Learning through construction of interactive multimedia

Christine Anne Brown
University of Wollongong, cbrown@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/theses

University of Wollongong
Copyright Warning
You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material.

Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
Learning Through Construction of Interactive Multimedia

A Thesis submitted in fulfilment of the requirements for the award of the degree:

Doctor of Philosophy

from

University of Wollongong

by

Mrs Christine Anne Brown
BvetSci (Hons), MVetSci, Dip Ed

Faculty of Education

September, 1996

Accompanied by the CD, "THE GARDEN®."
Declaration

Except where stated in the text, and in the list of acknowledgments, this thesis represents the original work of the author, and the material has not been submitted for the degree to any other university.

Mrs Christine Anne Brown
Summary

This study examines the potential for the merger between computer mediated educational technology and the classroom, within the context of a constructivist philosophy. Parallel representations of the findings have been produced—a traditional text thesis, and a multimedia representation, *The Garden*, which accesses a CD also titled *THE GARDEN*, containing the full data set. Through a personal account of the teacher as researcher and designer in two class settings, with subjects at primary school and tertiary level, as students and student teachers, focused on the construction process or product development, the researcher demonstrates the benefits of learning through construction of interactive multimedia. This constructionist activity engages students for sustained periods of time, permits them to express their creativity and individuality, promotes higher order thinking and cognitive flexibility, and demands increased student reflection and communication of strategies.

A framework is presented to relate the activities of teaching and learning to interactive multimedia when the student occupies the role of software user, or software producer. For meaningful learning, students do not have to produce a 'product' aimed at a specific target audience. There are many benefits to be derived from allowing them to construct interactive multimedia using simple cognitive tools in a playful and grounded manner. This permits students to explore expression using multiple forms of representation and multiple representations. It also allows two different thinking styles—the bricoleur and the planner, to process learning materials in entirely different ways, even though the ultimate products may bear a striking resemblance.

Nine key study findings are presented, relating to constructivism/constructionism from the perspectives of teacher, researcher and designer, and the framework of interactive multimedia and teaching/learning. Implications are discussed for teachers, designers and researchers. Learners are challenged to develop a more self-regulated, lifelong approach to learning. The process focus on the construction of personal information systems permits the expert practice of sustained contact with an evolving body of knowledge. The product focus refines multimedia publishing skills. Standardised tests which maintain fixed curricula are seen as a major limit to the growth of social acceptance of the constructivist philosophy as a foundation for flexible education.
Acknowledgments

I begin my acknowledgments with special thanks to my husband, Peter, and my sons Rhoderick and Alexander. You are three loving and supportive individuals with keen intellects. Your contribution to the pool of ideas has been through your gift of years of active listening and meaningful feedback. I doubt this study would have happened without your encouragement and faith.

Thank you to my supervisors—Barry Harper and John Hedberg, for the initial confidence you expressed in me, and your willingness to give me enough rope to hang myself and do things my own way. I am sure many times you wondered what would emerge from this study.

Thank you to all my work associates in the Faculty of Education—Grant Farr, for hours of technical discussion, problem-solving and your meticulous methodology with laboratory management; David Green— for some wonderful deep discussions and your introduction to that special person called Vygotsky; Matthew Fifield— for the patience, technical competence and perfect manners you modelled; Brian Ferry— for the wonderful teaching strategies, warm caring attitude to students and real team teaching you evoked; Carla Fasano— for your moral support, mental challenges and deep discussions on learning and research; Lorraine Morris, Margaret Cameron and Lyn Middleton— for your moral and administrative support, and willingness to listen; fellow post-graduates, who increased in number over the years— for your questions on methodology and analysis, which prompted reflection and synthesis; Deirdre Armstrong— for your caring attitude and enthusiasm for the creative enterprise; Julie Gordon— for your wonderful probing questions, enthusiasm, support through parallel interests, and amazing patience proof-reading the thesis. Special thanks must go to Alan Williamson, of UWS Macarthur, for your wonderful modelling and discussion of ethnographic studies.

Thank you to all those in project teams for the chance to experience the design and production process in a range of circumstances, for a range of target groups— The teams on Investigating Lake Iluka, the Journalism project. The Virtual Teaching Hospital, Negotiating Naturally, the VET Project and Exploring The Nardoo. There are far too many of you to mention each one personally, without the risk of leaving someone special out. You all threw challenges which helped develop problem-solving strategies and creative thinking. You permitted the experience of a range of roles in varied teams, and tolerated my infuriating habit of talking too much when multiple perspectives emerged.
Thank you to all those wonderful students and fellow teachers in the gifted and talented class 5/6M. The computer component of the class would not have run without you—Sue Macdonald— for your loving, wise and gentle nature with students and fellow workers; Lara Strassburger— for your moral, technical and physical support, and great listening skills; Chester Meurant— for your video precision and parental dedication to the class; Carol Bridge— for your willingness to share your computer laboratory; Terry Burns— for the use of your own computer; Geoff Kervin— for the use of your school. Thank you students, for your inspiration and love of learning.

Thank you to my fellow teacher John Hedberg, my technical support Matthew Fifield, and all the creative pre-service primary school teachers who shared the new experience of multimedia production and construction in the EDUM courses. Your willingness to stretch your own boundaries, to collaborate and most of all to enjoy learning was the inspiration for hours of background work.

Study is not an isolated experience. Thank you to my dear family, friends and neighbours, for your tolerance and understanding when I was busy these last four years—Mum and Dad—for the hours you have listened on the phone and the subsequent phone bills; Peter's Mum — I know Dad would have been proud of this accomplishment; Marlene Knight— for your creative excitement, positive energy and hours of discussion on concept development; Anita and Gerry Bakkers— for your neighbourly concern, friendship and script review; Sylvia and Mark Clissold— for your ever present focus on the deeper meaning of experience and true friendship; Margaret and George Mills— for your family concern, moral support and interest; finally to Emma Frearson and family— for the love and joy you have brought into our household via Rhoderick.

There are always so many people to thank at the end of a postgraduate degree, and to date my supervisors have received only moderate acclaim. Their true role was to emerge in the final stages of this study. Thank you sincerely Barry for your wonderful technical expertise, keen analytical mind and positive practical approach to the technology— your efforts and influence have largely emerged in The Garden. Thank you sincerely John for your abstract conceptualising and thorough editing skills— your efforts and influence have largely emerged in the thesis.
Table of Contents

Chapter Page

Declaration i
Summary ii
Acknowledgments iii
Table of Contents v
List of Tables x
List of Figures xii

1. Study Context and Methodology 1
 Introduction 1
 1.1 Goals and Representations of the Study 4
 1.2 Low Power Objective— The Full Study Overview 4
 1.3 Key Influences in the Study 6
 1.3.1 Theory 6
 1.3.2 People 10
 1.3.3 Situation 10
 1.4 Classroom Experiences 12
 1.4.1 Anticipated Similarities Between EDUM and G&T Classes 13
 1.4.2 Anticipated Differences Between EDUM and G&T Classes 14
 1.4.3 The Nature of Primary Data 14
 1.5 The Development of Unique Multimedia Tools for Data Processing 15
 1.5.1 Theme Identification from the Narrative Diary 15
 1.5.2 Choice of Integrating Metaphor for the Study 16
 1.5.3 Relationships among Content, Objects and Information Access 19
 1.6 Research Functions of the Multimedia Construction Process 21
 1.7 Synergy in Parallel Development of CD and Thesis 22
 1.8 The CD — The Garden 22
 1.9 High Power Objective— The Thesis Structure 23

2. The Typical Classroom Environment 26
 Introduction 26
 2.1 Current Goals for Education 27
 2.2 Aspects of the Typical Learning Environment 29
 2.2.1 Teaching Philosophy— Constructivism and its Precursors 30
2.2.2 Needs of the Learner—Knowledge 37
2.2.3 Characteristics of the Learner 44
 Learning Style 44
 Motivation 50
 Self-Regulation 51
 Expertise 53
2.2.4 Available Resources 57
2.2.5 Learning Tasks 59
 Cooperative/Collaborative Learning Tasks 61
2.2.6 Support Tools 64
 Metacognition 64
 Metacognition as a Learner Variable or Outcome 65
 Cognitive Strategies 67
 Feedback 70
2.3 The Shaping Role of Evaluation 71
2.4 The Teacher Role and Outcomes in a Constructivist Classroom 73

3. **The Addition of Computer-Mediated Technology** 76

 Introduction 76

3.1 Technology & One Toolmaker—The Educational Software Designer 77

3.2 The Influence of Learning Theory on Educational Software Design 81
 3.2.1 The Influence of Behaviourism 81
 3.2.2 The Influence of Cognitive Science and Information Processing 81
 3.2.3 The Constructivist-ID2 Controversy 83

3.3 Designer Control and the Teacher/Designer Relationship 85
 3.3.1 Independence — Designer Assumes the Role of Teacher 86
 3.3.2 Collaboration — Designer Works Alongside Teacher 90
 3.3.3 Interdependence — Designer and Teacher are Synonymous 92

3.4 Key Variables which alter the Nature of a Constructivist IT Classroom 95
 3.4.1 Reason for Multimedia Production 95
 3.4.2 Background knowledge in a subject 95
 3.4.3 Stage of Production within a course 96
 3.4.4 Nature of Task - Outcome Driven or Open 96
 3.4.5 Available Facilities 97
 3.4.6 Expertise of teacher and support staff 97
4. **The Classroom Context**

Introduction 99

4.1 Rationale for the Personal Account of Researcher as Teacher 99

4.2 Researcher as Teacher and Designer 101

4.3 Basis of Course Content and Structure 104

4.4 Class EDUM—Preservice Primary Teachers 108

EDUM 221—Information Technologies and Multimedia 108

4.4.1 Context 108

4.4.2 Background 110

4.4.3 Resources 110

4.4.4 Anticipated Process Outcomes 112

EDUM 212—Information Technology Development Project 113

4.4.5 Context 113

4.4.6 Background 114

4.4.7 Resources 114

4.4.8 Anticipated Process Outcomes 116

4.5 Class G&T—Gifted and Talented Primary Students 117

4.5.1 Context 117

4.5.2 Background 118

4.5.3 Resources 120

4.5.4 Anticipated Process Outcomes 126

4.6 Data Collection Process Across Classes 127

4.6.1 Stage in the Course 127

4.6.2 Type of Data Required 129

4.6.3 Unusual Classroom Circumstances 130

4.7 Data Analysis and Presentation 131

4.8 Anticipated Similarities and Differences 131

5. **The Classroom Experiences**

Introduction 134

5.1 Class EDUM—Pre-Service Primary Teachers 135

EDUM 221—Information Technologies and Multimedia 135

5.1.1 Student Preferences 135

5.1.2 Process and Products 137

5.1.3 The Influence of Resources 145

5.1.4 Process Outcomes, Opinions and Reflections 148

EDUM 212—Information Technology Development Project 153

5.1.5 The Process of Group Collaboration 153

5.1.6 Student Thoughts and Ideas 159
5.1.7 The Individuality of Major Projects 163
5.1.8 Resources and Process Outcomes 166

5.2 Class G&T—Gifted and Talented Primary Students 171
5.2.1 Class Process 172
5.2.2 Products 179
5.2.3 Patterns of Resource Use 180
5.2.4 Opinions, Process Outcomes and Reflections 187

5.3 Emerging Similarities and Differences Across Classes 195

6. An Interactive Multimedia Learning Framework 200
Introduction 200

6.1 General Framework for Multimedia and Learning 201

6.2 Model A—Teaching/Learning Through Use of Interactive Multimedia Products 202

6.3 Model B—Teaching/Learning About Interactive Multimedia Production 209

6.4 Model C—Teaching/Learning With Interactive Multimedia Construction Tools 227

6.5 Comparison of Models 242

6.6 Roles of the Teacher in a Constructivist IT Classroom 243

6.7 The Roles of the Student in a Constructivist IT Classroom 245

7. Conclusions and Implications 247
Introduction 247

7.1 Key Findings of the Study 248

7.2 Implications of the Research Findings 265
7.2.1 Implications for Teachers 265
7.2.2 Implications for Designers 267
7.2.3 Implications for Researchers 269
7.2.4 Challenges for Learners 272

7.3 Probable Major Limit to Growth 273
Standardised Tests 274

7.4 The Self-Regulated IT Literate Learner of the Future 274

Bibliography 275
Appendices

A Sample Class Activity Sheet—EDUM 221
B Resource Format Sheet—EDUM 221
C Sample From a Script Document—EDUM 212
D Sample Skill Sheet—G&T Class
E Alphabet Brainstorming—G&T Class
F Brainstorming with Interrogatives—G&T Class
G Scanned Image List—G&T Class
H Pre-Course Questionnaire—EDUM 221
I Post-Course Questionnaire—EDUM 221
J Interview Questions—EDUM 212 Class
K Interview Questions for Sue—G&T Class
L Class Process—EDUM 221
M HyperCard “Show and Tell”—EDUM 221
N Class Process—EDUM 212

Maps of The Garden

1 The Garden Gate
2 Help—The Action
3 The PhD Walk
4 Tourguide for the PhD Walk
5 Information on a Key Garden Object
6 Presentation Overview
7 Annual Signpost
8 Philosophy Clouds
9 Future Scenarios
10 Recommendation for the Future
11 The Gardener’s Diary
12 The EDUM Tree
13 EDUM Class Notes
14 EDUM Profiles
15 EDUM Balloon 3
16 The G&T Bed
17 The Toolshed
18 Toolshed Inventory
19 Tool Selection
20 The Theory Pool
21 Annotated Bibliography
22 The Resource Sprinkler
List of Tables

<table>
<thead>
<tr>
<th>Table No</th>
<th>Title of Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Metaphors for the Mind</td>
<td>32</td>
</tr>
<tr>
<td>2.2</td>
<td>Some Personality Models of Learning Style</td>
<td>45</td>
</tr>
<tr>
<td>2.3</td>
<td>Some Information Processing Models of Learning Style</td>
<td>46</td>
</tr>
<tr>
<td>2.4</td>
<td>Some Social Interaction Models of Learning Style</td>
<td>47</td>
</tr>
<tr>
<td>2.5</td>
<td>Some Instructional Preference Models of Learning Style</td>
<td>48</td>
</tr>
<tr>
<td>2.6</td>
<td>Motivation and Approaches to Learning</td>
<td>50</td>
</tr>
<tr>
<td>2.7</td>
<td>Design Technology Challenges on an Open-Closed Continuum</td>
<td>60</td>
</tr>
<tr>
<td>3.1</td>
<td>Classification Matrix for Metacognitive Strategies in Training</td>
<td>88</td>
</tr>
<tr>
<td>4.1</td>
<td>Percentage of Articles Acknowledging Key Factors in the Acceptance of Technological Change- AECT 1953-1993</td>
<td>101</td>
</tr>
<tr>
<td>4.2</td>
<td>Number of Students from Each Contributing School</td>
<td>118</td>
</tr>
<tr>
<td>4.3</td>
<td>Computers Used by Students in the Koonawarra Laboratory for Multimedia Production and Construction</td>
<td>121</td>
</tr>
<tr>
<td>5.1</td>
<td>Location of Class Study Data Across Thesis and CD</td>
<td>134</td>
</tr>
<tr>
<td>5.2</td>
<td>Direct and Indirect Scripting Support for Students</td>
<td>157</td>
</tr>
<tr>
<td>5.3</td>
<td>Pattern of Group Project Production</td>
<td>175</td>
</tr>
<tr>
<td>5.4</td>
<td>Pattern of Teacher and Visitor Attendance in the Gifted Class</td>
<td>181</td>
</tr>
<tr>
<td>5.5</td>
<td>Pattern of Equipment Use in the Gifted Class</td>
<td>183</td>
</tr>
</tbody>
</table>
List of Tables (cond)

<table>
<thead>
<tr>
<th>Table No</th>
<th>Title of Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Cross-grid of Teaching vs Learning, Use vs Production of Interactive Multimedia</td>
<td>202</td>
</tr>
<tr>
<td>6.2</td>
<td>Proposed Models and the Teacher/Designer Relationship in Figure 3.2</td>
<td>203</td>
</tr>
<tr>
<td>6.3</td>
<td>Comparison of Resource Requirements for Classes EDUM 221 and EDUM 212</td>
<td>211</td>
</tr>
<tr>
<td>6.4</td>
<td>Comparison of Unique Processes in Classes EDUM 221 and EDUM 212</td>
<td>213</td>
</tr>
<tr>
<td>6.5</td>
<td>Comparison of Unique Outcomes in Classes EDUM 221 and EDUM 212</td>
<td>216</td>
</tr>
<tr>
<td>6.6</td>
<td>Resource Requirements for Class G&T</td>
<td>230</td>
</tr>
<tr>
<td>6.7</td>
<td>Unique Processes in Class G&T</td>
<td>231</td>
</tr>
<tr>
<td>6.8</td>
<td>Unique Outcomes in Class G&T</td>
<td>233</td>
</tr>
<tr>
<td>7.1</td>
<td>Research Strategies in the Process theme of the Gardener's Diary</td>
<td>254</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure No</th>
<th>Title of Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Relationship Between Thesis Chapters and CD The Garden</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>“PhD Walk” from The Garden</td>
<td>18</td>
</tr>
<tr>
<td>2.1</td>
<td>Factors Affecting Classroom Experiences</td>
<td>29</td>
</tr>
<tr>
<td>2.2</td>
<td>Fluid Model of Prior Knowledge</td>
<td>38</td>
</tr>
<tr>
<td>2.3</td>
<td>Conceptual Knowledge</td>
<td>39</td>
</tr>
<tr>
<td>2.4</td>
<td>Metacognitive Knowledge</td>
<td>40</td>
</tr>
<tr>
<td>2.5</td>
<td>The Construction, or Interface Plane between Prior and Knowledge and Ongoing Processing Demands</td>
<td>40</td>
</tr>
<tr>
<td>2.6</td>
<td>A Constructivist Teaching Sequence</td>
<td>74</td>
</tr>
<tr>
<td>3.1</td>
<td>The Basis of the Perspectives Interaction Paradigm</td>
<td>80</td>
</tr>
<tr>
<td>3.2</td>
<td>Relationship Between Designer Control and Teacher Involvement</td>
<td>86</td>
</tr>
<tr>
<td>3.3</td>
<td>Factors Affecting the Classroom Experience Using Software with the Designer in Control</td>
<td>87</td>
</tr>
<tr>
<td>3.4</td>
<td>Factors Affecting the Classroom Experience Using Software with the Designer and Teacher in Collaboration</td>
<td>90</td>
</tr>
<tr>
<td>3.5</td>
<td>Factors Affecting the Classroom Experience Using Software with Interdependent Designer and Teacher</td>
<td>93</td>
</tr>
<tr>
<td>5.1</td>
<td>EDUM Map Showing Class Data</td>
<td>135</td>
</tr>
<tr>
<td>5.2</td>
<td>G&T Map Showing Class Data</td>
<td>172</td>
</tr>
<tr>
<td>7.1</td>
<td>The Class Design Cycle with the G&T Students</td>
<td>266</td>
</tr>
</tbody>
</table>