isotopomer fractionation measured in the stratosphere" (2000). Faculty of Science, Medicine and Health - Papers: part A. 1958.

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Vertical profiles of nitrous oxide isotopomer fractionation measured in the stratosphere

Abstract
We have measured the vertical profiles of several isotopomers of nitrous oxide, N₂O, in the stratosphere by balloon-borne infrared remote sensing between 15 and 35 km. In particular we distinguish the individual profiles and relative enrichments of the positional isotopomers $^{15}\text{N}^{14}\text{N}^{16}\text{O}$ and $^{14}\text{N}^{15}\text{N}^{16}\text{O}$ for the first time. We find a distinct and reproducible relative enrichment of the isotopomers which is in general agreement with measured photolysis rates in the laboratory and theoretical predictions. The results confirm photolysis as the dominant stratospheric loss process for N₂O and argue against suggestions that additional chemical sources of N₂O in the stratosphere are required to explain the observed heavy isotopic enrichments there.

Keywords
measured, fractionation, stratosphere, isotopomer, vertical, oxide, profiles, nitrous

Disciplines
Medicine and Health Sciences | Social and Behavioral Sciences

Publication Details

This journal article is available at Research Online: https://ro.uow.edu.au/smhpapers/1958
Vertical profiles of nitrous oxide isopomer fractionation measured in the stratosphere

David W.T. Griffith
Department of Chemistry, University of Wollongong, Wollongong NSW 2522, Australia

Geoffrey C. Toon, Bhaswar Sen, Jean-François Blavier and Robert A. Toth
Jet Propulsion Laboratory, California Institute of Technology, Pasadena CA, USA

Abstract. We have measured the vertical profiles of several isopomers of nitrous oxide, N₂O, in the stratosphere by balloon-borne infrared remote sensing between 15 and 35 km. In particular we distinguish the individual profiles and relative enrichments of the positional isopomers 15N₁⁴N₁₆O and 1₄N₂₁₆O for the first time. We find a distinct and reproducible relative enrichment of the isopomers which is in general agreement with measured photolysis rates in the laboratory and theoretical predictions. The results confirm photolysis as the dominant stratospheric loss process for N₂O and argue against suggestions that additional chemical sources of N₂O in the stratosphere are required to explain the observed heavy isotopic enrichments there.

1. Introduction

Nitrous oxide (N₂O) plays two important roles in the atmosphere: it is the dominant source of nitrogen oxides active in stratospheric ozone depletion [Crutzen, 1970], and it is a major greenhouse gas [IPCC, 1996]. The conventional understanding of the global atmospheric budget of N₂O is that it is produced at the earth’s surface by microbial nitrification and denitrification, destroyed in the stratosphere by UV photolysis, and has no atmospheric sources. It has a long lifetime of ca. 120 years and a global mean tropospheric mixing ratio of ca. 313ppbv that is increasing at ca. 0.2% per year, presumed due to human activity [IPCC, 1996]. However the full budget picture is not well resolved because of large uncertainties (up to 50%) in estimates of some individual source terms and an overall imbalance between best estimates of total sources and sinks [Bouwman et al., 1995; Kroese et al., 1999]. Any attempt to resolve these budget uncertainties must also be constrained by the measured isotopic composition of atmospheric nitrous oxide and its sources and sinks [Cliff and Thiemens, 1997; Dore et al., 1998; Kim and Craig, 1993; McElroy and Jones, 1996; Naqvi et al., 1998; Nevison et al., 1999; Yoshida and Masuo, 2003]. N₂O in the lower stratosphere is isotopically heavy relative to tropospheric N₂O [Kim and Craig, 1993; Moore, 1974; Rahn and Wahlen, 1997], and its back diffusion to the troposphere has been postulated to balance the isotopically light biological sources in soils and oceans.

Two explanations for the origin of isotopically heavy stratospheric N₂O have been proposed. Yung and Miller [1997] presented a theoretical explanation based on isopomer-dependent photolysis rates of N₂O which come about through small wavelength shifts in the UV absorption spectrum due to differences in the zero point vibrational energy of the different isopomers. This theory predicts photolysis rates in the order ₄⁴⁶ > ₄⁴⁷ > ₅⁴⁶ > ₄⁴⁸ > ₄⁵⁶ (₄⁴⁶=₁⁵N₁⁴N₁₆O, ₄⁴⁷=₁⁴N₁⁵N₁₆O, ₅⁴⁶=₂N₁⁴N₁₆O etc.), which should leave the residual N₂O enriched in the heavier isotopes. In particular, the two ¹⁵N isopomers 456 and 546 should also have markedly different enrichment factors despite being of the same mass. The publication of this theory immediately spawned several independent laboratory studies of the isopomeric enrichment factors at individual photolysis wavelengths, including the distinction of 456 and 546 isopomers [Rahn et al., 1998; Roeckmann et al., 2000; Turatti et al., 2000; Zhang et al., 2000]. These studies confirmed the relative magnitudes of photolysis rates predicted by the theory, but in general obtained absolute enrichment factors about a factor of two larger [Turatti et al., 2000].

An alternative explanation for isotopically heavy stratospheric N₂O is based on speculative atmospheric sources of N₂O from reactions of N₂ with excited O₂, O₃ or NO₂ molecules [Estupinan et al., 2000; McElroy and Jones, 1996; Prasad, 1994; Prasad, 1997; Zipf and Prasad, 1998]. Such sources should produce N₂O with the 456 and 546 isopomers in almost equal abundance, and thus the measurement of any enrichment of 456 relative to 546 is a key to distinguishing between these competing explanations. In this work we have measured individual vertical profiles and enrichment factors of the N₂O isopomers 446, 456, 546 and 448 in the stratosphere by balloon-borne infrared remote sensing.

2. Experimental

Infrared spectroscopic techniques naturally distinguish the individual isopomers of N₂O as different species and, given sufficient precision, provide a complementary approach to isotope ratio mass spectrometric (IRMS) methods conventionally used to determine ¹⁵N and ¹⁸O. In this work we have analyzed nine sets of solar infrared absorption spectra collected between 1992 and 1999 from Fort Sumner, New Mexico (34°N), Fairbanks, Alaska (65°N) and Esrange, Sweden (68°N). The spectra were collected with the Jet Propulsion Laboratory MkIV Fourier transform infrared spectrometer [Toon, 1991] from a balloon platform at 33-40 km altitude in solar occultation mode, in which the spectrum of the rising or setting sun is obtained through the limb of the
earth's atmosphere. The spectra were analysed by least squares fitting of calculated spectra to the measured spectra in the v₁ and v₃ bands of N₂O near 1280 and 2200 cm⁻¹ respectively. The spectral calculations and fitting were performed with the GFIT algorithm [Goldman et al., 1999] using a 100 layer model atmosphere with new absorption line parameters provided by R.A. Toth for N₂O and HITRAN 1996 parameters [Rothman et al., 1998] for other absorbing species. Each analysed spectrum provides the total slant column abundance of each isotopomer along the line of sight. For solar zenith angles greater than 90°, the measured slant column is heavily weighted to the atmospheric composition at the lowest (tangent) altitude of the line of sight because of the exponential fall-off in density with altitude and the curvature of the earth. During each occultation, spectra were typically acquired over a range of tangent altitudes from 10 to 40 km, at intervals of 1 to 4 km depending on latitude and season.

3. Results and Discussion

We measure isotopic fractionations in the conventional "per mil" scale where for example for the 456 isotopomer

\[\delta^{456} = \frac{R_{456} (\text{sample})}{R_{456} (\text{reference})} - 1 \times 1000 \%
\]

\[R_{456} (\text{sample}) \] is the ratio of the 456 to the 446 isotopomer slant column abundance and \[R_{456} (\text{reference}) \] is the corresponding ratio inherent in the line parameter database. In the conventional definition of \(\delta \), \(R \) is a ratio of local concentrations or mixing ratios rather than integrated slant column abundances. Because of the weighting of the slant columns to the tangent altitude, the slant column definition is a good approximation to the conventional \(\delta \) at the tangent altitude. Figure 1(a) and (b) provides an overview of the fractionations plotted as the mean \(\delta^{15}N = (\delta^{446} + \delta^{456})/2 \) and difference \(\delta^{456} - \delta^{446} \) versus tangent altitude for all nine balloon flights. The mean fractionation increases and the difference decreases by 50-100% with altitude up to 35 km. In the Esrange profile, measured inside the Arctic winter vortex under conditions of strong stratospheric subsidence, the fractionations change much more rapidly with altitude than in the other profiles measured outside the vortex. Above 30-35 km the scatter in the measurements increases in all profiles because there is less than 10% of the tropospheric N₂O amount remaining there and the relative measurement errors are high. Below 10-15 km there is also larger scatter because the atmosphere is virtually opaque and there is little solar intensity remaining in the spectral regions analysed.

![Figure 1](image-url)
If the vertical profiles are determined only by photolysis, fractionation should be a Rayleigh distillation process [Rahn and Wahlen, 1997]. In this case the observed isotopic ratio \(R \) for any isotopomer relative to 446 at any altitude should be related to the fraction \(f \) of N\(_2\)O at that altitude relative to the unphotolyzed amount in the troposphere by

\[
R = R_0 f^{-1}
\]

and to a good approximation by

\[
\delta = \delta_0 + \epsilon \ln(f)
\]

where \(R \) and \(\delta \) have their usual definitions for each isotopomer, \(R_0 \) and \(\delta_0 \) are the values of \(R \) and \(\delta \) in the troposphere, \(\alpha \) is the ratio of the individual isotopomer photolysis rates, and \(\epsilon = (\alpha - 1) \times 1000 \) is the relative enrichment factor (per mil). Plots of \(\delta \) against \(\ln(f) \), if linear, provide apparent enrichment factors \(\epsilon \) which can be compared to theory and other measurements. Figure 1(c) and (d) shows the same data as in (a) and (b) replotted against \(\ln(f) \) instead of altitude. The data now lie about single straight lines, and nine individual profiles show generally good linearity, especially for \(\ln(f) < -0.3 \), (altitude > 20 km). In particular, the arctic Esrange profile is now consistent with the other profiles. Table 1 summarizes the mean slopes of all plots for \(\ln(f) > -2.3 \) (\(f > 0.1 \), altitude < 35 km) for each isotopomer as well as for the mean \(\delta^{15}\text{N} = (\delta^{546} + \delta^{456})/2 \) and difference \(\delta^{546} - \delta^{456} \).

Constant multiplicative errors in the determination of \(\delta \) and \(f \) (such as line strengths and assumed tropospheric N\(_2\)O mixing ratio) affect only the intercept of the Rayleigh plots and not the derived enrichment factors \(\epsilon \), which are determined from the slopes. The measured enrichment factors will be sensitive to errors whose effect is not constant with altitude or absorption strength in the spectra, such as zero offsets, instrument line shapes, assumed pressure broadening coefficients and temperature profiles. We have carried out extensive sensitivity tests to these quantities which indicate that the absolute fractionations should be accurate to better than 5% for \(\delta^{546} \) and 10% for \(\delta^{15}\text{N} \). There is significant variability in the slopes of the plots between vertical profiles as indicated by the standard deviations in Table 1, which we believe to be due to the effects of transport, as discussed further below.

The consistent linearity and slope of the \(\delta vs \ln(f) \) plots for each isotopomer supports an irreversible Rayleigh distillation-type loss process, presumably photolysis, as the dominant cause of the isotopic fractionation. The measured enrichment factors, \(\epsilon \), are in qualitative agreement with the theory of Yung and Miller: they are in the correct order, and their relative magnitudes agree within experimental error. However the absolute magnitudes are consistently around a factor of two larger than those predicted by Yung and Miller. They are however in good agreement with those measured in the laboratory for photolysis at 200-213nm, [Rahn et al., 1998; Roeckmann et al., 2000; Turatti et al., 2000; Zhang et al., 2000] which corresponds to the wavelength range of maximum solar photolysis [Yung and Miller, 1997]. Some simplifications in the original theory of Yung and Miller have been recognized [Miller and Yung, 2000; Yung and Miller, 1997; Zhang et al., 2000], and inclusion of these in future calculations should clarify the quantitative discrepancy.

Our measured enrichment factors of mean \(^{15}\text{N} \) and \(^{18}\text{O} \) (Table 1) are also significantly larger (i.e. more negative) than previous measurements from lower stratospheric samples reported by Rahn and Wahlen [1997], who found enrichment factors of -14.5% and -12.9% for mean \(^{15}\text{N} \) and \(^{18}\text{O} \) respectively for samples collected between 14.4 and 18.3 km altitude (\(f > 0.6 \)). However these measurements are not irreconcilable. The individual data of Rahn and Wahlen are plotted (as solid symbols) in Figures 1(a) and (c), and can be seen to lie well within the range of our measurements. In the weighted least squares regressions our enrichment factors for each isotopomer (i.e. the regression slopes) are determined over an altitude range of approximately 15-30 km, with \(f \) values down to about 0.1. Below 20 km, (\(f > 0.6, \ln(f) > -0.5 \) in Figure 1), the slopes of all \(\delta \) vs \(\ln(f) \) plots are much less well defined. A regression of our data only below 20 km, though less precise, would also lead to lower apparent enrichment factors more in agreement with those of Rahn and Wahlen. We also note that the enrichment factors calculated from Table 1 of Rahn and Wahlen for the higher altitude balloon data (14.4-22.6 km, solid pentagons) are significantly larger (e.g. -27% for \(^{15}\text{N} \)) and in better agreement with our measurements. We believe the lower apparent enrichments measured at lower altitudes imply more transport and mixing of tropospheric air into the lower stratosphere. Such mixing will tend to dilute the photolytic enrichment of the heavy isotopomers with unphotolysed air and would explain the lower enrichments observed for a given \(f \). Indeed, any variation of observed profiles from purely photolytically-determined profiles may provide a useful tracer for transport and mixing processes in the stratosphere.

Table 1. Mean enrichment factors and standard deviations of N\(_2\)O isotopomers from nine vertical profiles.

<table>
<thead>
<tr>
<th>Isotopomer</th>
<th>Mean slope (\epsilon)</th>
<th>Std deviation</th>
<th>(^{15}\text{N})</th>
<th>(^{18}\text{O})</th>
</tr>
</thead>
<tbody>
<tr>
<td>456</td>
<td>-57.1</td>
<td>9.5</td>
<td>-42.3</td>
<td>13.5</td>
</tr>
<tr>
<td>546</td>
<td>-27.3</td>
<td>11.5</td>
<td>29.8</td>
<td>29.4</td>
</tr>
</tbody>
</table>

4. Implications

Our results thus have important implications for global budget studies of N\(_2\)O. Several authors have used the previous data for the stratospheric isotopic composition [Kim and Craig, 1993; Moore, 1974; Rahn and Wahlen, 1997] to constrain the global isotopic N\(_2\)O budget [Dore et al., 1998; Kim and Craig, 1993; McElroy and Jones, 1996; Naqvi et al., 1998; Nevison et al., 1999; Yoshida and Matsuo, 1983]. However our data suggest that the previous lower stratosphere fractionation measurements were in fact reduced by mixing, so that the true photolytic enrichment factors are actually significantly larger than was assumed. This implies that the modeled total return flux of N\(_2\)O to the troposphere would need to be smaller to achieve isotopic balance with the isotopically light biological sources at the earth's surface. This would in turn require larger surface sources to achieve the same total tropospheric N\(_2\)O burden. Further stratospheric measurements, combined with measurements of 546-456 differences in N\(_2\)O sources and tropospheric N\(_2\)O should improve our understanding of the global N\(_2\)O budget considerably.
These measurements also argue against the need to invoke novel chemical sources in the budget of N$_2$O in the stratosphere to explain its isotopically heavy signature [McElroy and Jones, 1996; Prasad, 1994; Prasad, 1997; Zipf and Prasad, 1998]. Although our observation of strong 546-456 fractionation does not strictly exclude the possibility that these novel sources play some role, the measured enrichment factors, their quantitative agreement with laboratory measurements, and their qualitative agreement with the theory of Yung and Miller suggest that differential isotopomeric photolysis rates provide a sufficient explanation for the observed isotopic composition of N$_2$O in the stratosphere.

Finally, we present actual atmospheric measurements of a new isotopic variable for N$_2$O studies, the positional asymmetry of 15N fractionation, δ^{15}_N. Like mass-independent fractionation [Cliff and Thiemens, 1997], the positional difference is a specific marker for a specific process (in this case photolysis), and should be a particularly valuable tracer in this respect. With the emergence of new analytical techniques for the determination of this isotopic signature [Brenninkmeijer and Roeckmann, 1999; Ester et al., 2000; Toyoda and Yoshida, 1999], it should become a valuable addition to the isotopic toolbox. In a very recent paper published since acceptance of this work, Yoshida and Toyoda [2000] draw similar conclusions.

Acknowledgements. We wish to thank the personnel of the National Scientific Balloon Facility, who conducted all of the MkIV balloon launches, with special thanks to David Pettersson, Ron Howe, Jess Landeros and Jim Riccio. This work was funded in part by the NASA Upper Atmosphere Research Program, and a portion of this work was published since acceptance of this work, Yoshida and Toyoda, 1999, it should become a valuable new isotopic variable for N$_2$O studies, the positional asymmetry of 15N fractionation, δ^{15}_N. Like mass-independent fractionation [Cliff and Thiemens, 1997], the positional difference is a specific marker for a specific process (in this case photolysis), and should be a particularly valuable tracer in this respect. With the emergence of new analytical techniques for the determination of this isotopic signature [Brenninkmeijer and Roeckmann, 1999; Ester et al., 2000; Toyoda and Yoshida, 1999], it should become a valuable addition to the isotopic toolbox. In a very recent paper published since acceptance of this work, Yoshida and Toyoda [2000] draw similar conclusions.

References

Roeckmann, T., C.A.M. Brenninkmeijer, M. Wollenhaupt, J.N. Crowley, and P.J. Crutzen, Measurement of the isotopic fractionation of 15N$_2$14N$_2$O, 14N$_2$15N$_2$O and 15N$_2$15N$_2$O in the UV photolysis of nitrous oxide, Geophysical Research Letters, 27 (9), 1399-1402, 2000.

Zhang, H., P.O. Wennberg, V.H. Wu, and G.A. Blake, An FTIR study of isotopic fractionation in 15N$_2$14N$_2$O and 14N$_2$15N$_2$O during photolysis at 213 nm, Geophysical Research Letters, in press, 2000.

D. W. T. Griffith (corresponding author), Department of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia. (david.griffith@uow.edu.au)

G.C. Toon, B. Sen, J.-F. Blavier and R.A. Toth, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109.

(Received: May 19, 2000; Accepted: June 14, 2000)