Superior critical current density obtained in Mg11B2 low activation superconductor by using reactive amorphous 11B and optimizing sintering temperature

Fang Cheng
Tianjin University

Yongchang Liu
Tianjin University, Nankai University

Zongqing Ma
University of Wollongong, zqma@uow.edu.au

Huijun Li
Tianjin University

Md Shahriar Hossain
University of Wollongong, shahriar@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/aiimpapers

Part of the Engineering Commons, and the Physical Sciences and Mathematics Commons

Recommended Citation

Cheng, Fang; Liu, Yongchang; Ma, Zongqing; Li, Huijun; and Hossain, Md Shahriar, "Superior critical current density obtained in Mg11B2 low activation superconductor by using reactive amorphous 11B and optimizing sintering temperature" (2015). *Australian Institute for Innovative Materials - Papers*. 1571.
https://ro.uow.edu.au/aiimpapers/1571

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Superior critical current density obtained in Mg11B2 low activation superconductor by using reactive amorphous 11B and optimizing sintering temperature

Abstract
The un-doped Mg11B2 and Cu-doped Mg11B2 bulks using 11B as a boron precursor were fabricated by solid-state reaction and sintered at different temperature in present work. By analyzing the sintering process, it was found that 11B original powder is more reactive and can react with Mg severely even at low temperature before Mg melting, which leads to the formation of refined Mg11B2 grains. Consequently, the critical current density of Mg11B2 sample prepared in this work is higher than that of natural MgB2. Furthermore, it was found that proper Cu addition could obviously accelerate the reaction between Mg and 11B and promote the formation of Mg11B2 due to the appearance of Mg-Cu liquid at low sintering temperature before Mg melting. On the other hand, Cu addition also introduced more MgCu2 impurity, leading to a relatively lower critical current density on the whole. Interestingly, the critical current density of the Cu doped sample sintered at 800 °C is surprisingly enhanced at the low field, compared with that of the corresponding un-doped one. This is due to the peritectic reaction which generated small-sized MgCu2 occurred that at 800 °C, providing MgCu2 pinning centers well-distributed in the MgB2 matrix.

Keywords
low, temperature, sintering, obtained, density, current, critical, superior, optimizing, amorphous, reactive, superconductor, activation, 11b, mg11b2

Disciplines
Engineering | Physical Sciences and Mathematics

Publication Details

This journal article is available at Research Online: https://ro.uow.edu.au/aiimpapers/1571
Superior critical current density obtained in Mg11B\textsubscript{2} low activation superconductor by using reactive amorphous 11B and optimizing sintering temperature

Fang Cheng1, Yongchang Liu1, Zongqing Ma1,2*, Huijun Li1, M. Shahriar Al Hossain2

1. Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science & Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
2. Institute for Superconducting and Electronic Materials, University of Wollongong

Abstract

The undoped Mg11B\textsubscript{2} and Cu-doped Mg11B\textsubscript{2} bulks using 11B as a boron precursor were fabricated by solid-state reaction and sintered at different temperature in present work. By analyzing the sintering process, it was found that 11B original powder is more reactive and can react with Mg severely even at low temperature before Mg melting, which leads to the formation of refined Mg11B\textsubscript{2} grains. Consequently, the critical current density of Mg11B\textsubscript{2} sample prepared in this work is higher than that of natural MgB\textsubscript{2}. Furthermore, it was found that proper Cu addition could obviously accelerate the reaction between Mg and 11B and promote the formation of Mg11B\textsubscript{2} due to the appearance of Mg-Cu liquid at low sintering temperature before Mg melting. On the other hand, Cu addition also introduced more MgCu\textsubscript{2} impurity, leading to a relatively lower critical current density on the whole. Interestingly, the critical current density of the Cu doped sample sintered at 800 °C is surprisingly enhanced at the low field, compared with that of the corresponding un-doped one. This is due to the peritectic reaction which generated small-sized MgCu\textsubscript{2} occurred that at 800 °C, providing MgCu\textsubscript{2} pinning centers well-distributed in the MgB\textsubscript{2} matrix.

Keywords: MgB\textsubscript{2} superconductor; isotope; Cu doping; Critical current density.
1. Introduction

The superconductivity of MgB$_2$ below 39 K has been discovered and widely investigated since 2001[1]. MgB$_2$ attracted lots of attention because of its simple crystal structure, large coherence length, relatively high critical current density, and transparency of the grain boundaries. During the development for more than 10 years, MgB$_2$ has been fabricated[2-10] into bulks, single crystals, thin films, tapes and wires. Such basic properties and preparation techniques allow MgB$_2$ to be an promising material for both large-scale applications and electronic devices. Controllable thermonuclear fusion is the ultimate ideal of mankind energy. Using high temperature magnetic field constraint of Tokamak plasma is considered to be the most likely device to realize the controlled thermonuclear fusion reaction[11]. Nowadays the applied of Nb-based superconducting wires, the decay time of induced radioactivity takes too long, and it costs much time to cool down. The long decay time brings awful effects in environment and radiation-processing reactor which definitely increase the difficulty of construction and the cost. Compared with Nb-based superconductor, MgB$_2$ have advantage in decay time which is much shorter and properties. From the comparing above, we can obtain that MgB$_2$ superconducting wires has a great application prospect in the fusion reactor. To be an appropriate material for the superconducting wire using in the future, one must consider the influence caused by neutron irradiation induced radioactivity and superconducting performance degradation in the design of superconducting magnet coils. Natural elementary boron is commonly composed of 20% 10B and 80% 11B. The former played an important role in the industry because of the large thermal neutron capture cross section, which issued as the reactor neutron absorber or shielding material. However, for the MgB$_2$ wires synthesized from natural elementary boron, 10B will be consumed in the
irradiation environment according to the reaction $^{10}\text{B} + n \rightarrow {^7}\text{Li} + \text{He (gas)}$, which will lead to partial destruction of the MgB$_2$ wire, and as a result, there is no guarantee for the long-term stability of the MgB$_2$ superconducting magnet. Isotope research shows that ^{11}B is much more stable than ^{10}B in neutron irradiation environment due to the smaller neutron capture cross section [12]. In order to ensure the operation stability of MgB$_2$ superconductor magnet, and to avoid the reduction of the superconductor volume fraction, the isotope ^{11}B becomes a possible substitute for nature B. The previous studies focused on the theoretical calculation [14-15] more and the experiment research much less. The previous experimental studies put many emphases on the performance of the Mg$_{11}$B$_2$ superconducting wires[16-17], which showed obvious differences in contrast with the traditional MgB$_2$ wire, and the critical current density exhibits lower than the traditional MgB$_2$ [17]. Few studies have addressed on the sintering mechanism, transporting properties and neutron irradiation impacting of the Mg$_{11}$B$_2$ wires, and a further research is required.

For this reason, the research of the sintering mechanism and improving the critical current density has been discussed in present study. In this study pure ^{11}B was used as the raw material instead of natural B, with the purpose of solving the Tokamak plasma problem in controllable thermonuclear fusion. Besides the un-doped samples, we also investigated the sintering process and the phase formation for Cu-doped samples through thermal analysis, phase identification and microstructure observation. Combined with the measurement of the critical current density, the effects of the element ^{11}B are concluded.

2. Experimental details

The samples of un-doped Mg$_{11}$B$_2$ and Mg$_{11}$B+5wt.% Cu were prepared by a solid-state sintering method. ^{11}B powders (Amorphous, 99.2% in purity, about 5μm in
size, from Pavezyum Kimya, Turkey), natural B powder (Amorphous, 99% in purity, 25 \(\mu\)m in size), Mg powders (99.5% in purity, 100 \(\mu\)m in size, Fuchen Chemical Reagent Company), and Cu powders (99.7% in purity, 3 \(\mu\)m in size, Aladdin Chemical Reagent Company) were separately mixed in the ratio of Mg\(^{11}\)B\(_2\) and Mg\(^{11}\)B\(_2\)+5wt% Cu. Then, the mixed powders were pressed into cylindrical pellets (\(\phi5\times1.5\)mm). All the un-doped and Cu-doped samples were sintered in differential thermal analysis (Mettler Toledo TGA/DSC1/) at 750\(^\circ\)C, 800\(^\circ\)C, and 850\(^\circ\)C for 45 minutes under flowing high-purity Ar gas with a heating rate of 10\(^\circ\)C min\(^{-1}\) and then cooled down to room temperature with a heating rate of -40\(^\circ\)C min\(^{-1}\). The phase composition of the sintered samples was examined by X-ray diffractometer (XRD, Rigaku D/max 2500) using Cu K\(\alpha\) radiation, and the morphology of the samples was characterized by scanning electron microscope (SEM, S-4800, Hitachi) and transmission electron microscope (TEM, JSM-2100, Hitachi). The superconducting properties were measured by superconducting quantum interference device (SQUID VSM, Quantum Design), after the samples were cut into a slab of size about 4\(\times\)2\(\times\)1 mm\(^3\). The corresponding \(J_c\) values were calculated from the width of magnetization hysteresis loops based on the Bean model \(J_c=20\Delta M/[a/(1-a/3b)]\)[18], where \(\Delta M\) is the volume magnetization, and \(a\) and \(b\) are the sample dimensions.

3. Results and discussion

To acquire thermodynamics for the entire sintering process, the recorded DSC curves for the un-doped and Cu-doped Mg\(^{11}\)B\(_2\) samples during the heating stage are shown in Fig. 1. The reference MgB\(_2\) is prepared using natural boron powder. Three peaks are recognized from the curves, and they are in sequence corresponded to
solid-solid reaction of Mg and B, Mg melting, and Mg-B liquid-solid reaction. By comparing the curves of the un-doped samples, it is found that the height of the two exothermic peaks is different. Meaningfully, the solid-solid reaction for the Mg11B$_2$ became more intense than that for the referred normal MgB$_2$, which means that 11B powder used here is more reactive than natural B, so that the reaction between Mg and 11B almost had completed in solid-solid reaction, there is only very little residual Mg and 11B continue in liquid-solid reaction. In previous study, it can be discovered that Cu addition [19-20] could promote the reaction between Mg and B. Hence, the study would be valuable in order to clarify whether could promote the sintering of Mg and 11B. From the DSC curve of the Cu-doped Mg11B$_2$ sample, the endothermic peak of Mg melting becomes weak, and the peak indicating liquid-solid reaction gets lower. The two exothermic stages are continuous rather than be separated by the Mg melting. Due to the eutectic reaction between Mg and Cu at 485°C, the solid-solid reaction of the Cu-doped Mg11B$_2$ sample started earlier than the un-doped sample. This result indicates that the Mg-Cu eutectic liquid is definitely effective to accelerate the reaction between Mg and 11B to some extent.

The X-ray diffraction patterns of the un-doped Mg11B$_2$ and Cu-doped Mg11B$_2$ samples are represented in Fig.2. One can see that the superconducting phase MgB$_2$ and the impurity phase MgO exist in all the sintered samples, and MgCu$_2$ appeared as the second impurity phase in Cu-doped samples. Both the un-doped and the Cu-doped samples were sintered at 750-850 °C. It is also observed that the intensity of MgB$_2$ peaks increased with the increasing sintering temperature for the un-doped samples, indicating the improvement of the crystallinity. For the Cu-doped samples, higher sintering temperature also brought about stronger peak intensity, but the sample sintered at 800°C shows anomalously better crystallinity than the sample sintered at
850°C which the reason will be discussed in the following part. The full width at half maximum (FWHM) calculated from the XRD could also gave a clue of the degree of the crystallization.

Figure 3 shows the FWHM values of the (101), (002) and (111) characteristic peaks for the un-doped and Cu-doped samples sintered at different temperatures. No variation tendency for the un-doped samples is observed, and the Cu doping resulted in either decrease of the FWHM value or few changes at 750°C and 850°C. The Cu-doped sample sintered at 800°C showed increased FWHM value in contrast with the un-doped sample, which is in agreement with the anomaly of the XRD pattern. The increase of FWHM indicates the decrease of the grain size as well as the crystallinity. The lattice parameters of sintered samples were also calculated based on the XRD data and shown in Table 1. It was found that the lattice parameters of Cu-doped samples are comparable to that of the un-doped samples within the calculation error, which suggests that the minor Cu addition mainly reacted with Mg forming the Mg-Cu alloys, not substitute for Mg in the MgB2 crystal lattice [21].

The volume fraction of impurities including MgO in the samples is calculated from the XRD patterns, as shown in Fig.4. For the un-doped samples, the volume fraction of MgO exhibits an increasing trend with the increasing temperature, and becomes stable finally. The fraction of the Cu-containing impurity remained unchanged when the sintering temperature increased as the doped Cu content was the same.

From the whole variation tendency for all the samples, we can obtain that the MgO content of Cu-doped sample is higher than un-doped one at the same sintering temperature, and one could indeed find this for the samples sintered at 750 °C and 850 °C from Fig. 4. Considering the mentioned eutectic liquid, the MgO content in the Cu-doped samples is supposed to be higher than that in the un-doped samples due to
the Mg-Cu eutectic liquid active the reaction, but another anomaly appeared for the Cu-doped sample sintered at 800 °C that the MgO content reduced compared with the un-doped sample. The phase diagram [22] provides a hint for this special phenomenon that the temperature for the peritectic reaction Mg-Cu(l)+MgCu2(s)→Mg2Cu(s) is around 800°C, and the reaction 3Mg2Cu+6B→3MgB2+MgCu2 would subsequently occur. As a result, the reactions work as a loop during the holding process. The generated MgCu2 accelerated the consumption of the Mg-Cu liquid in return, which hindered the oxidation of the Mg-Cu liquid as well. Nevertheless, the content of the impurity phase for the Cu-doped samples is over 20%, which might be harmful to the J_c performance.

The microstructure of the un-doped and the Cu-doped samples, especially the form of the impurities, can be observed from the SEM images, as shown in Fig. 5. On the whole, the samples are of good grain connectivity, and the recognized regular Mg11B2 grains with an average size of about 600-800nm. The white and bright particles with an average size of about 50-100nm are MgO impurities, existing among the grains in the un-doped samples (see Fig. 5a-5c), and the distribution and the size of the impurity decreased with the increasing temperature. For the Cu-doped samples, small-sized impurity particles are dispersed on the MgB2 matrix besides the existence of MgO. The white and bright particles should be MgO or MgCu2 with an average size of about 30-50nm (see Fig. 5e-5f). The size and amount of the impurity decreased first and then increased because of the special point of 800 °C (as we had explained about Fig.4). During the holding process, the equilibrium between Mg-Cu(l) and Mg(s) encouraged the dissociative Mg(s) underwent a partial dissolution and precipitation to become more active and more easy to react with B. If the holding time is long enough, the reactions will continue until B is completely consumed. One can observe that the
second exothermic peak of un-doped sample is higher than the Cu-doped sample due to the process of dissolution and precipitation of un-doped Mg\textsubscript{11}B\textsubscript{2}, but the solid-liquid reaction is not intense enough. Therefore, the process of dissolution and precipitation that improves the crystallinity in the Cu-doped sample could not proceed as completely as that for the un-doped sample. It as a result led to the low crystallinity of the Cu-doped sample sintered at 850 °C.

The HRTEM image for the Cu-doped sample sintered at 800°C is shown in Fig. 6. Two grains of MgB\textsubscript{2} were recognized with 20-nm black second-phase particles (indicated as MgO or MgCu\textsubscript{2}) distributing in the matrix, and the size is consistent with that of the fine particles observed in the SEM image. This size allows these particles to be effective pinning centers, whereas that of the agminate impurity in the top left corner is in agreement with the MgO dimension in the SEM images.

Figure 7 shows the temperature dependence of magnetization curves for the un-doped and Cu-doped Mg\textsubscript{11}B\textsubscript{2} samples, and the value of \(T_c \) and \(\Delta T \) have been shown in Table 1 which is easy to compare. The critical temperature of un-doped and Cu-doped samples is lower than the normal MgB\textsubscript{2} due to the isotope effect of superconductor. Though not obviously, the critical temperature of all the samples is above 35K which still meets the actual needs of practical applications. Thereinto, the Cu-doped sample sintered at 800°C showed the \(T_c \) abnormally higher than the others, which should be attributed to the high-quality MgB\textsubscript{2} generated from the peritectic reaction. Besides, the transition width, \(\Delta T \), which means the interval between \(T_{c, \text{onset}} \) and \(T_{c, \text{end}} \), decreased with the increasing sintering temperature. The high critical temperature and sharp transition width indicate that the samples are of high crystallinity and homogeneity. It is suggested that the generated Mg-Cu(I) increased the uniformity of Cu-doped samples. As far as the Cu-doped samples sintered at
800°C, the highest T_c and the sharpest transition is mostly due to that peritectic reaction promoted Cu element to distribute homogeneously.

The critical current density (J_c) and the irreversible field (H_{irr}) of samples is illustrated in Fig. 8 and Table 1. H_{irr} is value of H when J_c is equal to 100 A cm$^{-2}$. For the un-doped samples, the values of H_{irr} are increasing as the sintering temperature increasing. As for the Cu-doped samples, the values of H_{irr} are increasing first and then decreasing with the sintering temperature increasing. Compared with the reference MgB$_2$ [20], the J_c of all the un-doped Mg11B$_2$ samples was enhanced over the entire field. The solid-solid reaction of Mg-11B is more drastic than Mg-B because of the higher reactivity of 11B. Fine MgB$_2$ grains are caused by the intense solid-solid reaction along with poor crystallinity. As a result, more grain-boundary pinning is induced, and the J_c is improved. The samples with Cu addition showed relatively lower J_c than the un-doped samples because Cu addition generated more impurity phase, which led to less superconducting phase [24] and weaker connectivity among the grains. However, it is noticed that the Cu-doped sample sintered at 800°C exhibited higher J_c than the un-doped one sintered at the same temperature, owing to the peritectic reaction that brought homogeneously distributed impurity. From the results above, it is referred that slightly Cu addition has positive effects on the crystallinity and homogeneity, and 800 °C is an appropriate sintering temperature for improving the low-field J_c for the Mg11B$_2$ samples.

4. Conclusions

In summary, we had synthesized the un-doped Mg11B$_2$ and Cu-doped Mg11B$_2$ samples. The solid-solid reaction of Mg11B$_2$ is more drastic than traditional MgB$_2$ because of the higher reactivity of 11B, which results in the enhancement of J_c in the Mg11B$_2$ samples. Generally, Cu addition introduced a high content of impurity,
leading to a lower critical current density than the un-doped Mg_{11}B_2 samples. But the Cu-doped sample sintered at 800 °C in present work showed higher J_c performance at low field, in contrast with the un-doped sample sintered at the same temperature, due to the peritectic reaction occurred at 800 °C.

Acknowledgement This work is supported by the Australian Research Council (Grant No. DE140101333) and internal grants by the University of Wollongong (UOW) e University Research Council (URC) and Australian Institute for Innovative Materials (AIIM) in 2014-15. The authors are grateful to China National Funds for Distinguished Young Scientists (Grant No. 51325401), the National Natural Science Foundation of China (Grant No. 51302186), the Natural Science Foundation of Tianjin (Grant No. 13JCZDJC32300 and 14JCQJC03300). We also thank Pavezyum Kimya for providing high quality amorphous 11B powders.

References:

Table 1. The structural and superconducting parameters of the samples

<table>
<thead>
<tr>
<th>Sample</th>
<th>Temperature</th>
<th>a(Å)</th>
<th>c(Å)</th>
<th>T_c(K)</th>
<th>$ΔT$(K)</th>
<th>H_{irr}(T)</th>
<th>J_c at 3T ($×10^3$A·cm$^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Un-doped</td>
<td>750°C</td>
<td>3.08202</td>
<td>3.52114</td>
<td>36.7</td>
<td>0.6400</td>
<td>4.56</td>
<td>4.337</td>
</tr>
<tr>
<td></td>
<td>800°C</td>
<td>3.07695</td>
<td>3.52126</td>
<td>36.3</td>
<td>0.3883</td>
<td>4.63</td>
<td>4.067</td>
</tr>
<tr>
<td></td>
<td>850°C</td>
<td>3.08116</td>
<td>3.52169</td>
<td>36.8</td>
<td>0.3905</td>
<td>4.82</td>
<td>6.538</td>
</tr>
<tr>
<td>Cu-doped</td>
<td>750°C</td>
<td>3.05278</td>
<td>3.52150</td>
<td>36.3</td>
<td>0.3833</td>
<td>4.09</td>
<td>2.331</td>
</tr>
<tr>
<td></td>
<td>800°C</td>
<td>3.08026</td>
<td>3.52121</td>
<td>36.7</td>
<td>0.4216</td>
<td>4.26</td>
<td>2.266</td>
</tr>
<tr>
<td></td>
<td>850°C</td>
<td>3.08036</td>
<td>3.52350</td>
<td>36.5</td>
<td>0.4595</td>
<td>3.67</td>
<td>0.869</td>
</tr>
</tbody>
</table>
Figure captions

Fig. 1 Measured DSC curves during the sintering of un-doped and Cu-doped Mg\textsubscript{11}B samples with an applied heating rate of 10\degree C/min. The reference MgB\textsubscript{2}[23] is made from the normal boron.

Fig. 2 The XRD patterns of samples sintered at 750\degree C, 800 \degree C, 850 \degree C for 45 min (a) un-doped Mg\textsubscript{11}B\textsubscript{2} and (b) Cu-doped Mg\textsubscript{11}B\textsubscript{2} samples.

Fig. 3 Full width at half maximum of the (101), (002), and (111) peaks for the un-doped and Cu-doped Mg\textsubscript{11}B\textsubscript{2} samples.

Fig. 4 Volume fraction of the impurities for un-doped and Cu-doped Mg\textsubscript{11}B\textsubscript{2} samples sintered at 750-850 \degree C.

Fig. 5 SEM images for the un-doped sintered at (a) 750\degree C, (b) 800\degree C, (c) 850\degree C, and the Cu-doped Mg\textsubscript{11}B\textsubscript{2} samples sintered at (d) 750\degree C, (e) 800\degree C, and (f) 850\degree C.

Fig. 6 HRTEM image of the Cu-doped Mg\textsubscript{11}B\textsubscript{2} sample sintered at 800\degree C.

Fig. 7 Temperature dependence of ZFC magnetization for the Mg\textsubscript{11}B\textsubscript{2} and the Mg\textsubscript{11}B\textsubscript{2}+5 wt.% Cu samples.

Fig. 8 Measured J_C-H characteristics of the the Mg\textsubscript{11}B\textsubscript{2} samples and the Mg\textsubscript{11}B\textsubscript{2}+5 wt.% Cu samples at 20K. The reference MgB\textsubscript{2} is made from normal boron [20].
Fig. 1

(a) X-ray diffraction patterns of MgB$_2$ samples prepared at different temperatures: 750°C, 800°C, and 850°C.
Fig. 2

Fig. 3
Fig. 4

Fig. 5
Fig. 8.