Analytical and numerical investigations into belt conveyor transfers

Shams Tamjeed Huque

University of Wollongong
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
ANALYTICAL AND NUMERICAL INVESTIGATIONS INTO BELT CONVEYOR TRANSFERS

by

Shams Tamjeed Huque
Bachelor of Engineering (Mechanical), Graduate Certificate in Business

A thesis submitted in fulfilment of the requirements for the award of the degree

Doctor of Philosophy

from

University of Wollongong
Faculty of Engineering, School of Mechanical, Materials & Mechatronic Engineering

December 2004
Abstract

The mining industry is an immense field with granular flows (e.g. coal) occurring in numerous areas. Accordingly there are a significant number of problems that arise, with a great number requiring solutions that are difficult to achieve by conventional industrial means. The modelling of granular flow using the numerical technique known as Distinct Element Method (DEM) has great potential in industry, particularly for solving transfer point problems. The advantage of DEM for transfer applications is that an entire system can be simulated using the single numerical technique, as opposed to the existing situation where a myriad of design techniques are required (e.g. analytical solution for one component and graphical solution for another). DEM involves solving the equations of motion for the trajectory/rotation/orientation of each particle and modelling each collision between particles and between particles and boundary objects.

The research presented a comprehensive overview of all of the available analytical processes available to design chute system components, such as material trajectory calculations, impact plate models, and gravity flow chute aspects. To the author’s knowledge, this was the first such review in the literature. A detailed comparison between the most common analytical design methods was conducted, recommendations for which method to use were established, and areas of weakness and further study were identified. It was found that: most areas apart from the prediction of the initial material discharge and trajectory were lacking in design method; often the few available design methods for chute components, such as impact plates and gravity flow chutes, were lengthy and often difficult to implement.

A computer code was developed during the course of the research to simulate bulk material using the Distinct Element Method (DEM). A background into DEM and its application to modelling material flow at transfer points was presented. One major drawback found in the recent transfer studies was the lack of quantification of the velocity distributions obtained using the DEM against existing analytical design theories. Contour coloured particulate simulations have also been recently produced by a number of companies (e.g. Overland Conveyor Company Inc.) however the flow
regimes observed from the relevant simulation screen captures were not adequately scrutinised. All the DEM mathematical formulation and numerical methods utilised for the current work were comprehensively described and relevant computational aspects were also detailed, such as the coding of a pre-processor and post-processor allowing animations of the DEM particles. A series of tests was conducted to gauge the validity of the computer code, and this produced satisfactory results.

The DEM code was also applied to simulate two separate transfers originally designed by The Gulf Group using their EasyFlow™ technology, and currently in operation in industry in Lithgow, Australia. By observing animation screen captures the current research confirmed the advantage of maintaining particle speed through the system when using curved chute elements. Quantitative DEM velocity data were compared to the velocities predicted by the most favourable analytical methods. It was found that DEM generally produced velocity regimes close to those of the analytical techniques. However it also provided the additional benefit of providing data on stream characteristics such as impact forces and velocities in the vicinity of the hood and spoon elements, which are difficult to examine in detail using analytical methods. An analysis of the micro dynamics of individual particles also identified that there are differing scales of contact during the flow through a chute. Although the analytical methods do not allow closer scrutiny of the flowing stream at the micro scale, they have the advantage of providing much faster solutions and are good for chute designs for free flowing material transfers.
Disclaimer

I, Shams T. Huque, declare that this thesis, submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Mechanical, Materials & Mechatronic Engineering, Faculty of Engineering, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged, as defined by the University’s policy on plagiarism, and that I may have received assistance from others on style, presentation and further formatting aspects. The document has not been submitted for qualifications at any other academic institution.

Shams T. Huque

16 December 2004
The author would like to specially thank his supervisor through the four years, Associate Professor Peter Wypych for his unflagging support and endorsement of the research. His expertise, advice and general supervisory role allowed the project to progress at moments of stagnation and indecision, and he always had time to discuss any issues raised, both professional and personal.

The author would like to thank Michael Walsh, Projects Manager of Engineering Services, ANSTO (Australian Nuclear Science and Technology Organisation), for his helpful discussions on general computational coding aspects and debugging, and his time spent with the author on the project. This was of significant assistance during the course of the project. Thanks to Allan Tapp of Stephen-Adamson Inc., Canada, for providing a complimentary copy of the most recent CEMA manual, and copies of a number of technical papers that were difficult to locate or obtain. Without his support in this regard the literature overview of recent DEM transfer station studies in Chapter Four would not have been as comprehensive.

Appreciation is given to the University of Wollongong for providing significant financial support by means of an Australian Postgraduate Award (APA), and also to Gulf Conveyor Holdings Pty. Ltd. who provided both a top-up scholarship and funds for project consumables. Thanks must be given to key contacts at Gulf, including Chief Executive Officer Colin Benjamin for initialising the project, and General Managers Andrew Burleigh (Operations), Dennis Pomfret (Engineering), Lena Plambeck (Technology and Systems), and Peter Jones (Engineering), and Quality Manager Paul Bryant for insightful discussions regarding industrial aspects of the project.

Thanks to Anton Fuchs of Graz University of Technology, Austria, for translating an important paper for the literature review from German to English and Tajeen Huque of University of Wollongong for typing the translated document. Thanks are also extended to the technical staff of the Key Centre for Bulk Solids and Particulate Technologies, for their thoughts in all particulate testing discussion and assistance in the initial
experimental developments. Thanks to the staff of the Engineering Enquiries Centre for always assisting with non-research related issues, and the Inter-Library Loans personnel for tracking down many articles and conference proceedings from overseas institutions.

Finally, the author would like to thank his parents Sobhana and Sheikh Huque, and his sister Tajeen Huque for giving their support throughout the candidature.
Contents

Abstract i
Disclaimer iii
Acknowledgements iv
Contents vi
Appendices xii
Tables xiii
Figures xiv
Nomenclature xii

Chapter One

INTRODUCTION

1.1 A Current Challenge in Materials Handling 1
1.2 An Introduction to Transfer Chutes 2
1.3 Background and Objectives 3
1.4 Thesis Overview 4

Chapter Two

TRANSFER CHUTE LITERATURE OVERVIEW

2.1 Introduction 7
2.2 Attributes of Conveyor-to-Conveyor Transfers 7
2.3 Problems Occurring At Transfer Points 8
2.4 Material Discharge and Trajectory Techniques 9
2.4.1 Introduction to Material Discharge 9
2.4.2 Material Height Calculations 11
2.4.3 Method of Korzen 16
2.4.4 Method of Booth 19
2.4.5 Method of Golka 20
2.4.6 Method of Dunlop 21
2.4.7 Method of Goodyear 21
2.4.8 Method of M.H.E.A. (Early Version) 22
Contents

2.4.9 Method of C.E.M.A. 22
2.4.10 Method of M.H.E.A. (Updated Version) 23
2.4.11 Method of BTR 24
2.4.12 Method of BFGoodrich 25
2.4.13 Method of S-A 66 25
2.5 Material Impact and Flow – Upper Chute Element 25
 2.5.1 Introduction to the Upper Chute Element 25
 2.5.2 Cohesive Impact upon a Flat Plate 28
 2.5.3 Non-Cohesive Impact upon a Flat Plate 30
 2.5.4 Sliding Flow upon a Flat Plate 32
 2.5.5 Impact upon a Curved Plate 32
2.6 Material Free Fall 37
 2.6.1 Air Entrainment Overview 37
 2.6.2 Air Resistance and Drag Overview 39
2.7 Material Impact and Flow – Lower Chute Element 41
 2.7.1 Material Impact Aspects 41
 2.7.2 Gravity Flow Chute Overview 43
 2.7.3 Method of Roberts 46
 2.7.3.1 Straight Chutes 46
 2.7.3.2 Curved Chutes 47
 2.7.3.3 Lumped Parameter Model 47
 2.7.3.4 Continuity of Flow 49
 2.7.3.5 Drag Force 50
 2.7.3.6 Equivalent Friction Coefficient 50
 2.7.3.7 Stream Thickness Variation 52
 2.7.3.8 Approximate Closed Form Solutions of Flow Equations 53
 2.7.4 Method of Korzen 56
 2.7.4.1 Methodology 56
 2.7.4.2 Multi-Step Approximation Procedure 58
2.8 Further Comments and Summary 60

Chapter Three
CHUTE DESIGN TECHNIQUE COMPARISONS

3.1 Introduction 61
3.2 Material Discharge and Trajectories 61
 3.2.1 Overview of Trajectory Design Methods 61
3.2.2 Spreadsheet Setup 63
3.2.3 Comparisons for High-Speed Conveying Conditions 65
3.2.4 Comparisons for Slow-Speed Conveying Conditions 67
3.2.5 Material Discharge and Trajectory Summary 71

3.3 Material Impact and Flow – Upper Chute Element 72
3.3.1 Spreadsheet Setup 72
3.3.2 Comparisons for Impact upon a Flat Plate 73
3.3.3 Comparisons for Impact upon a Curved Plate 75
3.3.4 Materials Impact and Flow Summary – Upper Chute Element 77

3.4 Material Impact and Flow – Lower Chute Element 77
3.4.1 Material Impact Overview 77
3.4.2 Gravity Flow Chute Comparisons 79
3.4.3 Material Impact and Flow Summary – Lower Chute Element 82

3.5 Overall Comments and Summary 83

Chapter Four
DISTINCT ELEMENT METHOD (DEM)

4.1 Introduction 86
4.1.1 DEM Overview 87
4.1.2 DEM Background 88
4.1.3 Merits and Drawbacks of DEM 88

4.2 Applications of Distinct Element Method 90
4.2.1 DEM Applied to Transfer Chute Analysis 91
4.2.2 Summary and Proposed Area of Investigation 95

4.3 Mathematical Formulation for Distinct Element Method 96
4.3.1 Particle–Particle Definitions and Interactions 96
4.3.2 Particle-Boundary Definitions and Interactions 99
4.3.2.1 Straight Line Boundaries 100
4.3.2.2 Curved Line Boundaries 101
4.3.2.3 Particle – Boundary Interactions 104
4.3.3 Further Boundary Aspects 109
4.3.3.1 Modelling Moving Boundaries 109
4.3.3.2 Periodic Boundaries 109

4.3.4 Governing Equations 110
4.3.5 Modelling of Contact Forces 112
Chapter Five
NUMERICAL METHODS AND COMPUTATION ASPECTS

5.1 Introduction 132
5.2 Numerical Methods 132
5.2.1 Background 132
5.2.2 Implicit, Explicit, and Implicit-Explicit Methods 133
5.2.3 Implementation of Numerical Method 134
5.3 Contact Detection Scheme 136
5.3.1 Particle – Particle Contacts 136
5.3.1.1 Neighbourhood List Approach 137
5.3.1.2 Zoning / Boxing Algorithm 138
5.3.1.3 Recent Advances in Contact Detection 140
5.3.2 Particle – Wall Contacts 140
5.3.3 Implementation of Particle – Particle Contact Detection 140
5.3.4 Implementation of Particle – Boundary Contact Detection 144
5.4 Selection of Critical Time Step 146
5.4.1 Time Step Selection in Literature 146
5.4.2 Selection of Critical Time Step for Current Work 150
5.5 Computation Aspects 151
5.5.1 Pre – Processing Module 151
5.5.2 DEM Calculation Module 154
5.5.3 Post – Processing Module 154

Chapter Six
QUALITATIVE TESTING OF DEM COMPUTER CODE

6.1 Introduction 158
6.2 Single Contact Tests 158
6.2.1 Normal contact between particles 160
6.2.2 Normal contact between particle and wall 160
6.2.3 Normal contact with rotation, particle – particle 162
6.2.4 Normal contact with rotation, particle – wall 162
6.3 Multiple Contact Tests 166
 6.3.1 Influence of Normal and Tangential Stiffness 167
 6.3.2 Influence of Coefficient of Restitution and Friction 171
6.4 System Stability Check 171
6.5 Summary 179

Chapter Seven
INTRODUCTION TO INDUSTRY CHUTE SYSTEMS

7.1 Introduction 181
7.2 Selection and Overview of Chute Systems 181
7.3 System Setup 182
 7.3.1 DEM Processes 182
 7.3.2 Analytical Processes 188
7.4 Parameter Selection 190
7.5 Animating the Particulate Flow 193
 7.5.1 Software Set-Up 193
 7.5.2 Problems Encountered and Solutions 194
7.6 Preliminary Observations and Comments 195
 7.6.1 Boundary Set-up 195
 7.6.2 Sensitivity to System and Material Parameters 196
 7.6.3 Velocity Profile Set-up 199
 7.6.4 Time to Reach Steady-State Condition 202
 7.6.5 Influence of Particle Size Distribution 205
 7.6.6 General Comments Regarding Analytical Set-Up 205
7.7 Summary 208

Chapter Eight
ANALYSIS OF INDUSTRY CHUTE SYSTEMS

8.1 Introduction 209
8.2 Analysis of Velocity Distributions using Contours 209
 8.2.1 Hood-Spoon Transfer Chute 210
 8.2.2 Single Hood Transfer Chute 214
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3</td>
<td>Detailed Quantitative Analysis of Velocity Distributions</td>
<td>214</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Hood-Spoon Transfer Chute</td>
<td>218</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Single Hood Transfer Chute</td>
<td>223</td>
</tr>
<tr>
<td>8.4</td>
<td>Micro Dynamics of Discrete Particles</td>
<td>227</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Hood-Spoon Transfer Chute</td>
<td>228</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Single Hood Transfer Chute</td>
<td>231</td>
</tr>
<tr>
<td>8.4.3</td>
<td>Conclusions</td>
<td>233</td>
</tr>
<tr>
<td>8.5</td>
<td>Additional Quantitative Considerations</td>
<td>233</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Elastic Potential Energies</td>
<td>240</td>
</tr>
<tr>
<td>8.5.2</td>
<td>Inter-Particle Forces</td>
<td>240</td>
</tr>
<tr>
<td>8.5.3</td>
<td>Particulate Torques</td>
<td>241</td>
</tr>
<tr>
<td>8.6</td>
<td>Further areas of consideration</td>
<td>241</td>
</tr>
<tr>
<td>8.6.1</td>
<td>Wear upon Chute and Conveyor Belt</td>
<td>242</td>
</tr>
<tr>
<td>8.6.2</td>
<td>Induced and Entrained Air Flow</td>
<td>242</td>
</tr>
<tr>
<td>8.6.3</td>
<td>Material Degradation</td>
<td>242</td>
</tr>
<tr>
<td>8.6.4</td>
<td>Chute Support Structure and Receiving Belt Aspects</td>
<td>243</td>
</tr>
<tr>
<td>8.7</td>
<td>Summary</td>
<td>243</td>
</tr>
</tbody>
</table>

Chapter Nine

Conclusions and Future Work

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Application of DEM in Industry</td>
<td>245</td>
</tr>
<tr>
<td>9.2</td>
<td>Remarks on Current DEM Work</td>
<td>245</td>
</tr>
<tr>
<td>9.3</td>
<td>Conclusions</td>
<td>247</td>
</tr>
<tr>
<td>9.4</td>
<td>Future Work</td>
<td>248</td>
</tr>
</tbody>
</table>

Chapter Ten

References and Bibliography

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>References</td>
<td>252</td>
</tr>
<tr>
<td>10.2</td>
<td>Bibliography</td>
<td>278</td>
</tr>
</tbody>
</table>
Appendices

Appendix I
PROJECT GANTT CHARTS
I.1 Overview

Appendix II
EXPANDED IMPLEMENTATION OF TFD MODEL
II.1 Introduction
II.2 Implementation

Appendix III
EXAMPLES OF INPUT FILES
III.1 Parameter Input File
III.2 Boundary Input File

Appendix IV
ASSEMBLY DRAWINGS OF GULF TRANSFERS
IV.1 Overview

Appendix V
SCREEN CAPTURES OF ENTIRE CALCULATION SPACE
V.1 Overview
Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 4.1</td>
<td>Formation of coordinates in text file containing boundary data</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Sorting results for cell structure and particle configurations as shown in Figure 5.3 (a)</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>Sorting results for boundary configurations as shown in Figure 5.5</td>
</tr>
<tr>
<td>Table 5.3</td>
<td>Layout of text file produced by Display III™ module</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>Common parameters used for the single contact tests</td>
</tr>
<tr>
<td>Table 6.2</td>
<td>General parameters used for the multiple contact tests</td>
</tr>
<tr>
<td>Table 7.1</td>
<td>Values used for the dimensions indicated in Figures 7.5 and 7.6</td>
</tr>
<tr>
<td>Table 7.2</td>
<td>Material properties and conveying conditions for each transfer</td>
</tr>
<tr>
<td>Table 7.3</td>
<td>Initial DEM parameters used for simulating each transfer system</td>
</tr>
</tbody>
</table>
Figures

Figure 2.1 Schematic of conveyor-to-conveyor transfer
Figure 2.2 Load cross-section area on a 2 idler belt
Figure 2.3 Load cross-section area on a 3 idler belt
Figure 2.4 Load cross-section area on a flat belt.
Figure 2.5 Cross-section of troughed belt
Figure 2.6 (a) Impact Plate (b) Rock box
Figure 2.7 Schematic diagram of bulk solids behaviour upon impact with the rebound board/'Hood' section
Figure 2.8 Cohesive impact upon a flat plate
Figure 2.9 Non-cohesive impact upon a flat plate
Figure 2.10 Impact upon a curved plate
Figure 2.11 Defining the corrected angle of entry when examining impact upon a curved plate
Figure 2.12 Inverted curved chute model (adapted from Roberts 2001)
Figure 2.13 Schematic of a falling material stream involving air entrainment and fugitive dust generation. In addition to directing the flow, curved ‘Hood’ and ‘Spoon’ elements minimise dust emissions
Figure 2.14 (a) Impact model proposed by Roberts (2004); (b) impact model proposed by Stuart-Dick & Royal (1991, 1992)
Figure 2.15 Top and section views of material impact and flow upon V-shaped load out floor plate
Figure 2.16 Modes of chute flow: (a) fast flow, ideal case; (b) fast flow, general case (adapted from Roberts 1998b)
Figure 2.17 Chute flow model (adapted from Parbery & Roberts 1986). The dimensions in the figure have been exaggerated for clarity
Figure 2.18 Pressure distributions around chute boundary and cross-section of flowing stream (adapted from Roberts & Scott 1981). The dimensions in the figure have been exaggerated for clarity
Figure 2.19 Top view of the parameters needed for the design of a converging chute (adapted from Roberts 2004). The parameter $B = B_0 - 2\tan \alpha$ represents the width of the elemental mass at any distance s from the chute entry.

Figure 2.20 Conditions of motion of the stream of bulk material in a curved chute (adapted from Korzen 1984a)

Figure 3.1 Separation angle α_d vs. Belt Velocity v_b for the major discharge prediction techniques

Figure 3.2 Trajectories generated by the various methods at $v_b = 6 \text{ ms}^{-1}$

Figure 3.3 Trajectories generated by methods S1, S2, S3 and S10 at $v_b = 1 \text{ ms}^{-1}$

Figure 3.4 Trajectories generated by methods S4, S5, S6, and S10 at $v_b = 1 \text{ ms}^{-1}$

Figure 3.5 Trajectories generated by methods S7, S8, S9 and S10 at $v_b = 1 \text{ ms}^{-1}$

Figure 3.6 Analysis of material impact upon flat plate

Figure 3.7 Analysis of material impact upon curved plate

Figure 3.8 Ratio between particle velocity after impacting two half angles to particle velocity after one impact (adapted from Stuart-Dick & Royal 1991, 1992)

Figure 3.9 Variation of horizontal and vertical components of velocity and total velocity along the chute

Figure 3.10 Variation of cross-sectional area and stream thickness ratio along the chute

Figure 4.1 Attributes of the various classes of discrete element methods (Bardet 1998)

Figure 4.2 Definition of the quantities used for description of the impact

Figure 4.3 Overlap between colliding particles with radii R_i and R_j

Figure 4.4 A representation of a straight line in the system

Figure 4.5 A representation of an arc in the system

Figure 4.6 Overlap between a particle and a vertical line

Figure 4.7 Overlap between a particle and a non-vertical line

Figure 4.8 Overlap between a particle and an arc

Figure 4.9 (a) An assembly of spherical particles with periodic boundaries at left and right hand sides; (b) Introduction of particle i' at left hand periodic boundary as particle i leaves right hand periodic boundary (adapted from Jensen et al. 1999).
Figure 4.10 Schematic of partially-latching spring model (Walton & Braun 1986b)

Figure 4.11 Schematic of force-displacement curve used to describe inelastic normal direction forces acting between two colliding spheres (adapted from Walton & Braun 1986b)

Figure 4.12 Elastic-frictional contact: TFD curve for constant F_n and varying F_t showing hysteresis loop and residual displacement (adapted from Vu-Quoc et al. 2004)

Figure 4.13 Direction change of tangential force (adapted from Vu-Quoc et al. 2000)

Figure 5.1 Successive steps in the implementation of the leap-frog algorithm. The stored variables are in grey boxes (adapted from Allen & Tildesley 1987)

Figure 5.2 Diagram illustrating the conventions chosen for the Verlet method

Figure 5.3 Schematics of: (a) cell structure with arbitrary particle configurations, and (b) cell structure with coloured cells showing target cells to be searched

Figure 5.4 (a) particle numbering at start of program (b) particle numbering during contact detection subroutine

Figure 5.5 Searching through boundary contacts

Figure 5.6 One-dimensional vibration system

Figure 5.7 Flowchart of pre-processing module used to create input data files

Figure 5.8 Flowchart for DEM calculation module

Figure 5.9 Flowchart of post-processing module that creates the visualisations

Figure 6.1 Normal contact between: (a) particle and wall; (b) particle and particle

Figure 6.2 Normal contact with rotation between: (a) particle and wall; (b) particle and particle

Figure 6.3 Vertical position (a) and normal force (b) for particle-particle contact with $\epsilon = 0.3$ and $\epsilon = 0.6$

Figure 6.4 Vertical position (a) and normal force (b) for particle-wall contact with $\epsilon = 0.3$ and $\epsilon = 0.6$

Figure 6.5 Angular position for particle-particle contact with (a) $\mu = 0.5$ and (b) $\mu = 0.9$, and overlap ratio $\xi = 0.1 \%$, $\xi = 1.0 \%$, and $\xi = 10.0 \%$
Figure 6.6 Angular velocity for particle-particle contact with (a) $\mu = 0.5$ and (b) $\mu = 0.9$, and overlap ratio $\xi = 0.1\%$, $\xi = 1.0\%$, and $\xi = 10.0\%$

Figure 6.7 Friction force for particle-particle contact with (a) $\mu = 0.5$ and (b) $\mu = 0.9$, and overlap ratio $\xi = 0.1\%$, $\xi = 1.0\%$, and $\xi = 10.0\%$

Figure 6.8 Angular position for particle-wall contact with (a) $\mu = 0.5$ and (b) $\mu = 0.9$, and overlap ratio $\xi = 0.1\%$, $\xi = 1.0\%$, and $\xi = 10.0\%$

Figure 6.9 Angular velocity for particle-wall contact with (a) $\mu = 0.5$ and (b) $\mu = 0.9$, and overlap ratio $\xi = 0.1\%$, $\xi = 1.0\%$, and $\xi = 10.0\%$

Figure 6.10 Friction force for particle-wall contact with (a) $\mu = 0.5$ and (b) $\mu = 0.9$, and overlap ratio $\xi = 0.1\%$, $\xi = 1.0\%$, and $\xi = 10.0\%$

Figure 6.11 Hour-glass with $1nK = 0$ and $tK = 1 \times 10^5$ Nm$^{-1}$ at (a) $t = 0.00$ s; (b) $t = 0.10$ s

Figure 6.12 Hour-glass with $1nK = 0$ and $tK = 1 \times 10^7$ Nm$^{-1}$ at (a) $t = 0.00$ s; (b) $t = 0.10$ s

Figure 6.11 Hour-glass with $1nK = 0$ and $tK = 1 \times 10^5$ Nm$^{-1}$ at (c) $t = 0.20$ s; (d) $t = 0.30$ s

Figure 6.12 Hour-glass with $1nK = 0$ and $tK = 1 \times 10^7$ Nm$^{-1}$ at (c) $t = 0.20$ s; (d) $t = 0.30$ s

Figure 6.11 Hour-glass with $1nK = 0$ and $tK = 1 \times 10^5$ Nm$^{-1}$ at (e) $t = 0.40$ s; (f) $t = 0.50$ s

Figure 6.12 Hour-glass with $1nK = 0$ and $tK = 1 \times 10^7$ Nm$^{-1}$ at (e) $t = 0.40$ s; (f) $t = 0.50$ s

Figure 6.13 Hour-glass with $\varepsilon = 0.9$ and $\mu = 0.1$ at (a) $t = 0.00$ s; (b) $t = 0.10$ s

Figure 6.14 Hour-glass with $\varepsilon = 0.1$ and $\mu = 0.9$ at (a) $t = 0.00$ s; (b) $t = 0.10$ s

Figure 6.13 Hour-glass with $\varepsilon = 0.9$ and $\mu = 0.1$ at (c) $t = 0.20$ s; (d) $t = 0.30$ s

Figure 6.14 Hour-glass with $\varepsilon = 0.1$ and $\mu = 0.9$ at (c) $t = 0.20$ s; (d) $t = 0.30$ s

Figure 6.13 Hour-glass with $\varepsilon = 0.9$ and $\mu = 0.1$ at (c) $t = 0.40$ s; (f) $t = 0.50$ s

Figure 6.14 Hour-glass with $\varepsilon = 0.1$ and $\mu = 0.9$ at (c) $t = 0.40$ s; (f) $t = 0.50$ s

Figure 6.15 Distribution of particles within rectangular shaped boundary for numerical stability checking at times (a) $t = 0.0$ s (b) $t = 0.5$ s (c) $t = 1.0$ s (d) $t = 1.5$ s (e) $t = 2.0$ s (f) $t = 5.0$ s

Figure 6.16 Progressive readings of each of the four system energy components at each time step at time intervals of (a) $t = 0.0$ s – 0.5 s (b) $t = 0.5$ s – 1.0 s (c) $t = 1.0$ s – 1.5 s (d) $t = 1.5$ s – 5.0 s

Figure 6.17 Total energy of the system plus each individual energy component from $t = 0.0$ s to $t = 2.0$ s
Figure 7.1 Image depicting hood-spoon transfer chute system – view one
Figure 7.2 Image depicting hood-spoon transfer chute system – view two
Figure 7.3 Image depicting single hood transfer chute system – view one
Figure 7.4 Image depicting single hood transfer chute system – view two
Figure 7.5 A schematic of the first transfer to be examined, comprising a hood-spoon chute system. The heavy dotted lines represent the periodic boundaries.
Figure 7.6 The second transfer to be examined is composed of a single hood to redirect material flow. The heavy dotted lines represent the periodic boundaries.
Figure 7.7 Schematic showing the numbering of design areas for hood-spoon system
Figure 7.8 Schematic showing the numbering of design areas for single hood system
Figure 7.9 Particle size distributions for hood-spoon transfer chute and single hood transfer chute
Figure 7.10 (a) Initial spoon location and (b) Final spoon location
Figure 7.11 Average velocity components in x and y directions for first transfer with $\varepsilon = 0.2$ and $\varepsilon = 0.5$
Figure 7.12 Average velocity components in x and y directions for second transfer with $\varepsilon = 0.2$ and $\varepsilon = 0.5$
Figure 7.13 Average velocities in the x and y directions for $\Delta t = 1 \times 10^{-5}$ s and $\Delta t = 1 \times 10^{-6}$ s for the first transfer chute system comprising a hood and spoon
Figure 7.14 Average velocities in the x and y directions for $\Delta t = 1 \times 10^{-5}$ s and $\Delta t = 1 \times 10^{-6}$ s for the first transfer chute system comprising a single hood
Figure 7.15 Average velocities of all particles for transfer chute simulation comprising hood and spoon, from (a) $t = 0.00$ s to $t = 2.00$ s (b) $t = 2.00$ s to $t = 5.00$ s
Figure 7.16 Average velocities of all particles for transfer chute simulation comprising single hood, from (a) $t = 0.00$ s to $t = 2.00$ s (b) $t = 2.00$ s to $t = 5.00$ s
Figure 7.17 Kinetic energy in each transfer chute system from $t = 0.0$ to $t = 5.0$ s. The terms ‘old’ and ‘new’ in the legend refer to the earlier or latter periodic boundary locations used respectively for the first transfer system.

Figure 7.18 Screen captures at (a) $t = 2.0$ s, (b) $t = 3.0$ s, (c) $t = 4.0$ s, and (d) $t = 5.0$ s illustrating the particle size distribution for the first transfer.

Figure 7.19 Screen captures at (a) $t = 2.0$ s, (b) $t = 3.0$ s, (c) $t = 4.0$ s, and (d) $t = 5.0$ s illustrating the particle size distribution for the second transfer.

Figure 8.1 Screen captures that show the particulate speed distribution for the first transfer system at times of (a) $t = 2.0$ s, (b) $t = 3.0$ s, (c) $t = 4.0$ s, and (d) $t = 5.0$ s.

Figure 8.2 Snapshots of the hood-spoon transfer system showing horizontal velocity components at times of (a) $t = 2.0$ s, (b) $t = 3.0$ s, (c) $t = 4.0$ s, and (d) $t = 5.0$ s.

Figure 8.3 Snapshots of the hood-spoon transfer system showing vertical velocity components at times of (a) $t = 2.0$ s, (b) $t = 3.0$ s, (c) $t = 4.0$ s, and (d) $t = 5.0$ s.

Figure 8.4 Screen captures that show the particulate speed distribution for the second transfer system at times of (a) $t = 2.0$ s, (b) $t = 3.0$ s, (c) $t = 4.0$ s, and (d) $t = 5.0$ s.

Figure 8.5 Snapshots of the single hood transfer system showing horizontal velocity components at times of (a) $t = 2.0$ s, (b) $t = 3.0$ s, (c) $t = 4.0$ s, and (d) $t = 5.0$ s.

Figure 8.6 Snapshots of the single hood transfer system showing vertical velocity components at times of (a) $t = 2.0$ s, (b) $t = 3.0$ s, (c) $t = 4.0$ s, and (d) $t = 5.0$ s.

Figure 8.7 Particle position and horizontal & vertical components of velocity calculated using the analytical methods described in Section 7.3.2 for hood-spoon transfer chute. The numbers correspond to those shown in Figure 7.7.

Figure 8.8 Snapshot of particle position, and horizontal and vertical components of velocity at (a) $t = 2.00$ s and (b) $t = 3.00$ s for hood-spoon transfer chute.

Figure 8.8 Snapshot of particle position, and horizontal and vertical components of velocity at (c) $t = 4.00$ s and (d) $t = 5.00$ s for hood-spoon transfer chute.
Figure 8.9 Particle position and horizontal & vertical components of velocity calculated using the analytical methods described in Section 7.3.2 for single hood transfer chute. The numbers correspond to those in Figure 7.8.

Figure 8.10 Snapshot of particle position, and horizontal and vertical components of velocity at (a) \(t = 2.00 \) s and (b) \(t = 3.00 \) s for single hood transfer chute

Figure 8.10 Snapshot of particle position, and horizontal and vertical components of velocity at (c) \(t = 4.00 \) s and (d) \(t = 5.00 \) s for single hood transfer chute

Figure 8.11 Initial positions of selected particles in feeder for (a) hood-spoon transfer and (b) single hood transfer

Figure 8.12 Two randomly selected particles from the hood-spoon DEM simulation with positions, and horizontal and vertical velocity components. The particle numbers examined are (a) \(i = 26 \) and (b) \(i = 1116 \)

Figure 8.13 Two randomly selected particles from the single hood DEM simulation with positions, and horizontal and vertical velocity components. The particle numbers examined are (a) \(i = 377 \) and (b) \(i = 801 \)

Figure 8.14 Screen captures that show the elastic potential energy (or strain energy) possessed by the particles for the first transfer system at times of (a) \(t = 2.0 \) s, (b) \(t = 3.0 \) s, (c) \(t = 4.0 \) s, and (d) \(t = 5.0 \) s.

Figure 8.15 Screen captures that show the inter-particle forces (including gravity) possessed by the particles for the force transfer system at times of (a) \(t = 2.0 \) s, (b) \(t = 3.0 \) s, (c) \(t = 4.0 \) s, and (d) \(t = 5.0 \) s.

Figure 8.16 Screen captures that show the torques possessed by the particles for the first transfer system at times of (a) \(t = 2.0 \) s, (b) \(t = 3.0 \) s, (c) \(t = 4.0 \) s, and (d) \(t = 5.0 \) s.

Figure 8.17 Screen captures that show the elastic potential energy (or strain energy) possessed by the particles for the second transfer system at times of (a) \(t = 2.0 \) s, (b) \(t = 3.0 \) s, (c) \(t = 4.0 \) s, and (d) \(t = 5.0 \) s.

Figure 8.18 Screen captures that show the inter-particle forces (including gravity) possessed by the particles for the second transfer system at times of (a) \(t = 2.0 \) s, (b) \(t = 3.0 \) s, (c) \(t = 4.0 \) s, and (d) \(t = 5.0 \) s.

Figure 8.19 Screen captures that show the torques possessed by the particles for the second transfer system at times of (a) \(t = 2.0 \) s, (b) \(t = 3.0 \) s, (c) \(t = 4.0 \) s, and (d) \(t = 5.0 \) s.
Figure I.1 Initial Gantt Chart
Figure I.2 Final Gantt Chart

Figure II.1 Direction change of tangential force (adapted from Vu-Quoc et al. 2000)
Figure II.2 Decomposition of the incremental tangential displacement $\Delta \delta_r^N$ at time t^N (adapted from Vu-Quoc et al. (2000))

Figure IV.1 Image depicting hood-spoon transfer chute system
Figure IV.2 Image depicting hood-spoon transfer chute system
Figure IV.3 Image depicting hood-spoon transfer chute system
Figure IV.4 Image depicting hood-spoon transfer chute system
Figure IV.5 Image depicting hood-spoon transfer chute system
Figure IV.6 Image depicting single hood transfer chute system
Figure IV.7 Image depicting single hood transfer chute system
Figure IV.8 Image depicting single hood transfer chute system
Figure IV.9 Image depicting single hood transfer chute system
Figure IV.10 Assembly drawing for hood-spoon transfer chute
Figure IV.11 Assembly drawing for single hood transfer chute

Figure V.1 Capture of entire calculation space for first transfer taken at $t = 2.0$ s
Figure V.2 Capture of entire calculation space for first transfer taken at $t = 3.0$ s
Figure V.3 Capture of entire calculation space for first transfer taken at $t = 4.0$ s
Figure V.4 Capture of entire calculation space for first transfer taken at $t = 5.0$ s
Figure V.5 Capture of entire calculation space for second transfer taken at $t = 2.0$ s
Figure V.6 Capture of entire calculation space for second transfer taken at $t = 3.0$ s
Figure V.7 Capture of entire calculation space for second transfer taken at $t = 4.0$ s
Figure V.8 Capture of entire calculation space for second transfer taken at $t = 5.0$ s
Nomenclature

The author attempted to use symbols as close to common interpretations as possible in the thesis (for example, \(g \) is frequently used to represent gravitational acceleration and is therefore used similarly here). However due to this and the number of symbols required, some overlapping did occur. Therefore in the following nomenclature the symbol \(\{ ♣ \} \) represents the interpretation as used in Chapters Two and Three, and \(\{ ♠ \} \) represents the interpretation as used in Chapters Four and Five.

ARABIC LETTERS

\(a \{ ♣ \} \) Acceleration along the tangent \(= \ddot{s} = \dot{v} \) (ms\(^{-2}\)); \(\{ ♠ \} \) Index allowing for differing loading and unloading paths \{NFD model\}

\(A \) Total cross-sectional area of bulk solid in flowing stream (m\(^2\))

\(A_0 \) Initial cross-sectional area of the flowing stream at the point of entry of the chute (m\(^2\))

\(A_{1,2} \) Cross-sectional areas \{rectangular portion, circular segment\} of bulk solid in flowing stream (m\(^2\))

\(A_d \) Cross-sectional area of material stream at exit to ‘flow-round’ zone (m\(^2\))

\(A_b \) Area of trapezoidal \{3 idler system\} or triangular \{2 idler system\} area (m\(^2\))

\(A_{BC} \) Non-dimensional cross-sectional area factor

\(ac \) Y-axis intercept of the perpendicular to the chord between successive points on the arc

\(A_i \) Cross-sectional area of free-falling stream (m\(^2\))

\(am \) Gradient of the perpendicular to the chord between successive points on the arc

\(A_p \) Cross-sectional area of material stream at entrance to ‘flow-round’ zone (m\(^2\))

\(A_s \) Area of segment (m\(^2\))

\(A_T \) Total area of material on the belt in the troughed portion (m\(^2\))
Nomenclature

\[a_w\] Proportionality factor for air drag

\[A(\kappa)\] Function that describes cross-sectional area of flow stream on impact plate (m²)

\[b\] \{♣\} Width of belt (m); \{♠\} Fixed parameter, often set to 1/3 to agree with Mindlin’s frictional sphere theory {TFD model}

\[B\] Width of rectangular chute (m)

\[B_0\] Width of entry for converging chute (m)

\[b_s\] Mean width of material stream on the belt prior to discharge (m)

\[b_t\] Thickness of belt (m)

\[bw_2\] Width of material on flattened belt \{troughed belts only\} (m)

\[c\] \{♣\} Cohesive stress (kNm²); \{♠\} Y-intercept of straight line

\[C\] Constant of integration

\[C_{1,2,\&3}\] Constants used during calculation of the load cross-sectional area

\[C_{grav}\] Distance from belt surface to centre of mass (m)

\[C_I\] Inverse velocity Coulomb drag coefficient

\[C_s\] Intergranular stress constant (s²m⁻²)

\[D\] Horizontal distance from discharge point to impact point (m)

\[D_{base}\] Base particle diameter (m)

\[d_{ij}\] Sum of contacting sphere radii (m)

\[D_{max}\] Maximum particle diameter (m)

\[D_{min}\] Minimum particle diameter (m)

\[D_{mono}\] Mono-sized particle (m)

\[dn\] Displacement between particles (m)

\[D_{var}\] Variance between particle sizes (m)

\[dx\] Horizontal displacement difference between particles (m)

\[dy\] Vertical displacement difference between particles (m)

\[E\] Young’s modulus (Nm⁻²)

\[E_{ij}\] Equivalent elastic modulus (Nm⁻²)

\[E_T\] Total energy of a particle (J)

\[E_{1,2}\] Parameters in Equation (2.116)

\[f_0\] Friction value of motion at the initial point of the chute

\[F_D\] Drag force (N)

\[F_n\] Normal force in Distinct Element Model (N)
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_N</td>
<td>Normal force in gravity flow chute theory (N)</td>
</tr>
<tr>
<td>$F_{n\text{max}}$</td>
<td>Maximum force ever experienced by the contact (N)</td>
</tr>
<tr>
<td>F_t</td>
<td>Tangential force in Distinct Element Model (N)</td>
</tr>
<tr>
<td>F_{t^*}</td>
<td>Value of the tangential force F_t whenever the magnitude changes from increasing to decreasing, or vice versa (N)</td>
</tr>
<tr>
<td>F_v</td>
<td>Velocity dependent drag force (N)</td>
</tr>
<tr>
<td>f_ϕ</td>
<td>Friction value of motion at any angle ϕ around chute</td>
</tr>
<tr>
<td>F_μ</td>
<td>Coulomb frictional drag force (N)</td>
</tr>
<tr>
<td>F_{mag}</td>
<td>Magnitude of tangential force (N)</td>
</tr>
<tr>
<td>F_{x_i}</td>
<td>Horizontal component of tangential force (N)</td>
</tr>
<tr>
<td>$F_{x_i,u}$</td>
<td>Horizontal component of unit vector (N)</td>
</tr>
<tr>
<td>F_{y_i}</td>
<td>Vertical component of tangential force (N)</td>
</tr>
<tr>
<td>$F_{y_i,u}$</td>
<td>Vertical component of unit vector (N)</td>
</tr>
<tr>
<td>g</td>
<td>Acceleration due to gravity (ms$^{-2}$)</td>
</tr>
<tr>
<td>G</td>
<td>Shear {or rigidity} modulus (Nm$^{-2}$)</td>
</tr>
<tr>
<td>G_{ij}</td>
<td>Equivalent shear modulus (Nm$^{-2}$)</td>
</tr>
<tr>
<td>h</td>
<td>Material drop height (m)</td>
</tr>
<tr>
<td>H</td>
<td>Flowing stream thickness (m)</td>
</tr>
<tr>
<td>H_0</td>
<td>Initial stream thickness (m)</td>
</tr>
<tr>
<td>$H_{1,2}$</td>
<td>Stream thickness {rectangular portion, circular segment} (m)</td>
</tr>
<tr>
<td>h_a</td>
<td>Thickness of material stream at exit of ‘flow-round’ zone (m)</td>
</tr>
<tr>
<td>h_b</td>
<td>Thickness of material on belt prior to discharge (m)</td>
</tr>
<tr>
<td>h_p</td>
<td>Thickness of material stream entering ‘flow-round’ zone (m)</td>
</tr>
<tr>
<td>h_ϕ</td>
<td>Stream thickness at any angle ϕ around curved chute (m)</td>
</tr>
<tr>
<td>I</td>
<td>Moment of inertia (kgm2)</td>
</tr>
<tr>
<td>K</td>
<td>Constant of proportionality usually between 1.11 – 1.42</td>
</tr>
<tr>
<td>k_{EO}</td>
<td>Effective linear pressure gradient down the wall surface at zero velocity</td>
</tr>
<tr>
<td>k_i</td>
<td>Number of particles in contact with particle i</td>
</tr>
<tr>
<td>k_{max}</td>
<td>Largest inter-particle spring stiffness (Nm$^{-1}$)</td>
</tr>
<tr>
<td>K_n</td>
<td>Some normal stiffness coefficient (Nm$^{-1}$)</td>
</tr>
<tr>
<td>K_{n1}</td>
<td>Normal stiffness coefficients for the (loading stage) (Nm$^{-1}$)</td>
</tr>
<tr>
<td>K_{n2}</td>
<td>Normal stiffness coefficients for the (unloading stage) (Nm$^{-1}$)</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>K_t</td>
<td>Some tangential stiffness coefficient (Nm$^{-1}$)</td>
</tr>
<tr>
<td>K_t^0</td>
<td>Initial tangential stiffness (Nm$^{-1}$)</td>
</tr>
<tr>
<td>K_T</td>
<td>Effective incremental tangential stiffness (Nm$^{-1}$)</td>
</tr>
<tr>
<td>k_v</td>
<td>Coefficient relating lateral pressure at the chute wall to the average normal pressure during flow</td>
</tr>
<tr>
<td>L</td>
<td>Distance between periodic boundaries (m)</td>
</tr>
<tr>
<td>L_{BC}</td>
<td>Contact perimeter of material burden on discharging belt (m)</td>
</tr>
<tr>
<td>m</td>
<td>Particle mass (kg) / gradient of straight line</td>
</tr>
<tr>
<td>m</td>
<td>Mass flow rate of material (kgs$^{-1}$)</td>
</tr>
<tr>
<td>m_{ij}</td>
<td>Effective mass of particles i and j acting in series (kg)</td>
</tr>
<tr>
<td>m_{min}</td>
<td>Mass of smallest particle in system (kg)</td>
</tr>
<tr>
<td>n</td>
<td>Parameter that is a function of the total number of particles in the system</td>
</tr>
<tr>
<td>N</td>
<td>Number of particle in system</td>
</tr>
<tr>
<td>N_{grid}</td>
<td>User defined term that specifies the maximum number of particles to be allowed in one cell</td>
</tr>
<tr>
<td>n_s</td>
<td>Number of time steps between searches</td>
</tr>
<tr>
<td>P_n</td>
<td>Pressure in normal direction (kPa)</td>
</tr>
<tr>
<td>Q_m</td>
<td>Flowrate (th$^{-1}$)</td>
</tr>
<tr>
<td>r</td>
<td>Non-dimensional parameter representing ratio between outside and central idler contact</td>
</tr>
<tr>
<td>R</td>
<td>${♣}$ Pulley radius; radius of curvature of curved chute (m); ${♠}$ Radius of sphere (m)</td>
</tr>
<tr>
<td>R_0</td>
<td>Radius of the conveying stream midpoint at the start of the chute (m)</td>
</tr>
<tr>
<td>r_1</td>
<td>Radius of interior sphere in Verlet neighbour list (m)</td>
</tr>
<tr>
<td>r_2</td>
<td>Radius of exterior sphere in Verlet neighbour list (m)</td>
</tr>
<tr>
<td>R_b</td>
<td>Distance from centre of discharge pulley to outer surface of belt (m)</td>
</tr>
<tr>
<td>R_c</td>
<td>Radius of curvature of discharge trajectory (m)</td>
</tr>
<tr>
<td>R_e</td>
<td>Distance from discharge pulley centre to material centre of mass (m)</td>
</tr>
<tr>
<td>R_{fz}</td>
<td>Radius of the ‘flow-round’ zone (m)</td>
</tr>
<tr>
<td>R_{ij}</td>
<td>Relative contact curvature (m)</td>
</tr>
<tr>
<td>R_m</td>
<td>Distance from centre of pulley to top of material upon belt (m)</td>
</tr>
<tr>
<td>R_{min}</td>
<td>Radius of smallest sized particle in the system (m)</td>
</tr>
<tr>
<td>R_p</td>
<td>Radius of curved impact plate (m)</td>
</tr>
</tbody>
</table>
Nomenclature

s Displacement along tangent (m)
S \{♣\} Distance between end of ‘flow-round zone’ and bottom of the plate (m); \{♠\} An empirically determined model parameter
$S_{\text{flowround}}$ Portion of curved impact plate in contact with material stream (m)
S_p Length of impact plate \{flat or curved\} (m)
s_v Vertical fall distance (m)
t Time (s)
U_{max} Maximum particle velocity (ms$^{-1}$)
v Velocity \{= s \} (ms$^{-1}$)
v_0 \{♣\} Initial velocity of the flowing stream at the point of entry of the chute (ms$^{-1}$); \{♠\} Relative velocity of approach (ms$^{-1}$)
$v_{0,S}$ Velocity of stream parallel to chute surface after impact (ms$^{-1}$)
v_1^* Velocity of stream before impact (ms$^{-1}$)
v_2^* Velocity of stream after the first deflection (ms$^{-1}$)
v_3^* Velocity of stream after second deflection (ms$^{-1}$)
v_4^* Velocity of stream after impact for a single deflection (ms$^{-1}$)
v_a Exit velocity of material leaving ‘flow-round’ zone (ms$^{-1}$)
v_b Conveyor belt velocity (ms$^{-1}$)
v_c Critical velocity (ms$^{-1}$)
v_d Discharge velocity (ms$^{-1}$)
v_e Exit velocity from bottom of flat impact plate (ms$^{-1}$)
v_{00} Vertical component of bulk solid discharging velocity (ms$^{-1}$)
v_i Velocity of impact with the curved chute (ms$^{-1}$)
v_j Velocity of stream before impact (ms$^{-1}$)
v_P Material velocity at entrance to ‘flow-round’ zone (ms$^{-1}$)
v_t Tangential velocity; velocity of load stream centre (ms$^{-1}$)
$v(\kappa)$ Velocity of stream at angle κ in ‘flow-round’ zone (ms$^{-1}$)
$v(\psi)$ Discharge velocity at angle ψ (ms$^{-1}$)
v_∞ Terminal velocity (ms$^{-1}$)
x General x-coordinate (m)
\dot{x} Velocity in x-direction (ms$^{-1}$)
\ddot{x} Acceleration in x-direction (ms$^{-2}$)
Nomenclature

- **x1**: First x-coordinate of line / arc (m)
- **x_{1,2,3,4}**: Four x-coordinates representing a boundary (m)
- **x2**: Second x-coordinate of line / arc (m)
- **x3**: Third x-coordinate of line / arc (m)
- **x4**: Fourth x-coordinate of line / arc (m)
- **Xc**: X-coordinate of arc centre (m)
- **x_h**: Height of material bed on belt (m)
- **X_{len}**: Width of calculation space (m)
- **y**: General y-coordinate (m)
- **y\dot{}**: Velocity in y-direction (ms\(^{-1}\))
- **y\ddot{}**: Acceleration in y-direction (ms\(^{-2}\))
- **y1**: First y-coordinate of line / arc (m)
- **y_{1,2,3,4}**: Four y-coordinates representing a boundary (m)
- **y2**: Second y-coordinate of line / arc (m)
- **y3**: Third y-coordinate of line / arc (m)
- **y4**: Fourth y-coordinate of line / arc (m)
- **Yc**: Y-coordinate of arc centre (m)
- **Y_{len}**: Height of calculation space (m)
- **y(x)**: Function that describes the trajectory of free fall (m)
- **z_{1,2,3,4}**: Four z-coordinates representing a boundary (m)

GREEK LETTERS

- **\(\alpha\)**: Angle of convergence for chute side walls (°)
- **\(\alpha_b\)**: Conveyor belt inclination angle before discharge (°)
- **\(\alpha_d\)**: Bulk solid stream discharge angle measured from the vertical (°)
- **\(\alpha_r\)**: Angle at which material starts to slip on discharge pulley (°)
- **\(\beta\)**: Impact plate inclination angle (°)
- **\(\beta_i\)**: Angle of idler roll (°)
- **\(\beta_v\)**: Viscous drag coefficient (s\(^{-1}\))
- **\(\Delta m\)**: Elementary mass of bulk solid (kg)
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta_n)</td>
<td>Normal overlap {relative displacement of the centres of the two spheres} (m)</td>
</tr>
<tr>
<td>(\dot{\delta}_n)</td>
<td>Rate of change of the distance between centres of the colliding particles (m/s)</td>
</tr>
<tr>
<td>(\delta_{00})</td>
<td>Residual displacement after complete unloading {the value where the unloading curve goes to zero} (m)</td>
</tr>
<tr>
<td>(\delta_t)</td>
<td>Residual tangential displacement (m)</td>
</tr>
<tr>
<td>(\Delta r_x)</td>
<td>Horizontal component of change in relative position vector (m)</td>
</tr>
<tr>
<td>(\Delta r_y)</td>
<td>Vertical component of change in relative position vector (m)</td>
</tr>
<tr>
<td>(\delta_t)</td>
<td>Tangential overlap between particles (m)</td>
</tr>
<tr>
<td>(\Delta t)</td>
<td>Time step (s)</td>
</tr>
<tr>
<td>(\Delta t_c)</td>
<td>Critical time step (s)</td>
</tr>
<tr>
<td>(\Delta \delta_i)</td>
<td>Incremental tangential displacement (m)</td>
</tr>
<tr>
<td>(\Delta \delta x_i)</td>
<td>Horizontal component of relative surface displacement vector (m)</td>
</tr>
<tr>
<td>(\Delta \delta y_i)</td>
<td>Vertical component of relative surface displacement vector (m)</td>
</tr>
<tr>
<td>(\varepsilon)</td>
<td>Coefficient of restitution</td>
</tr>
<tr>
<td>(\phi)</td>
<td>{♣} Wall friction angle used in gravity flow chute work {= \tan^{-1}\mu} (°); {♠} Angle from horizontal {line} / angle from horizontal of the perpendicular to the chord between successive points {arc} (°)</td>
</tr>
<tr>
<td>(\Phi)</td>
<td>Poisson’s ratio ((\nu)) dependent parameter for Rayleigh Wave speed critical time step determination</td>
</tr>
<tr>
<td>(\Phi_{ij})</td>
<td>Angle of the particle with reference to the arc during contact (°)</td>
</tr>
<tr>
<td>(\phi_w)</td>
<td>Kinematic angle of wall friction between material and conveyor belt (°)</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>Specific weight of the material being conveyed {= \rho g} (kNm(^{-3}))</td>
</tr>
<tr>
<td>(\gamma_1)</td>
<td>Start angle of an arc (°)</td>
</tr>
<tr>
<td>(\gamma_2)</td>
<td>Finish angle of an arc (°)</td>
</tr>
<tr>
<td>(\gamma_n)</td>
<td>Damping constant</td>
</tr>
<tr>
<td>(\varphi)</td>
<td>Chute slope angle for Korzen’s work {= 90 - \theta_j} (°)</td>
</tr>
<tr>
<td>(\varphi_0)</td>
<td>Angle of chute to horizontal at impact (°)</td>
</tr>
<tr>
<td>(\kappa)</td>
<td>Angle of impact to horizontal {for flat plates}; angle the tangent to the end of the plate makes with the horizontal {for curved plates} (°)</td>
</tr>
</tbody>
</table>
\[\lambda \] Angle of surcharge of material (°)

\[\lambda_{bottom} \] Angle tangent to end of curved plate makes with the vertical (°)

\[\mu \] \{♠\} Coefficient of internal friction used in flat impact plate model \(= \tan \zeta \); coefficient of wall friction used in gravity flow chute work \(= \tan \phi \); \{♣\} Coefficient of friction

\[\mu_E \] Equivalent coefficient of friction

\[\mu_k \] Kinematic friction coefficient between material and belt \(= \tan \phi_w \)

\[\mu_s \] Static friction coefficient

\[\nu \] Poisson’s ratio

\[\theta \] \{♣\} Chute slope angle for Roberts’ work \(= dy/dx \) (°); \{♠\} General rotation (radians)

\[\dot{\theta} \] Angular velocity (rads\(^{-1}\))

\[\ddot{\theta} \] Angular acceleration (rads\(^{-2}\))

\[\theta_i \] Angle of incoming stream relative to chute surface (°)

\[\theta_r \] Angle after impact of material stream relative to chute surface (°)

\[\theta_3 \] Angle of incoming stream relative to chute surface \{for double deflection of material stream\} (°)

\[\theta_a \] Angle from horizontal made by incoming material stream to impact plate (°)

\[\theta_c \] Corrected angle of entry of material on a curved impact plate (°)

\[\theta_{co} \] Optimum cutoff angle for curved chute (°)

\[\theta_f \] Limiting angle for maintenance of ‘fast’ flow (°)

\[\theta_i \] Instantaneous angle of impact (°)

\[\theta_s \] Angle opposite arc length \(S_{flowround} \) (°)

\[\rho \] \{♣\} Bulk density (kgm\(^{-3}\)); \{♠\} Particle density (kgm\(^{-3}\))

\[\sigma_i \] Normal stress corresponding to conditions on the belt prior to discharge (kPa)

\[\sigma_a \] Adhesive stress (kPa)

\[\tau \] Shear stress (kPa)

\[\omega \] Angular velocity

\[\xi \] \{♣\} Percentage admissible relative deviation for the estimation of the k-th value of \(\nu_a \) \{impact plate model\}; tolerated relative deviation for the
estimation of the k-th value of \(v(\varphi) \) \{gravity flow chute model\}; \{♠\}
Percentage overlap or overlap ratio of two contacting particles
\(\psi \) Wrap angle around discharge pulley (°)
\(\zeta \) Effective angle of internal friction (°)

Subscripts

- \(i \) Particle number \(i \)
- \(j \) Particle / boundary number \(j \)
- \(\parallel \) Denotes parallel component
- \(\perp \) Denotes perpendicular component
- \(old \) Denotes previous time step

Superscripts

- \(N \) Time \(t^N \)
- \(N+1 \) Time \(t^{N+1} \)
- \(N-1 \) Time \(t^{N-1} \)
- \(N+1/2 \) Time \(t^{N+1/2} \)
- \(N-1/2 \) Time \(t^{N-1/2} \)
- \(\text{line} \) Represents line
- \(\text{arc} \) Represents arc

Vector Quantities

- \(F_n \) Normal contact force
- \(F_t \) Tangential contact force
- \(g \) Gravitational vector
- \(i \) Denotes x-direction
- \(j \) Denotes y-direction
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbf{k})</td>
<td>Denotes z-direction</td>
</tr>
<tr>
<td>(\hat{\mathbf{k}}_{ij})</td>
<td>Unit vector in normal direction between particles</td>
</tr>
<tr>
<td>(\mathbf{r})</td>
<td>Position vector for a particle</td>
</tr>
<tr>
<td>(\mathbf{r}_{ij})</td>
<td>Relative position vector between two particles</td>
</tr>
<tr>
<td>(\mathbf{R})</td>
<td>Radius vector</td>
</tr>
<tr>
<td>(\hat{\mathbf{t}}_{ij})</td>
<td>Unit vector in the direction of the virgin loading</td>
</tr>
<tr>
<td>(\mathbf{T}_{ij})</td>
<td>Torque</td>
</tr>
<tr>
<td>(\mathbf{v})</td>
<td>Velocity vector for a particle</td>
</tr>
<tr>
<td>(\mathbf{x})</td>
<td>Velocity vector in x-direction</td>
</tr>
<tr>
<td>(\mathbf{y})</td>
<td>Velocity vector in y-direction</td>
</tr>
<tr>
<td>(\Delta \mathbf{r}_{ij})</td>
<td>Change in the relative position vector during the last time step</td>
</tr>
<tr>
<td>(\Delta \mathbf{\delta}_r)</td>
<td>Relative surface displacement vector</td>
</tr>
</tbody>
</table>