Cancellation laws for BCI-algebra, atoms and p-semisimple BCI-algebras

M W. Bunder

University of Wollongong, mbunder@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/eispapers

Part of the Engineering Commons, and the Science and Technology Studies Commons

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Cancellation laws for BCI-algebra, atoms and p-semisimple BCI-algebras

Abstract
We derive cancellation laws for BCI-algebras and for p-semisimple BCI-algebras, show that the set of all atoms of a BCI-algebra is a p semisimple BCI-algebra and that in a p-semisimple BCI-algebra and = are the same.

Keywords
p, semisimple, algebras, atoms, cancellation, algebra, bci, laws

Disciplines
Engineering | Science and Technology Studies

Publication Details
CANCELLATION LAWS FOR BCI-ALGEBRA, ATOMS AND P-SEMISIMPLE BCI-ALGEBRAS

M.W. BUNDER

Received July 8, 1997

Abstract. We derive cancellation laws for BCI-algebras and for p-semisimple BCI-algebras, show that the set of all atoms of a BCI-algebra is a p-semisimple BCI-algebra and that in a p-semisimple BCI-algebra ≤ and = are the same.

1. Introduction. BCI-algebras, first introduced by Iséki in [1], can be defined as follows:

Definition 1 An algebra \((X; \ast, 0)\) of type \((2, 0)\) is a BCI-algebra if for all \(x, y, z \in X\).

BCI-1 \((x \ast y) \ast (x \ast z) \leq z \ast y\)

BCI-2 \(x \ast (x \ast y) \leq y\)

BCI-3 \(x \leq x\)

BCI-4 \(x \leq y\) and \(y \leq x\) imply \(x = y\)

BCI-5 \(x \leq y\) iff \(x \ast y = 0\)

The following well known properties of BCI-algebras are used below.

(1) \((x \ast y) \ast z = (x \ast z) \ast y\)

(2) \(0 \ast (x \ast y) = (0 \ast x) \ast (0 \ast y)\)

(3) \(x \ast 0 = x\)

(4) \(x \ast (x \ast (x \ast y)) = x \ast y\)

(5) \(x \ast x = 0\)

(6) \(x \leq 0 \Rightarrow x = 0\).

Theorem 1 If \((X; \ast, 0)\) is a BCI-algebra and \(x, y, z \in X\) then:

(i) \(x \ast y \leq x \ast z \Rightarrow 0 \ast y = 0 \ast z\);

(ii) \(y \ast x \leq z \ast x \Rightarrow 0 \ast y = 0 \ast z\).

Proof (i) If \(x \ast y \leq x \ast z\), by BCI-5,

\[(x \ast y) \ast (x \ast z) = 0\]

and so by BCI-1 and BCI-5,

\[0 \ast (z \ast y) = 0\]

and by (2),

\[(0 \ast z) \ast (0 \ast y) = 0\].
Hence by BCI-5

$$0 \ast z \leq 0 \ast y.$$

We now apply the same cancellation procedure to this as we did to $x \ast y \leq x \ast z$, this time “cancelling” the 0 to give:

$$0 \ast y \leq 0 \ast z$$

$$\therefore \ 0 \ast y = 0 \ast z.$$

(ii) If $y \ast x \leq z \ast x$, by BCI-5,

$$(y \ast x) \ast (z \ast x) = 0.$$

BCI-1 and (1) give

$$((y \ast x) \ast (z \ast x)) \ast (y \ast z) = 0$$

so

$$0 \ast (y \ast z) = 0$$

giving, as above,

$$0 \ast y \leq 0 \ast z.$$

As in (i) this gives $0 \ast y = 0 \ast z$.

Corollary If $\langle X; \ast, 0 \rangle$ is a BCI-algebra and $x, y, z \in X$ then

(i) $x \ast y = x \ast z \Rightarrow 0 \ast y = 0 \ast z$

(ii) $y \ast x = z \ast x \Rightarrow 0 \ast y = 0 \ast z$.

We have two further properties resulting from the above cancellation laws:

Theorem 2 If $\langle X; \ast, 0 \rangle$ is a BCI-algebra and $x, y, z \in X$ then:

(i) $x \leq x \ast z \Rightarrow 0 \leq z$

(ii) $x \ast y \leq x \Rightarrow 0 \leq y$.

Proof (i) If $x \leq x \ast z$, by (3) $x \ast 0 \leq x \ast z$ and so by Theorem 1 (i) $0 \ast z = 0 \ast 0$. This gives $0 \ast z = 0$ i.e. $0 \leq z$.

(ii) If $x \ast y \leq x$, by (3), $x \ast y \leq x \ast 0$ and so by Theorem 1 (ii) $0 \ast y = 0 \ast 0 = 0$, so $0 \leq y$.

3. **P-Semisimple Algebras.** These were introduced by Lei and Xi in [2] as follows:

Definition 2 A BCI-algebra $\langle X; \ast, 0 \rangle$ is p-semisimple if

$$(\forall x \in X)(0 \ast x = 0 \Rightarrow x = 0).$$

In these algebras we find that \leq becomes the same as $=$.

Theorem 3 If $\langle X; \ast, 0 \rangle$ is a p-semisimple BCI-algebra and $x, y \in X$ then if $x \leq y$ also $x = y$.

Proof If $x \leq y$, $x \ast y = 0$ by BCI-5. Also by (5), $x \ast y = x \ast x$, so by the corollary to Theorem 1, $0 \ast y = 0 \ast x$.

As $(0 \ast x) \ast (0 \ast x) = 0$, we have $(0 \ast y) \ast (0 \ast x) = 0$ and by (2), $0 \ast (y \ast x) = 0$.

As BCI-algebras are closed under \ast, $y \ast x \in X$, so if the algebra is p-semisimple, $y \ast x = 0$.

By BCI-4, $x = y$.

Our cancellation laws can now be strengthened.

Theorem 4 If $\langle X; \ast, 0 \rangle$ is a p-semisimple BCI-algebra and $x, y, z \in X$ then:

(i) $x \ast y \leq x \ast z \Rightarrow y = z$;

(ii) $y \ast x \leq z \ast x \Rightarrow y = z$.

Proof (i) If $x \ast y \leq x \ast z$, by Theorem 1(i) we get $0 \ast z = 0 \ast y$ and so $(0 \ast z) \ast (0 \ast y) = 0$.

By (2) this gives $0 \ast (z \ast y) = 0$, so if the algebra is p-semisimple we have $z \ast y = 0$ i.e. $z \leq y$.

The result then follows from Theorem 3.

(ii) Similar.
Corollary If $\langle X; *, 0 \rangle$ is a p-semisimple BCI-algebra and $x, y, z \in X$ then
(i) $x * y = x * z \implies y = z$;
(ii) $y * x = z * x \implies y = z$.

Definition 3 An element of a BCI-algebra $\langle X; *, 0 \rangle$ is an atom if

$$(\forall x \in X)(x * a = 0 \implies x = a)$$

Definition 4 $L(X) = \{x \in X \mid x$ is an atom of $X\}$

Meng and Xin prove in [3]:

Theorem 5 If $\langle X; *, 0 \rangle$ is a BCI-algebra then
(i) a is an atom iff $a = 0 * (0 * a)$;
(ii) $(\forall x \in X) \ 0 * x \in L(X)$.

(Theorem 5(i) also follows from (4) and (i).)

The following simple representation of $L(X)$ results:

Theorem 6 $L(X) = \{0 * x \mid x \in X\}$.

Meng and Xin prove that $L(X)$ is a BCI-algebra. The following result of Lei and Xi [2]:

Theorem 7 If $\langle X; *, 0 \rangle$ is a BCI-algebra then X is p-semisimple iff

$(\forall x \in X) \ 0 * (0 * x) = x$.

and Theorem 5(i) give us:

Theorem 8 If $\langle X; *, 0 \rangle$ is a BCI-algebra $\langle L(X); *, 0 \rangle$ is a p-semisimple BCI-algebra.

A final result on $L(X)$ is the following:

Theorem 9 If $\langle X; *, 0 \rangle$ is a BCI-algebra then $L(L(X)) = L(X)$.

Proof By Theorem 6,

$$L(L(X)) = \{0 * x \mid x \in L(X)\} = \{0 * (0 * y) \mid y \in X\}$$

Similarly

$$L(L(L(X))) = \{0 * (0 * (0 * z)) \mid z \in X\},$$

so by (4)

$$L(L(L(X))) = L(X).$$

Hence as $L(L(L(X))) \subseteq L(L(X)) \subseteq L(X)$ we have $L(L(X)) = L(X)$.

5. Powers. In [2] Lei and Xi define a new operation $+$ by:

Definition 5 $x + y = x * (0 * y)$

and show that if $\langle X; *, 0 \rangle$ is a p-semisimple BCI-algebra then $\langle X, + \rangle$ is an abelian group.

In [3] Meng and Wei use the same operation to define powers of elements by:

$x^1 = x$

$x^{n+1} = x * (0 * x^n)$,

(though $m x$ instead of x^m might have been in better keeping with $+$).

The following are new properties of this form of exponentiation:

Theorem 10 If x is an element of a BCI-algebra $\langle X; *, 0 \rangle$ then:

(i) $(0 * x)^n = 0 * x^n$;
(ii) $(0 * x)^n = (\ldots((0 * x) * x)\ldots) * x$

(where there are n xs on the right hand side).

Proof (i) By induction on n.

\(n = 1 \) - obvious.

Assuming (i) for \(n \),

\[
(0 \ast x)^{n+1} = (0 \ast x) \ast (0 \ast (0 \ast x)^n)
\]
\[
= (0 \ast x) \ast (0 \ast (0 \ast x^n))
\]
\[
= 0 \ast (x \ast (0 \ast x^n))
\]
\[
= 0 \ast x^{n+1}
\]

(ii) By induction on \(n \).

\(n = 1 \) - obvious.

Assuming (ii) for \(n \), by (c) above, (1) and (4):

\[
(0 \ast x)^{n+1} = (0 \ast (0 \ast (0 \ast x^n))) \ast x
\]
\[
= (0 \ast x^n) \ast x
\]
\[
= (0 \ast x)^n \ast x
\]
\[
= (\ldots ((0 \ast x) \ast x) \ldots) \ast x.
\]

as required.

REFERENCES