Mechanism of periodic height variations along self-aligned VLS-grown planar nanostructures

Julian Steele
University of Wollongong, js598@uowmail.edu.au

Josip Horvat
University of Wollongong, jhorvat@uow.edu.au

Roger A. Lewis
University of Wollongong, roger@uow.edu.au

M Henini
University of Nottingham

D. Fan
University of Arkansas

See next page for additional authors
Mechanism of periodic height variations along self-aligned VLS-grown planar nanostructures

Abstract
In this study we report in-plane nanotracks produced by molecular-beam-epitaxy (MBE) exhibiting lateral self-assembly and unusual periodic and out-of-phase height variations across their growth axes. The nanotracks are synthesized using bismuth segregation on the GaAsBi epitaxial surface, which results in metallic liquid droplets capable of catalyzing GaAsBi nanotrack growth via the vapor-liquid-solid (VLS) mechanism. A detailed examination of the nanotrack morphologies is carried out employing a combination of scanning electron and atomic force microscopy and, based on the findings, a geometric model of nanotrack growth during MBE is developed. Our results indicate diffusion and shadowing effects play significant roles in defining the interesting nanotrack shape. The unique periodicity of our lateral nanotracks originates from a rotating nucleation "hot spot" at the edge of the liquid-solid interface, a feature caused by the relative periodic circling of the non-normal ion beam flux incident on the sample surface, inside the MBE chamber. We point out that such a concept is divergent from current models of crawling mode growth kinetics and conclude that these effects may be utilized in the design and assembly of planar nanostructures with controlled non-monotonous structure.

Keywords
grown, planar, along, variations, height, vls, periodic, mechanism, aligned, nanostructures, self

Disciplines
Engineering | Physical Sciences and Mathematics

Publication Details

Authors
Julian Steele, Josip Horvat, Roger A. Lewis, M Henini, D. Fan, Yu. I. Mazur, V G. Dorogan, P C. Grant, S.-Q Yu, and G J. Salamo

This journal article is available at Research Online: https://ro.uow.edu.au/aiimpapers/1659
Mechanism of periodic height variations along self-aligned VLS-grown planar nanostructures

J. A. Steele, a J. Horvat, a R. A. Lewis, a M. Henini, b D. Fan, c,d Yu. I. Mazur, d V. G. Dorogan, d P. C. Grant, c S.-Q. Yu c,d and G. J. Salamo d

In this study we report in-plane nanotrails produced by molecular-beam-epitaxy (MBE) exhibiting lateral self-assembly and unusual periodic and out-of-phase height variations across their growth axes. The nanotrails are synthesized using bismuth segregation on the GaAsBi epitaxial surface, which results in metallic liquid droplets capable of catalyzing GaAsBi nanotrail growth via the vapor–liquid–solid (VLS) mechanism. A detailed examination of the nanotrail morphologies is carried out employing a combination of scanning electron and atomic force microscopy and, based on the findings, a geometric model of nanotrail growth during MBE is developed. Our results indicate diffusion and shadowing effects play significant roles in defining the interesting nanotrail shape. The unique periodicity of our lateral nanotrails originates from a rotating nucleation “hot spot” at the edge of the liquid–solid interface, a feature caused by the relative periodic circling of the non-normal ion beam flux incident on the sample surface, inside the MBE chamber. We point out that such a concept is divergent from current models of crawling mode growth kinetics and conclude that these effects may be utilized in the design and assembly of planar nanostructures with controlled non-monotonous structure.

1. Introduction

The precision assembly of functional semiconductor nanostructures has received a recent explosion of interest, as they hold promise for building future electronic and photonic devices. Since it was first reported by Wagner and Ellis, the vapor–liquid–solid (VLS) mechanism has been extensively used in the synthesis of a wide variety of one-dimensional nanowires from the μm to the nm diameter range. Of particular interest are III–V compound nanowires grown by molecular-beam-epitaxy (MBE), with direct bandgap and high mobilities. GaAsBi alloys are emerging as an interesting new class of III–V semiconductor, with strong potential for the active regions in optical devices accessing longer wavelengths. Numerous models have highlighted the importance that growth chemistry and parameters have on the VLS process, with several growth modes already identified (phase transitions, diameter oscillating, kinking and crawling) as emerging from different interactions between the catalyst and underlying crystal. Nanostructures possessing non-monotonous morphological variations along the growth direction are offering new avenues for device engineering, with periodic dimensional changes of particular interest due to novel quantum confinement effects. Moreover, the formation of preferentially orientated structures are developed in parallel with advancing technological aims to employ bottom-up fabrication techniques. Nanowires which self-align on the surface could play an important role in combining the synthesis and assembly in a single step, while offering compatibility with traditional planar device structures.

In this paper, we extend the current palette of non-monotonous one-dimensional nanostructures and investigate a new type of self-aligned GaAsBi planar nanotrail exhibiting periodic changes in height along its full length. We find that an explanation for this unusual shape is outside the capacity of existing planar nanowire growth models and develop a...
more pertinent semi-empirical growth model – one that accounts for the localized adsorption of species on the droplet surface and connects them to a functional describing the rate of nucleation across an inhomogeneous liquid–solid growth interface. Our results indicate that the unusual morphology arises as a consequence of large diffusion and shadowing effects, influences that are typically avoided during nanowire growth. We conclude that these effects may actually be utilized in the controlled preparation of planar nanowires with interesting periodic structure.

2. Experimental procedure

We will define our in-plane nanostructures as nanotracks (rather than nanowires, given their unique aspect ratio; see Fig. 1 and 2). Performed in a standard Riber 32P MBE system on a GaAs (001) wafer, the sample was first heated to 610 °C for 10 minutes to desorb the native oxide layer, then a 400 nm GaAs buffer layer was grown at 580 °C and a growth rate of 1 monolayer per second. Following a 20 min growth interruption during which the sample was cooled to 325–330 °C and the growth rate lowered to ~0.1 monolayer per second, the nanotracks formed during the growth of an uncapped, 300 nm thick (001) GaAsBi film. A relatively large Bi flux was used, twice that of As, while maintaining an approximately equal flux of As and Ga. This places the growth conditions well within the Bi saturation regime, where an alloying limit is imposed by the low miscibility of Bi into GaAs. As a consequence, liquid Bi droplets form (Fig. 1(a)) through aggregation of unincorporated Bi atoms on the surface. The growth temperature is relatively low as compared with the MBE growth of other III–V compounds, however it is still well above the Ga–Bi eutectic point (222 °C) and the low melting point (as compared to other group-V metals) of pure Bi metal (271 °C).

While the local Bi droplet density varied slightly across the sample surface, the size and typical surface effects did not. Our MBE geometry consists of standard non-normal MBE effusion cells along with sample rotation to promote homogeneous epitaxial incorporation of Bi, both of which will be quantified later. The nominal bismuth concentration in the GaAs_{1-x}Bi_{x} epilayer is $x = 0.040$, determined through evaluating the photoluminescence (PL) peak energy. When compared to other droplet free locations on the sample surface, this value is found to be consistent and comparable to known Bi saturation limits for GaAs_{1-x}Bi_{x} alloys grown under similar conditions.

Electron dispersion spectroscopy (EDS) measurements indicate that Bi is successfully incorporated into the nanotracks. The extent of Bi alloying in the nanotracks is 70–80% of that incorporated into the epitaxial layer: $x_{\text{nanotrack}} = 0.028–0.032$. This interesting compositional aspect of nanotrack growth is not considered further here and is the focus of a separate investigation.

3. Results and discussion

3.1 Morphological characterization of in-plane GaAsBi nanotracks

Fig. 1(a) shows a representative scanning electron micrograph (SEM) of the GaAsBi sample surface, revealing a relatively smooth GaAsBi epitaxial growth overgrown by metallic surface droplets and the formation of in-plane nanotracks. EDS measurements indicated pure Bi droplets are formed on the GaAsBi surface (no final Ga/Bi dual composites), which is indicative of Bi-rich growth and attributed to Bi segregation. The bottom inset in Fig. 1(a) focuses on the parallel/antiparallel alignment of the nanotracks and the contrasting forms by which they can terminate; with or without the surface droplet catalyst. The pressure of Bi is high at 330 °C and a sufficiently

Fig. 1 Secondary electron SEM images of (a) GaAsBi sample surface, showing the formation of surface droplets and trailing nanotracks. The bottom inset here presents an enlargement of the SEM image and exhibits the parallel/antiparallel nature of nanotack growth, while top inset provides geometric information of relevant crystal faces relative to the [001] growth direction. (b) An alternative perspective of nanotrack formation, revealing pronounced out-of-phase height variations across the growth axes.
large Bi beam equivalent pressure (BEP) is required to avoid total evaporation of Bi droplets. If the Bi BEP drops well below the Bi desorption rate, none of the bulk Bi will remain. That many nanotracks terminate forming nanodiscs \(^{11}\) without droplets reflects a partial disruption of this fine balance, likely towards the final stages of growth.

Of one hundred nanotracks inspected, the typical lengths \((4-5 \, \mu m)\), heights \((45-55 \, nm)\), as well as the terminating nanodisc diameters \((\sim 940 \, nm)\), appear steady across the whole sample surface. Such a consistent mode of distribution indicates a uniform growth environment, as well as signifying our Bi liquid droplets necessitate a critical volume before moving. In the absence of direct observation, determining the initial time of nanotrack formation is difficult. We note that nanotracks formed early on during growth would likely exhibit an overgrown character, due to the rising (and much thicker) epitaxial layer. That all nanotracks possess comparable dimensions, and none appear to be overgrown, suggests a temporally unified deposition of the nanotracks. Further, simultaneous growth likely occurred late during MBE.

Fig. 1(b) offers a different perspective of the nanotracks. Topologically-sensitive secondary electron imaging (SEI) is employed to highlight the presence of a periodic undulation pattern seen across the nanotrack center, evidenced by image shadowing. The variation in height exhibited here is archetypal of all inspected nanotracks, a characteristic persisting along the entire nanotrack length. Another fascinating feature is the center axial line of the nanotrack. As far as we can tell, planar nanostructures (nanowires, or otherwise) demonstrating this unusual morphology are yet to be reported.

Unlike for free-standing nanowires, a unified understanding of crawling modes is not yet realized.\(^{19,25,26}\) Principally, the VLS mechanism\(^{7}\) underpins our observations of Bi droplet movement and the formation of self-aligning structures. Such VLS driven growth should not be surprising during the Bi-rich MBE of GaAsBi alloys; Schwarz et al.\(^{19}\) have calculated the stability of different modes of steady-state growth and found a uniquely broad stability range for the promotion of crawling modes, in which lateral, rather than free-standing, nanowires form. While the kinetics of VLS growth are extremely complicated, our aim is to introduce the fundamental processes in aid of interpreting our results.

With the Bi droplet in the liquid phase, the eutectic will adsorb Ga and As species from a vapor with a higher chemical potential \((\mu_v)\), relative to the liquid chemical potential \((\mu_l)\). Thus the difference in these quantities is defined as

\[
\Delta \mu_{vl} = \mu_v - \mu_l; \quad (1)
\]

where the system is said to be supersaturated (concentration of the components in the liquid phase is higher than the equilibrium concentration) for \(\Delta \mu_{vl} > 0\). In a state of supersaturation the droplet may equilibrate via an exchange at the liquid-solid interface, rather than desorbing already deposited material back into the vapor, if the chemical potential of the solid \((\mu_s)\) is lower than \(\mu_l\). In response to the concentration imbalance the droplet crystallizes material at the liquid-solid interface; an illustration of this process is provided in Fig. 3.

With a continual supply of vapor, and growth of the epilayer in
minimizes on (111)B facets, which has the lowest free energy.35

...equivalent to each other, and growth will occur where inter-

...men that the area of precipitated crystal. The increase in our nanotrack

...radian, which meets at the three phase boundary (TPB).

...a roughness that is uniformly imparted by the nanotrack. As will be illus-

...the growth direction by roughly 20% over its whole length, data for which is presented in Fig. 2(b) and (c). This is

...height and period of the Bi droplet is related to the width and position of the nanotrack; the liquid–solid interface is confined to the area of precipitated crystal. The increase in our nanotrack width is analogous to tapered nanowire which are shaped by a changing catalyst size during growth.39 Previous studies have reported an increase in droplet size during motion and this particular aspect of growth kinetics appears to define the resulting width – and, in turn, height40 – of our nanotacks.

A periodic variation in the nanotrack height appears the full length of growth, peaking both at the far left (L) and right (R) hand sides. The line height data in Fig. 2(b) and (c) best communicates this nanotrack characteristic, with T1 and T2 together exhibiting comparable periods and amplitudes. In fact, once the steady gain in height is accounted for, the rising and falling angles are found to be even, and approximately equal to 1.5°. Note that the undulation height and period exhibited on the L side (in both T1 and T2) appears more regular and cyclic. In contrast, the R side exhibits more disorder in these features. The sidewall gradients of the L and R sides also significantly differ, with a steeper lateral rise consistently seen for the L side (see Fig. 2(d)). Regarding the relative lateral position of peaks and troughs, they appear approximately out-of-phase across the nanotrack center. However, this particular morphological feature is made less distinct here due to the disorder of the R side. For reference, we point out that this growth aspect is evidently contained in the SEM data shown in Fig. 1(b).
The high aspect ratio in which Fig. 2(d) is presented \((z:x, y \approx 1:37)\) reveals a pronounced centered dip in the cross section of the nanotrack, forming an “M-shape”. The central depression in height is less defined at the beginning of the nanotrack growth (traces labeled 1), sharpening up with an increase in nanotrack height and width (traces labeled 2).

3.2 Geometric modeling of nanotrack morphology

We present now a simple geometric growth model to lend insight to our experimental observations. The numerics of the model were carried out using Matlab R2015a software.

Geometric models describing nanowire growth rates often monitor only the total rate of species arriving at the droplet surface and assume that growth at the liquid–solid interface proceeds uniformly. For a liquid droplet creating a homogeneous growth interface with the underlying crystal, it follows that lateral motion would only produce a simple and relatively featureless planar structure. To explain our interesting nanotrack morphology it is clear that a meaningful model must account for the localization of adsorbed species and an inhomogeneous growth interface. The main parameters and limiting processes of our model are summarized in Fig. 3 and are discussed in detail below.

We consider a rigid circular liquid–solid interface of radius \(R\) and, by studying key supply restrictions, form a dynamic functional describing the nucleation rate over its area, \(\Delta\). Central to the model are the two different modes of species supply: (i) direct impingement from a rotating non-normal beam-like vapor source (creating angle \(\theta\) with the \(z\)-axis), which is shadowed by the 3D droplet surface, and (ii) diffusion from various paths across the solid-state to reach the moving droplet. For simplicity, we only consider mode (i) to be dynamic since it must account for a constantly changing azimuth angle, \(\alpha\). It follows that a steady-state solution may be estimated to account for diffusion, mode (ii), relative to the lateral droplet velocity, \(v_{||}\) (see Fig. 3).

Our model reduces the supply problem to a single type of limiting growth species, the arrival of which at the liquid droplet surface will help to define the nucleation rate at the liquid–solid interface. For the synthesis of III–V semiconductor nanowires (planar or vertical) this is not an oversimplification, given that group-III Ga species presumably limit growth kinetics. In this way, only a single set of \(\theta\) and \(\alpha\) values are required.

3.2.1 Theoretical consideration. The vapor flux can impinge onto the substrate, the nanotrack sidewall and surface, as well as directly onto the liquid droplet surface. The coordinate-dependent concentrations of stationary adatoms on the crystal substrate \((n_x)\) and the nanotrack sidewall \((n_t)\) surfaces obey the diffusion equations

\[
D_x \Delta n_x + \Phi \cos(\theta) = \frac{n_x}{\tau_x} \tag{2}
\]

\[
D_t \frac{d^2 n_t}{dz^2} + \Phi \sin(\theta) = \frac{n_t}{\tau_t} \tag{3}
\]

Here \(\Delta\) is the 2D in-plane Laplace operator, \(D_x, D_t\) are the diffusion coefficients (with units of \(\text{m}^2\,\text{s}^{-1}\)) for adatoms on the substrate and sidewalls, respectively. The second terms in these equations define the arrival rate of adatoms from the impinging ion beam flux \(\Phi\) (incident at angle \(\theta\) to the surface normal), while \(\tau_x\) and \(\tau_t\) are the effective lifetimes of diffusing adatoms on the substrate and nanotrack sidewalls, respectively. The numerical values of \(\tau_x\) and \(\tau_t\) (with units of \(s\)) are principally governed by the rates of surface nucleation. We assume that the surface diffusion process (scheme 7 and 8 in Fig. 3; first terms in eqn (2) and (3) possesses radial symmetry. Symmetry then dictates that the growth chronology will critically depend on the magnitudes of the adatom diffusion lengths on the epilayer surface

\[
\lambda_x = \sqrt{D_x \tau_x}, \tag{4}
\]

and on the nanotrack sidewall surface

\[
\lambda_t = \sqrt{D_t \tau_t}. \tag{5}
\]

Important to our model are simply the lifetimes and diffusion lengths of adatoms on the crystal surfaces, which are set relative to the droplet speed, \(v\), using a scaling factor. There will be large difference between these two diffusion lengths; the solid-state reaction on the epilayer (MBE) will create a surface which is more atomically flat and less defective than the highly faceted nanotrack surface. After considering rates of impingement, we proceed to flatten the diffusion path of adatoms into two dimensions and simply consider a high diffusion barrier \((\lambda_t < \lambda_x)\) imposed by the rough nanotrack crystal surface, of length \(h\), in the \(x-y\) plane. This diffusion barrier also exists in the trailing droplet path.

For the impinging flux of the droplet surface, a simplified hemispherical geometry \(\Phi\) (droplet wetting angle of \(\beta = \pi/2\)) is adopted where the droplet interception of flux is

\[
I_{\text{Bi}(l)} = \frac{1 + \cos(\theta)}{2} \pi R^2 \Phi . \tag{6}
\]

We ignore the diffusion of species over the “rough” liquid surface and assume the existence of a sufficiently high number of accommodation sites over its entire area. Using eqn (6) and the projection of \(I_{\text{Bi}(l)}\) onto the \(x-y\) plane \(\text{(via radial diffusion within the liquid droplet)}, we then arrive at a steady-state estimate for a fixed \(\alpha\).

Employing a general form \(\omega ZC \exp(-\Delta G/k_B T)\) to define the dependence of the nucleus formation rate on the various system factors, we have

\[
J = \omega ZC \exp(-\Delta G/k_B T), \tag{7}
\]

where \(\omega\) is the frequency of attachment of growth species at the interface and is dependent on the number of nucleation sites, \(Z\) is a statistical dimensionless number known as the Zeldovich factor, \(\Delta G\) is the Gibbs free energy of nucleation, \(\Delta G\). In addition \(k_B T\) is the thermal energy and \(C\) indicates the magnitude of the concentration of the relevant species in the liquid (not to be confused
with \(n_s \) or \(n_n \), and is related to the supersaturation and the equilibrium concentration \((C_{eq}) \) by

\[
C = C_{eq} \exp(\Delta \mu_{ls}/k_B T).
\] (8)

When \(C_{eq} \) is zero, the supersaturation and nucleation rate at the liquid–solid interface, are zero. Thus it follows that for a constant temperature, an increase in the concentration \(C \) produces a direct rise in the nucleation rate \(J \) through eqn (7) (assuming an unchanging critical nucleus size).

We must now consider the important difference between nucleation at the center of the solid–liquid interface and at the bordering three phase boundary (TPB).\(^45\) A minimization of nucleation at the center of the solid (assuming an unchanging critical nucleus size).

Without direct MBE growth chamber at a rate of 5 revolutions per minute.

...morphology. Firstly, the sample was continually rotated in the wise,\(^47\) as a nucleus at the TPB (or liquid (diameters in the order of tens of nm) is considered piece-

...roughening the crystal surface. In this case, the supersatura-

...the TPB edge also facilitates non-faceted growth, further roughening the crystal surface. In this case, the supersatura-

...required for growth near the TPB may actually be further reduced. The VLS synthesis of relatively narrow nanowires (diameters in the order of tens of nm) is considered piece-

...a nucleus at the TPB (or liquid–solid interface) spreads out in steps. These factors contribute to enhanced growth near TPB edge, which is necessary to explaining our observations. Within the context of our model, this implies that the nucleation rate at the bordering TPB will not only be at its highest, but also locally enhanced and dispersed towards the interface center. Thus, we employ a ring-shaped one-sided Gaussian function to describe the elevated growth rate in this region. This function peaks at the TPB (distance \(R \)) with the parameters adjusted to obtain the proportions of the growth structures that correspond to the observed proportions.

3.2.2 Empirical inputs, model description, and simulated data. In reliably estimating the relative nucleation rate across \(A \), for a given \(\alpha \), we depend on empirical data of the nanotrack morphology. Firstly, the sample was continually rotated in the MBE growth chamber at a rate of 5 revolutions per minute. Without direct in situ observations,\(^48\) it is expected the periodic appearance of peaks and troughs will have formed at equivalent values of \(\alpha \) during repeated rotations (i.e. \(\alpha = j/2\pi \), where \(j = 1, 2, 3, \ldots \)). Thus analysis of the AFM data suggests the droplets move and deposit VLS crystal with a lateral speed of between 2.5 to 3 \(\mu \)m per minute. This relatively high lateral growth rate is not unreasonable, given the relatively large area of \(A \),\(^40\) nanotacks only reach typical heights of approximately 50 nm, and that droplet movement here is in no way comparable to the vertical growth of nanowires; a droplet atop a growing vertical nanowire is moved entirely by displacing itself through VLS growth. The impact of high droplet mobility on the collection of surface diffusing adatoms is large; \(v_{ls} \) will induce, and scale with, a supply differential between the front and rear of the droplet. The number of diffusing atoms arriv-

ing at the front of the droplet is enhanced by its relative motion. On the other hand, diffusing species reaching the rear of the droplet must traverse \(h \) unaided and pass an additional distance across the atomically rough nanotack top.

Our AFM experiments indicate the nanotacks experience an overall \(\sim 20\% \) steady increases in width during lateral growth. The size of \(R \) defines the nanotack width, thus increases linearly with lateral distance (centered on \(y = 0 \); see Fig. 3) within our model. In fact, the measured lateral period – the distance recorded between consecutive undulation peaks or troughs – is found to be close to the nanotack width, and permits a relationship for these values in the model; the undulation period (defined by equivalent values of \(\alpha \)) is set equal to twice the radius.

...Finally, the model considers a droplet that is sufficiently large enough to initiate and sustain VLS growth – the effects of the initiation of droplet movement on the nanotack growth are not considered in the model. Hence the liquid droplet is already moving unilaterally with a constant speed and continually solidifies crystal at the liquid–solid interface. Accepting these kinetic features, we estimate a 2D \((x,y)\) plane steady-state dynamic nucleation rate across \(A \) for growth in the \(z \)-direction, and for a given \(\alpha \). Fig. 4 presents our normalized nucleation rate over \(A \) for four fixed azimuthal angles covering \(0 \leq \alpha \leq \pi \).

From these plots it becomes obvious that the dynamic surface \(A \) experiences a rotating nucleation “hot spot” and a persisting center line of low nucleation, existing at the center and extending out towards its rear. The latter is enhanced by the relatively strong nucleation rate near the TPB, as well as the scarcity of diffusing supply species arriving at the very back of the moving droplet.

\[
\begin{align*}
\text{Fig. 4 (Color online) Normalized nucleation (in the z-direction) rate determined by the model at the liquid–solid interface A for differing } \alpha \text{ values of (a) 0°, (b) 90°, (c) 145°, and (d) 180°. The depicted coordinate system relates to the axes shown in Fig. 3 and the white arrows indicate the relative flux directions for each angle.}
\end{align*}
\]
In simulating the final nanotrack morphology we essentially take a discrete approach: scaled matrix values of surface A are cumulatively summed through iterations of a shifting center and rotating a. A total of 2000 iterations are performed in this manner covering a distance just over $10R$. The result of this procedure is presented in Fig. 5(a), with line scan analyses of the simulated nanotrack – analogous to that performed in Fig. 2 – displayed in Fig. 5(b) and (c). There is a good agreement between the simulation and experiment, with the typical nanotrack characteristics clearly present. The periodic and out-of-phase height variations along the nanotrack appear equally spaced across both L and R sides, with a height that steadily rises throughout growth.

Through our narrow definition of the droplet kinetics (including an increasing R) and of a lateral period (with its connection to the frequency of a), it is not unexpected that we arrive at a result which strongly resembles experiment. What is interesting are the correct morphological subtleties existing in these data, namely, the presence of height dip at the center of the nanotrack, forming an M-shape through its cross section. In Fig. 5(c), this feature strongly resembles the AFM data in Fig. 2(d), and likewise becomes more prominent with increasing nanotrack height.

Similar too is the asymmetry of the simulated nanotrack cross section, with very different relative gradients for the left and right sidewalls. For convenience, we allow the steeper wall here to correspond also to the L side, and it follows that the R side inherits a flatter top and more rounded edge. An asymmetrical cross section essentially arises because the sweep direction of the rotating beam-like flux, a, is not equivalent for opposite sides, relative to lateral motion. For a VLS driven droplet moving with sufficient unidirectional speed, such growth asymmetry becomes inevitable in the presence of a rotating vapor source.

With the steepness of the R edge reduced, it is expected that the VLS growth dynamics of the R side will be significantly altered (compared to the L side) through elevated sidewall wetting and droplet destabilization. This may account for the heightened disorder observed experimentally for the R side of the nanotrack top (see Fig. 2(b) and (c)).

Within the framework of our model the origins of particular morphological features become evident. The central nanotrack height minimum – creating an M-shape in the cross sectional data – manifests as a consequence of fewer diffusing supply species arriving at the center rear of the moving droplet. As h increases, the frequency of adatoms successfully arriving at the droplet rear from the epitaxial surface is greatly reduced, and the shape becomes more pronounced. Likewise, the presence of strong shadowing effects for the 3D droplet and a rotating beam-like vapor source induces a periodic and out-of-phase height variation along opposite sides of the planar growth. These two aspects of growth are mutually exclusive; without periodic shadowing effects, supply diffusion would only define the M-shape cross section. This offers independently tunable degrees of freedom in the design of planar nanotracks possessing these features.

4. Conclusion

We have reported the characterization of self-aligned GaAsBi planar nanotracks exhibiting periodic height variations along their length. Based on a detailed morphological study of the nanotracks, we developed a semi-empirical geometric model to account for three interesting characteristics observed: (i) a cross section resembling an “M-shape”, (ii) asymmetrically rising left and right edges, and (iii) a periodic and out-of-phase undulation pattern across the nanotrack growth axis. These features are found to originate from strong diffusion and shadowing effects. The asymmetry in the nanotrack cross section is expected to promote a disorderly growth process for the less sheer sidewall, a feature observed in experiment. It is shown that the assumption of a skewed distribution of enhanced growth rate near the TPB reproduces the nanotrack
pattern with high precision, implying this approach to be accurate. While diffusion and shadowing effects are typically avoided during MBE growth, we conclude they might actually be utilized in the design and growth of planar nanostructures with controlled periodic non-monotonous structure.

Acknowledgements

The authors acknowledge support given by the Australian Research Council (ARC) Discovery Project (no. DP140101501) and the research used equipment funded by the ARC Linkage Infrastructure, Equipment and Facilities (LIEF) grant (no. LE0882813), located at the UOW Electron Microscopy Centre. M. Henini acknowledges King Abdul-Aziz City for Sciences and Technology (KACST) for financial support. The work at University of Arkansas was supported by NSF Career Award no. DMR-1149605.

References