2007

Adaptive predictive vibration control in vehicular rear view mirrors

Antoine Larchez
University of Wollongong

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author.

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
Adaptive Predictive Vibration Control in Vehicular Rear View Mirrors

A thesis submitted in fulfilment of the requirements for the award of the degree

PhD

from

University of Wollongong

By

Antoine Larchez

Diplôme d'ingénieur (Equ. M.EE), E.S.I.E.E. Paris, France, 2002
DEA, Paris VI University, France, 2002

SCHOOL OF ELECTRICAL, COMPUTER AND TELECOMMUNICATIONS ENGINEERING

August 2007
DECLARATION

This is to certify that the work presented in this thesis was carried out by the author in the School of Electrical, Computer and Telecommunications Engineering at the University of Wollongong, and has not been submitted to any other university or institute.

Antoine Larchez
ACKNOWLEDGMENTS

I would like to thank my supervisor, Professor Fazel Naghdy for his invaluable guidance and supervision throughout the research work. In particular I would like to thank him for his thorough review of my thesis.

My thanks also go to Professor Chris Cook for his review and advice.

My deep gratitude goes to Dr Troy Coyle, Archie Coyle and Bindi Coyle for the generous support I received whether it was day or night, and for the advice.

Thanks to Mark Havryliv for his stimulating conversations during those short computer simulations.

Many thanks to the Student Research Centre staff, and especially Ms Kim Roser-Callaway for her support.

The technical and administrative staff Ros Causer-Temby, Maree Burnett, Tracey O’Keefe, Frank Mikk, Brian Webb, Steve Petrou and Carlo Giusti are also acknowledged for their help.

I am thankful to Schefenacker Visions Systems Australia and the CRC for Intelligent Manufacturing Systems and Technologies for their assistance with the financial support.
ABSTRACT

Reduction in rear view mirror vibration has been identified as a research and development priority by large automotive mirror manufacturers, such as Schefenacker Vision Systems Australia Pty Ltd (SVS), the industrial partner of this project. Mirror vibration, particularly in luxury and heavy vehicles, has proved to be a major source of complaints received from the customers. Such vibration may result in image blurring and the loss of rear vision. This can adversely affect the driver, the control of the car, and the safety of the driver and the passengers. The vehicle mirror vibration is also generally perceived to indicate the poor quality of a vehicle.

Mirror glass vibration is primarily caused by wind as the result of the motion of the vehicle. The structure-borne vibrations also contribute to vibration by affecting the mirror’s housing. The vibration intensity will depend on parameters, such as the roughness of the road, the engine speed, and wind intensity. Under some circumstances, the image provided by the mirror is not indicative of the true conditions behind the car, which can lead to incorrect perception and to driver misjudgement, resulting in the increased risk of an accident.

The main focus of this thesis is to investigate the feasibility of developing an intelligent active vibration controller capable of maintaining a sharp reflected image under all driving conditions. An adaptive predictive controller is proposed. As an adaptive method, the proposed system can generate a control signal, according to the driving conditions, to cancel the vibration. The predictive characteristics of the approach can minimise the effect of delay between the measurement of the vibration signal and the generated control signal.

An extensive review of the literature relevant to rear view mirrors, measurement techniques and active control of noise and vibration is carried out. The nature of the mirror vibration based on the road data is obtained empirically and statistically characterised. In order to develop and validate the vibration compensator, a number of experimental rigs are designed and developed.
In a rigorous and systematic approach, a number of active vibration techniques are developed and validated through computer simulation and experimental work. The structure of nearly all of these algorithms is based on internal model control, where the actual disturbance signal is reconstructed analytically. The control structures include at least one variant of the FxLMS adaptive filter in different configurations. The results of modelling and validation are systematically recorded in the thesis.

The results obtained show that the methodologies proposed in this study, outperform the conventional controllers in reducing vibration levels in rear view mirror.
TABLE OF CONTENTS

DECLARATION .. i
ACKNOWLEDGMENTS .. ii
ABSTRACT .. iii
TABLE OF CONTENTS .. iv
LIST OF FIGURES ... x
LIST OF TABLES .. xiv
ABBREVIATIONS .. xvi

Chapter 1. Introduction .. 1
1.1 Problem Statement ... 1
1.2 Mirror Vibration Control ... 3
1.3 Overall Approach ... 4
1.4 Thesis Aims and Objectives ... 5
1.5 Structure of the Thesis ... 7

Chapter 2. Background ... 9
2.1 Definitions and History ... 9
2.2 Vibrations in Rear View Mirrors ... 10
2.2.1 Measurement Techniques .. 10
2.2.2 Human Perception of Rear View Mirror Vibrations 12
2.2.2.1 Critical Analysis ... 14
2.2.3 Aerodynamically-Induced Vibrations .. 14
2.2.4 Summary and Analysis .. 16
2.3 Rear View Mirror Design and Characteristics .. 17
2.3.1 Mirror Design Specifications ... 17
2.3.2 Structural Optimisation of the Mirrors for Vibration 18
2.3.3 Resonances of Rear View Mirrors ... 21
2.3.4 Summary ... 22
2.4 Vibration Mitigation Methods .. 22
2.4.1 Passive Attenuation of Vibration ... 23
2.4.2 Semi-Active Attenuation of Vibrations ... 25
2.4.3 Active Vibration Control .. 26
2.4.3.1 Physical Basis for Control ... 28
2.4.3.2 Active Isolation of Vibrations ... 29
2.4.3.3 Previous Work in Active Control on Mirrors 30
2.5 Automotive Application of Active Noise and Vibration Control 31
2.5.1 Conclusion ... 32

Chapter 3. Nature of Mirror Vibration .. 34
3.1 Sources of Vibration in the Mirror .. 34
3.2 Mechanical Analysis .. 36
Chapter 3. Experimental Design

3.1 Experimental Requirements

4.1.1 Design Requirements

4.1.2 Sensors

4.1.2.1 Gyroscope

4.1.2.2 Accelerometer

4.1.2.3 Summary

4.1.3 Actuators

4.1.3.1 Force Requirements

4.1.3.2 Current Mirror Actuator Mechanisms

4.1.3.3 Previous and Current research

4.1.3.4 Further Actuator Technologies

4.1.3.5 Summary

4.2 Experimental Setup

4.2.1 Architecture of the Experimental Setup

4.2.1.1 Overview

4.2.1.2 Rapid Prototyping

4.2.1.3 Electronics

4.2.2 Development of Active Control Experimental Setups

4.2.2.1 Preliminary Experimental Setup (Rig-1)

4.2.2.2 Linear Voice Coil Experimental Setup (Rig-2)

4.2.2.3 Dual-Speaker Rig (Rig-3)

4.2.2.4 Active Mirror Control Experimental Setup (Rig-4)

4.2.3 Rig Characteristics

4.2.3.1 Critical Analysis

4.3 Conclusion
Chapter 5. Design and Modelling of the Vibration Controller ... 91

5.1 Characterisation of Dual-Speaker Rig .. 92

5.2 Modelling .. 93
 5.2.1 Modelling of Counter-Actuator ... 93
 5.2.2 Parametric Identification of the Secondary Path 95
 5.2.2.1 Methodology .. 96
 5.2.2.2 Definition of the Model Structures .. 97
 5.2.2.3 Criterion for the Selection of Models .. 99
 5.2.2.4 Influence of the Input Signal Properties 100
 5.2.2.5 Influence of the Training and Validation Data Characteristics 102
 5.2.2.6 ARX Models .. 103
 5.2.2.7 Output-Error Models .. 106
 5.2.2.8 State-Space Models .. 107
 5.2.2.9 Summary .. 109

5.3 Controller Topologies .. 109
 5.3.1 Feedforward and Feedback .. 109
 5.3.2 Mirror Controller Design ... 112
 5.3.2.1 Feedforward for Vehicle Mirror Vibration Control 112
 5.3.2.2 Mirror Adjustment .. 114
 5.3.3 Feedback Controller .. 115
 5.3.3.1 Introduction .. 115
 5.3.3.2 Cause and Effects of Internal Delays .. 116
 5.3.3.3 Modelling of the Dual-Speaker rig ... 117

5.4 Conclusion .. 119

Chapter 6. Active Vibration Control Algorithms .. 120

6.1 Conventional Feedback Controllers .. 121
 6.1.1 Proportional Feedback Controller ... 121
 6.1.2 Predictive Feedback Approach ... 122
 6.1.2.1 Auto-Regressive Moving-Average Predictors 122
 6.1.2.2 Proof of Concept ... 124
 6.1.2.3 Predictor Construction and Analysis ... 126
 6.1.2.4 Influence of the Sampling Rate .. 129
 6.1.2.5 Summary .. 130
 6.1.2.6 Adaptive ARMA Predictive Modelling 130
 6.1.2.7 Recursive Parameter Estimations .. 132
 6.1.2.8 Implementation and Simulation Results 134
 6.1.2.9 Summary .. 135
 6.1.3 FxLMS Predictor .. 136

6.2 Internal Model Control ... 138
 6.2.1 Topology .. 139
 6.2.2 FxLMS Feedback Controller ... 140
 6.2.3 FxRLS Feedback Controller ... 141
 6.2.4 AP-AVC Feedback Controller ... 142
 6.2.5 Serial FxLMS Feedback Controller .. 143

6.3 Conclusion .. 144
Chapter 7. Validation ... 146
7.1 Methodology .. 146
7.2 Simulating Road Disturbance ... 148
 7.2.1 Inverse Modelling using Reversed Input/Output Data Pair 148
 7.2.2 Equalisation using Direct Inverse Adaptive Modelling 149
7.3 Dual-Speaker Rig ... 152
 7.3.1 Acceleration Feedback ... 152
 7.3.2 FxLMS Predictor ... 154
 7.3.3 FxLMS ... 155
 7.3.4 Feedforward FxLMS (Benchmark) 158
 7.3.4.1 FxLMS as a Predictor ... 159
 7.3.4.2 FxLMS as a Predictor and Equaliser 162
 7.3.4.3 Summary ... 165
 7.3.5 FxRLS ... 166
 7.3.6 AP-AVC ... 167
 7.3.7 Serial FxLMS .. 169
7.4 Active Vibration Control Mirror Rig 171
 7.4.1 Repeatability and Plant Identification 171
 7.4.2 FxLMS ... 173
 7.4.3 Series FxLMS ... 174
7.5 Conclusion .. 174

Chapter 8. Conclusion and Further Research 176
8.1 Overview .. 176
8.2 Significance of the Study .. 177
8.3 Characteristics of the Vibrations and the System 177
8.4 Control Schemes ... 178
8.5 Considerations for Mass Production 180
 8.5.1 Signal Processing and Sensor 180
 8.5.2 Structure .. 181
8.6 Recommendations for Further Research 182

REFERENCES .. 184

Appendix A ... 190
Results for Direct Inverse Adaptive Modelling Results 190

Appendix B ... 191
Feedforward FxLMS Results ... 191

Appendix C ... 192
FxLMS Experiments on Dual-Speaker rig 192
LIST OF FIGURES

Figure 2.1 – Laser measurement system used by Schefenacker (Source: Schefenacker Visions Systems Australia) 11
Figure 2.2 – Angular deflection in Arc Min measured on-road [Wat99] 15
Figure 2.3 – On-road and wind tunnel spectra for varying yaw angles [Wat04].. 15
Figure 2.4 – Existing mirror structure optimised by Hwang et al 19
Figure 2.5 – Pin damper used in the P131 mirror ... 25
Figure 2.6 – Active vibration isolation (left) and active vibration compensation (right); adapted [Hal].. 28
Figure 2.7 – (a):Single-axis soft isolator with acceleration feedback (b): Force feedback isolator; [Kur02] ... 29

Figure 3.1 – Sources of vibrations in side view mirrors; P131 Mirror Shown.... 35
Figure 3.2 – Hybrid representation of the distribution of vibrations in a side view mirror; adapted and augmented [Wat04]................................. 36
Figure 3.3 – Reductionist view of the vibrating mirror problem 37
Figure 3.4 – Finite element model of the P131 mirror shown in ANSYS 39
Figure 3.5 – Vibration isolation mode of the mirror glass............................... 41
Figure 3.6 – Vibration compensation mode of the mirror glass 41
Figure 3.7 – Degrees of freedom of the mirror glass; (a) translations (b) rotations ... 42
Figure 3.8 – Fundamental movements of a mirror under driving conditions; adapted [Gra00]... 43
Figure 3.9 – Relative influence of the rotation and translation movements on the motion of the reflected image; adapted from [Gra00]. 44
Figure 3.10 – The two components, yaw and pitch, of the glass motion most significantly causing blurriness .. 44
Figure 3.11 – Vehicle reference frame and mirror coordinate system.............. 46
Figure 3.12 – Spatial distribution of the single-axis accelerometers; P131 mirror shown... 48
Figure 3.13 – P131 mirror in extended position during measurements on a highway. .. 49

Figure 4.1 – Actuators and sensors on the mirror ... 60
Figure 4.2 – Peak force calculations in mirror.. 64
Figure 4.3 – MM5 actuating mechanism embedding two DC motors and worm screws; source: Schefenacker Visions Systems Australia.................. 65
Figure 4.4 – Twin motor mechanism for mirror adjustments ; source: University of South Australia. .. 66
Figure 4.5 – Spherical mirror actuator ; source: University of South Australia .. 67
Figure 4.6 – Piezoelectric wobbling motor ... 68
Figure 4.7 – Piezoelectric elliptic motor ... 68
Figure 4.8 – Electric pistons ... 69
Figure 4.9 – Use of solenoids to drive a mirror .. 70
Figure 4.10 – Linear voice coil actuator; source: BEI Kimco............................ 72
Figure 4.11 – Rotary voice coil actuator; source: BEI Kimco........................... 72
Figure 4.12 – Overall system diagram ... 75
Figure 4.13 – C167 microcontroller platform ... 77
Figure 4.14 – Overview of the rapid prototyping experimental setup 78
Figure 4.15 – The preliminary experimental setup (P131 mirror mounted on a shaker) ... 80
Figure 4.16 – The P131 mirror mounted on a shaker (left: shaker off; right: shaker enabled) ... 80
Figure 4.17 – The AURA linear voice coil actuator ... 81
Figure 4.18 – Physical setup for active control (left: physical rig, right: mount and actuators) ... 81
Figure 4.19 – Lissajou figure obtained with a laser pointed on the mirror 82
Figure 4.20 – Linear acceleration of the actuator shaft in response to a sine wave current input ... 83
Figure 4.21 – Dual-Speaker active vibration control setup 84
Figure 4.22 – Dual-speaker rig diagram; emphasising the equivalent functions on the mirror ... 85
Figure 4.23 – Representation of the active mirror control setup (Rig-4) 86
Figure 4.24 – Active vibration control mirror rig diagram 87

Figure 5.1 – Initial response of the Dual-Speaker rig (x-axis: time in samples, y-axis: volt) .. 92
Figure 5.2 – Response of the Dual-Speaker rig with increased damping 93
Figure 5.3 – Secondary path - speaker used as counter-actuator and transconductance amplifier ... 94
Figure 5.4 – Red: measured transfer function; blue: fitted transfer function ... 95
Figure 5.5 – Diagrammatic representation of the system identification method used ... 97
Figure 5.6 – Frequency response of an ARX(40,40,3) model estimated from a band limited random noise input .. 100
Figure 5.7 – Periodogram of the input-output data sets 101
Figure 5.8 – Selection plot for ARX models estimated with the LS method........ 105
Figure 5.9 – ARX(50,47,2) and ARX(30,30,2) Bode plots 105
Figure 5.10 – OE(50,47,2) and OE(30,30,2) Bode plots 107
Figure 5.11 – Selection plot for state-space models, subspace method 108
Figure 5.12 – SS-PEM(9), SS-PEM(11), and SS-PEM(15) Bode plots 108
Figure 5.13 – Feedforward topology for vibration compensation 110
Figure 5.14 – Feedback topology for vibration compensation 111
Figure 5.15 – Mirror active control loop including adjustment function 114
Figure 5.16 – Feedback control ... 115
Figure 5.17 – Break down of the loop delay ... 116
Figure 5.18 – Hybrid representation of the Dual-Speaker rig 118
Figure 5.19 – Model of the Dual-Speaker rig used in simulations 118

Figure 6.1 – Simple acceleration feedback loop for vibration rejection 121
Figure 6.2 – Predictive feedback loop for vibration rejection 122
Figure 6.3 – Simulated predictive feedback compensation control system 124
Figure 6.4 – Predictive feedback attenuation results 125
Figure 6.5 – Improvement over standard proportional controller - in added percentage value... 125
Figure 6.6 – Residual vibration signal using the AR predictive controller........ 126
Figure 6.8 – Adaptive ARMA feedback vibration control process 131
Figure 6.9 – Fit results for Forgetting Factor, Kalman Filter, Normalised Gradient and Un-normalised Gradient Adaptive ARMA(40,40) algorithms.. 133
Figure 6.10 – Extract of the “highway” signal and predicted signal for prediction horizon k=5 and k=10, ARMA(40,40).. 134
Figure 6.11 – FxLMS-based feedback loop.. 136
Figure 6.12 – Internal model control topology .. 139
Figure 6.13 – FxLMS feedback controller for the compensation of vibrations.. 140
Figure 6.14 – AP-AVC feedback controller .. 143
Figure 6.15 – FxLMS\(^2\) topology ... 144
Figure 7.1 – Direct inverse adaptive modelling of the rig 150
Figure 7.2 – Inverse model fit as a function of system parameters; filter length =1024.. 151
Figure 7.3 – Filter taps; plotted every 1000 samples over 10 seconds 151
Figure 7.4 – Acceleration feedback results for all 6 signals (Grey: raw vibration, Black: attenuated vibration).. 153
Figure 7.5 – Average attenuation results using FxLMS predictor on all 6 road signals.. 155
Figure 7.6 – Attenuation results using FxLMS on a highway signal............. 156
Figure 7.7 – Attenuation results all 6 signals where \(\alpha\) is fixed to 1 and filter length = 256... 157
Figure 7.8 – Attenuation results for all 6 signals where \(\alpha\) is fixed to 1 and filter length = 512... 157
Figure 7.9 – Feedforward FxLMS test bed used to quantify pure predicting abilities. ... 159
Figure 7.10 – Feedforward FxLMS simulation results; road vibration signals; average.. 160
Figure 7.11 – Feedforward FxLMS simulation results, sine wave input........ 161
Figure 7.12 – Feedforward FxLMS simulation results, random Gaussian signal input... 162
Figure 7.13 – Feedforward FxLMS test bed used to quantify predicting and equalising abilities... 163
Figure 7.14 – Feedforward FxLMS average results, using typical road vibration signals... 164
Figure 7.15 – Feedforward FxLMS results, using a 50Hz sine wave disturbance... 164
Figure 7.16 – Feedforward FxLMS results, using a random Gaussian signal disturbance... 164
Figure 7.17 – Feedforward FxLMS vs. feedback FxLMS (256 taps)............. 166
Figure 7.18 – Average attenuation results using FxRLS (N=32)................. 167
Figure 7.19 – Average attenuation results using AP-AVC.......................... 168
Figure 7.20 – Learning process topology of AP-AVC (left) and AP-AVC2 (right).. 169
Figure 7.21 – Dual FxLMS results... 170
Figure 7.22 – Coherence measures – disturbance path (left) and secondary path (right).. 172
Figure 7.23 – FxLMS mirror rig results... 173

Figure A.1 – Inverse model fit as a function of system parameters (filter length = 256) ... 190
Figure A.2 – Inverse model fit as a function of system parameters (filter length = 512) ... 190
Figure B.1 – Feedforward FxLMS simulation results; road vibration signals; average, (filter length = 512)... 191
Figure C.1 – Simulink model of the FxNLMS experimental system 192
Figure C.2 – Simulink internal model of the FxLMS block 193
LIST OF TABLES

Table 1.1 – Summary of the thesis objectives ... 6
Table 2.1 – Natural frequencies for rear view mirrors from the literature 21
Table 3.1 – Summary of Sensing Methods for Vehicle Mirror Vibration 47
Table 3.2 – Vibration measurements on a P131 mirror in varying driving conditions ... 52
Table 4.1 – Dytran 3035AG piezo-electric Accelerometer Specifications 63
Table 4.2 – Comparison of actuator technologies for mirror vibration control 73
Table 4.3 – Rig-3 experimental validation results .. 84
Table 4.4 – Comparison of the experimental setups .. 89
Table 5.1 – Typical fit results, using data based on RGS input 102
Table 5.2 – Typical fit results, using data based on road signal input 102
Table 5.3 – Effects of pre-filtering .. 102
Table 5.4 – Fits obtained for various lengths of the estimation data 103
Table 5.5 – Fit results for ARX models ... 105
Table 5.6 – Fit results for output-error models .. 106
Table 5.7 – Fit results for state-space models .. 108
Table 5.8 – Fit results as a function of prediction horizon, ARMA(40,40) ... 134
Table 6.1 – AR and ARMA fit results vs. prediction horizon \(k \) 128
Table 6.2 – State-space fit results vs. prediction horizon \(k \) 128
Table 6.3 – ARMA fit results vs. prediction horizon \(k \) 129
Table 6.4 – State-space fit results vs. prediction horizon \(k \) 129
Table 6.5 – Fit results as a function of prediction horizon, ARMA(40,40) 134
Table 6.6 – ARMA fit results vs. prediction horizon \(k \) 128
Table 6.7 – State-space fit results vs. prediction horizon \(k \) 129
Table 6.8 – Adaptive ARMA feedback system attenuation results 135
Table 7.1 – Set of road vibration signals used for validation 147
Table 7.2 – ARX inverse modelling results ... 149
Table 7.3 – Acceleration feedback attenuation levels (\(K=1.1 \)) 152
Table 7.4 – FxLMS predictor attenuation levels (\(N=256, \mu=0.03, \alpha=0.9999 \)) 154
Table 7.5 – Average of attenuation results for all 6 signals 158
Table 7.6 – FxLMS attenuation levels (\(N=256, \mu=0.01, \alpha=1 \)) 158
Table 7.7 – Feedforward FxLMS simulation results, road vibration signals, average ... 160
Table 7.8 – Feedforward FxLMS simulation results, sine wave input, best attenuation level ... 161
Table 7.9 – Feedforward FxLMS simulation results, random Gaussian signal input, best attenuation level................................. 162
Table 7.10 – FxRLS attenuation levels (\(N=32, \lambda=0.99978 \)) 167
Table 7.11 – AP-AVC attenuation levels (\(N=256, \mu=0.02, \alpha=1 \)) 169
Table 7.12 – AP-AVC2 attenuation levels (\(N=256, \mu=0.02, \alpha=1 \)) 169
Table 7.13 – FxLMS2 attenuation levels (\(N=256, \mu=0.005, \alpha=1 \)) 170
Table 7.14 – Repeatability characteristics of the mirror rig disturbance path 171
Table 7.15 – Repeatability characteristics of the mirror rig secondary path 172
Table 7.16 – FxLMS attenuation levels \(N=32 \mu=0.0001, \alpha=1 \) 174
Table 7.17 – FxLMS\(^2\) attenuation levels \(N=32 \mu=0.0001, \alpha=1 \) 174
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC</td>
<td>Analogue-to-Digital Converter</td>
</tr>
<tr>
<td>ANVC</td>
<td>Active Noise and Vibration Control</td>
</tr>
<tr>
<td>ARMAX</td>
<td>Auto-Regressive Moving Average with eXogenous input</td>
</tr>
<tr>
<td>ARX</td>
<td>Auto-Regressive with eXogenous input</td>
</tr>
<tr>
<td>AVC</td>
<td>Active Vibration Compensation/Control</td>
</tr>
<tr>
<td>AVI</td>
<td>Active Vibration Isolation</td>
</tr>
<tr>
<td>BOM</td>
<td>Bill of Materials</td>
</tr>
<tr>
<td>CVA</td>
<td>Canonical Variable Algorithm</td>
</tr>
<tr>
<td>DAC</td>
<td>Digital-to-Analogue Converter</td>
</tr>
<tr>
<td>EMI</td>
<td>Electromagnetic Interferences</td>
</tr>
<tr>
<td>ER</td>
<td>Electro-Rheological</td>
</tr>
<tr>
<td>FIR</td>
<td>Finite Impulse Response</td>
</tr>
<tr>
<td>FxLMS</td>
<td>Filtered-x Least Mean Square</td>
</tr>
<tr>
<td>FxRLS</td>
<td>Filtered-x Recursive Least Square</td>
</tr>
<tr>
<td>IIR</td>
<td>Infinite Impulse Response</td>
</tr>
<tr>
<td>IMU</td>
<td>Inertial Measurement Unit</td>
</tr>
<tr>
<td>IV</td>
<td>Instrumental Variable</td>
</tr>
<tr>
<td>LIVM</td>
<td>Low Impedance Voltage Mode</td>
</tr>
<tr>
<td>LS</td>
<td>Least Square</td>
</tr>
<tr>
<td>LVDT</td>
<td>Linear Variable Differential Transformer</td>
</tr>
<tr>
<td>MOSFET</td>
<td>Metal-Oxide Semiconductor Field Effect Transistor</td>
</tr>
<tr>
<td>MR</td>
<td>Magneto-Rheological</td>
</tr>
<tr>
<td>NVH</td>
<td>Noise, Vibration and Harshness</td>
</tr>
<tr>
<td>OE</td>
<td>Output-Error</td>
</tr>
<tr>
<td>PEM</td>
<td>Prediction Error Method</td>
</tr>
<tr>
<td>PWM</td>
<td>Pulse Width Modulation</td>
</tr>
<tr>
<td>PZT</td>
<td>Lead Zirconate Titanate</td>
</tr>
<tr>
<td>RBS</td>
<td>Random Binary Signal</td>
</tr>
<tr>
<td>RGS</td>
<td>Random Gaussian Signal</td>
</tr>
<tr>
<td>RMS</td>
<td>Root Mean Square</td>
</tr>
</tbody>
</table>
RPM Rotation-per-Minute
RTW Real-Time Workshop
SM Subspace Method
SS State-Space
SUV Sport-Utility Vehicle
UOV Unexplained Output Variance