Impact of humic acid fouling on membrane performance and transport of pharmaceutically active compounds in forward osmosis

Ming Xie
University of Wollongong, mx504@uowmail.edu.au

Long D. Nghiem
University of Wollongong, longn@uow.edu.au

William E. Price
University of Wollongong, wprice@uow.edu.au

Menachem Elimelech
Yale University

Follow this and additional works at: https://ro.uow.edu.au/eispapers

Part of the Engineering Commons, and the Science and Technology Studies Commons

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Impact of humic acid fouling on membrane performance and transport of pharmaceutically active compounds in forward osmosis

Abstract
The impact of humic acid fouling on the membrane transport of two pharmaceutically active compounds (PhACs) - namely carbamazepine and sulfamethoxazole - in forward osmosis (FO) was investigated. Deposition of humic acid onto the membrane surface was promoted by the complexation with calcium ions in the feed solution and the increase in ionic strength at the membrane surface due to the reverse transport of NaCl draw solute. The increase in the humic acid deposition on the membrane surface led to a substantial decrease in the membrane salt (NaCl) permeability coefficient but did not result in a significant decrease in the membrane pure water permeability coefficient. As the deposition of humic acid increased, the permeation of carbamazepine and sulfamethoxazole decreased, which correlated well with the decrease in the membrane salt (NaCl) permeability coefficient. It is hypothesized that the hydrated humic acid fouling layer hindered solute diffusion through the membrane pore and enhanced solute rejection by steric hindrance, but not the permeation of water molecules. The membrane water and salt (NaCl) permeability coefficients were fully restored by physical cleaning of the membrane, suggesting that humic acid did not penetrate into the membrane pores.

Keywords
performance, fouling, acid, transport, humic, impact, pharmaceutically, active, membrane, compounds, osmosis, forward

Disciplines
Engineering | Science and Technology Studies

Publication Details

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers/1547
Impact of humic acid fouling on membrane performance and transport of pharmaceutically active compounds in forward osmosis

Water Research

Revised: 6th May 2013

Ming Xie 1, Long D. Nghiem 1-*, William E. Price 2, and Menachem Elimelech 3

1 Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia

2 Strategic Water Infrastructure Laboratory, School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia

3 Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA

* Corresponding author: Long Duc Nghiem, Email: longn@uow.edu.au; Ph +61 2 4221 4590
Abstract

The impact of humic acid fouling on the membrane transport of two pharmaceutically active compounds (PhACs) – namely carbamazepine and sulfamethoxazole – in forward osmosis (FO) was investigated. Deposition of humic acid onto the membrane surface was promoted by the complexation with calcium ions in the feed solution and the increase in ionic strength at the membrane surface due to the reverse transport of NaCl draw solute. The increase in the humic acid deposition on the membrane surface led to a substantial decrease in the membrane salt (NaCl) permeability coefficient but did not result in a significant decrease in the membrane pure water permeability coefficient. As the deposition of humic acid increased, the permeation of carbamazepine and sulfamethoxazole decreased, which correlated well with the decrease in the membrane salt (NaCl) permeability coefficient. It is hypothesized that the hydrated humic acid fouling layer hindered solute diffusion through the membrane pore and enhanced solute rejection by steric hindrance, but not the permeation of water molecules. The membrane water and salt (NaCl) permeability coefficients were fully restored by physical cleaning of the membrane, suggesting that humic acid did not penetrate into the membrane pores.

Keywords: forward osmosis; pharmaceutically active compounds (PhACs); calcium; humic acid; natural organic matter; fouling.
1. Introduction

A large proportion of the world’s population lives in areas with severe water shortages. This problem is being further exacerbated by urbanisation, population growth, and climate change. As a result, over the last few decades, significant efforts have been made to develop innovative treatment processes that utilise alternative water sources such as seawater and reclaimed wastewater in order to ensure a secure and reliable supply of clean drinking water that is independent of the hydrological cycle. Notable progress can be seen in the field of membrane filtration technologies. For example, seawater desalination and wastewater reuse by reverse osmosis (RO) and nanofiltration (NF) membrane filtration have been widely used to augment the freshwater supply in many parts of the world (Elimelech and Phillip 2011, Shannon et al. 2008). Forward osmosis (FO), which is a membrane-based filtration process, is still emerging but has the potential to advance water and wastewater treatment (Cath et al. 2006, Zhao et al. 2012). Compared to the NF and RO processes, FO has a much smaller fouling propensity (Mi and Elimelech 2008). Instead of hydraulic pressure, FO utilises the osmotic pressure of a highly concentrated draw solution as the driving force to transfer water from the feed solution to the draw solution through a dense polymeric membrane. As a result, FO can potentially be employed as a pre-treatment for the NF/RO processes (Hoover et al. 2011, Shaffer et al. 2012, Yangali-Quintanilla et al. 2011) or in combination with a membrane bioreactor (Achilli et al. 2009, Alturki et al. 2012) to extract clean water from wastewater and other alternative water sources.

The occurrence of chemicals of emerging concern, particularly pharmaceutically active compounds (PhACs), in wastewater and secondary treated effluent at trace levels is a major issue associated with wastewater reuse, particularly when intended for potable purposes (Basile et al. 2011, Carballa et al. 2004, Schwarzenbach et al. 2006). Several recent studies have investigated the removal of PhACs by FO. These studies reveal that the removal mechanisms of PhACs by FO membranes are governed by several factors, including membrane interfacial properties (Jin et al. 2012a), physicochemical properties of the solutes (Alturki et al. 2013, Hancock et al. 2011b, Valladares Linares et al. 2011) and solution chemistry (Xie et al. 2012b). However, the current state-of-the-art understanding of PhAC rejection behaviour in the FO process is still limited. In particular, little is known about the impact of membrane fouling on the rejection of PhACs.

The effect of membrane fouling on the rejection of PhACs has been investigated extensively in NF and RO processes. These studies suggest that membrane fouling influences
the rejection of PhACs via modification of membrane surface charge (Plakas et al. 2006, Xu et al. 2006), pore blockage (Nghiem and Hawkes 2007) or cake enhanced concentration polarization (Ng and Elimelech 2004, Vogel et al. 2010), thereby either improving or reducing their rejection. By drawing on these well-established mechanisms in NF and RO processes, several studies have also been initiated to shed light on the impact of membrane fouling on the rejection of PhACs in FO. Hancock et al. (2011b) observed that rejection of PhACs by the FO process substantially increased when the membrane was fouled by wastewater effluent in a pilot-scale setup. Valladares Linares et al. (2011) proposed that the fouling layer altered the charge and hydrophobicity of the FO membrane surface, thereby enhancing the rejection of ionic and neutral PhACs. Jin et al. (2012b) highlighted the enhanced membrane sieving effect by membrane fouling when they compared the rejections of boron and arsenate by an alginate-fouled FO membrane.

In FO, for a non-ideal membrane with less than 100% solute rejection, the water flux is coupled with a reverse permeation of the draw solute. Recently, several studies were conducted to understand this mechanism (Hancock and Cath 2009, Xie et al. 2012a) and to quantify this bi-directional mass transfer (Hancock et al. 2011a, Phillip et al. 2010, Yong et al. 2012). Specifically, membrane fouling could be affected by the reverse permeation of draw solutes. Boo et al. (2012) reported that reverse permeation of draw solutes promoted colloidal aggregation, which enhanced membrane fouling and reduced fouling reversibility by simple physical cleaning. As a result, it is of practical interest to understand the role of reverse permeation of draw solutes on membrane fouling and its associated effect on the rejection of PhACs.

The aim of this study is to investigate the impact of humic acid fouling on the membrane permeation of two model PhACs (i.e. sulfamethoxazole and carbamazepine) in forward osmosis. Fouling and PhAC flux through the membrane were investigated under different calcium ion concentrations and a variety of draw solutions. Key membrane properties, and forward hydrogen ion and reverse salt fluxes were measured to elucidate the impact of humic acid fouling on the permeation of PhACs. Mechanisms accounting for the impact of humic acid fouling on PhAC permeation were systematically proposed and delineated.
2. Materials and methods

2.1. Forward osmosis membrane

An asymmetric cellulose-based membrane specifically designed for FO applications was supplied by Hydration Technology Innovations (Albany, OR). While detailed composition of the membrane is proprietary, it is believed that it has a dense cellulose triacetate active layer embedded in a polyester mesh. Further details about this FO membrane are available elsewhere (Cath et al. 2006, McCutcheon and Elimelech 2008).

2.2. Determination of water and salt (NaCl) permeability coefficients

Water permeability coefficient (A) and salt (NaCl) permeability coefficient (B) were determined using a standard method recently established by Cath et al. (2013). Briefly, the measurement was conducted in RO mode using a laboratory scale cross-flow filtration system. Prior to each measurement, the membrane was compacted at 15 bar using deionised water for at least 12 hours until a constant permeate water flux had been obtained. The water permeability coefficient was determined by dividing the pure water permeate flux obtained at 10 bar (145 psi) using deionised water as the feed by the applied hydraulic pressure. NaCl was then added to the feed solution to obtain a concentration of 2000 mg/L in order to determine the salt (NaCl) permeability coefficient at 10 bar (145 psi). The RO system was stabilised for two hours before the permeate water flux (J_{NaCl}^w) was recorded and feed and permeate samples were taken to determine the observed NaCl rejection value (R_o). The observed salt (NaCl) rejection, R_o, was calculated from the difference between the bulk feed (c_b) and permeate (c_p) salt concentrations, $R_o = 1 - c_p/c_b$. The B value was determined from (Cath et al. 2013):

$$B = J_{NaCl}^w\left(1 - \frac{R_o}{R_0}\right)\exp\left(-\frac{J_{NaCl}^w}{k_f}\right)$$

(1)

where k_f is the mass transfer coefficient for the cross-flow channel of the RO membrane cell.

The mass transfer coefficient (k_f) was experimentally determined using the film theory (Sutzkover et al. 2000):

$$k_f = \frac{J_{salt}}{\ln\left[\frac{\Delta P}{\pi_b - \pi_p \left(1 - \frac{J_{salt}}{J_w}\right)}\right]}$$

(2)
where π_p and π_b are the osmotic pressures of the permeate and 2000 mg/L NaCl feed solution, respectively; ΔP is the applied pressure; and J_w and J_{salt} are the pure water flux and the water flux of the 2000 mg/L NaCl feed solution, respectively.

To measure the membrane pure water and salt (NaCl) permeability coefficient in the presence of a humic acid fouling layer, the membrane was pre-fouled with a feed solution of 50 mg/L humic acid and a calcium concentration varying between 0 and 4 mM at 10 bar (145 psi) for 10 hours. The membrane pure water and salt (NaCl) permeability coefficients were then measured using the same protocol as described above.

2.3. Zeta potential measurement

The membrane zeta potential was determined using a streaming current electrokinetic analyser (SurPASS, Anton Paar GmbH, Austria). The zeta potential was calculated from the measured streaming potential data using the Fairbrother-Mastin method (Elimelech et al. 1994). Streaming potential measurement was conducted in a background electrolyte solution containing 10 mM KCl. The same electrolyte solution was used to flush the cell thoroughly prior to automatic pH titration using either hydrochloric acid (1 M) or potassium hydroxide (1 M). All measurements were performed at room temperature (approximately 22 ºC), which was monitored by the temperature probe of the instrument.

Prior to the zeta potential measurement, the humic acid fouled membranes were dried in a desiccator. The dried membranes were then soaked in Milli-Q water for 24 hours prior to the measurement. A small amount of humic acid was released into the solution and the rest was stable on the membrane surface. This procedure effectively prevents the removal of the humic acid fouling layer due to hydrodynamic shear stress during the streaming potential measurement (Simon et al. 2011).

2.4. Chemical reagents

Analytical grade sulfamethoxazole and carbamazepine were purchased from Sigma–Aldrich (St. Louis, MO) and used as model PhACs. They are active ingredients of pharmaceutical products and have been frequently detected at trace levels in secondary treated effluents and sewage-impacted water bodies (Schwarzenbach et al. 2006). Their molecular structures and key physicochemical properties are summarised in Table 1. At the experimental pH of 6.5, sulfamethoxazole is negatively charged due to the dissociation of its amine functional group, while carbamazepine is neutral. A stock solution of 2 g/L was
obtained by dissolving these two compounds in pure methanol. The stock solution was stored at -18 °C in the dark and was used within one month.

[Table 1]

Humic acid (Sigma-Aldrich, St. Louis, MO) was selected as a model organic foulant. Humic acid stock solution (10 g/L) was prepared by dissolving the humic acid powder as received in Milli-Q water and adjusting the pH to 8.2 with NaOH to ensure complete dissolution. The stock solution was stored in a sterilized amber glass bottle at 4 °C and was used within one month.

2.5. Forward osmosis setup

A bench-scale flat-sheet cross-flow FO system described in our previous publication (Xie et al. 2012b) was used (Supplementary Data, Figure S1). The membrane cell had two identical and symmetrical flow chambers with a length, width and channel height of 130, 95, and 2 mm, respectively. The membrane sample was inserted between the two chambers to separate the feed solution from the draw solution. The total effective membrane area for mass transfer was 123.5 cm².

Two variable speed gear pumps (Micropump, Vancouver, WA) were used to circulate the feed and draw solutions. Flow rates of the feed and draw solutions were monitored using two rotameters and kept constant at 1 L/min (corresponding to a cross-flow velocity of 9 cm/s). The draw solution reservoir was placed on a digital balance (Mettler-Toledo Inc., Hightstown, NJ) and weight changes were recorded by a computer to calculate the permeate flux. The conductivity of the draw solution was continuously measured using a conductivity probe (Cole-Parmer, Vernon Hills, IL). To maintain constant draw solution concentration, a peristaltic pump was regulated by a conductivity controller to intermittently dose a small volume of a concentrated draw solution (6 M NaCl or 4 M MgSO₄, depending on the type of draw solution) into the draw solution reservoir (control accuracy was ± 0.1 mS/cm). The concentrated draw solution makeup reservoir was also placed on the same digital balance. This setup ensured that the transfer of liquid between the two reservoirs did not interfere with the measurement of permeate water flux and that the system could be operated at a constant osmotic pressure driving force during the experiment. Manual control of draw solution concentration was applied when neutral glucose and urea were used as draw solutes in the FO experiment. A concentrated glucose (6 M) or urea (6 M) solution was manually added into
the draw solution reservoir every two hours to avoid the dilution of the draw solution and the decline of osmotic pressure driving force.

2.6. Membrane fouling protocol

In all FO experiments, the initial volumes of feed and draw solutions were 4 L and 1 L, respectively. A new membrane sample was used for each experiment. Mass concentrations of humic acid and each PhAC in the feed solution (20 mM NaCl and 1 mM NaHCO₃) were 50 mg/L and 500 µg/L, respectively. The concentration of CaCl₂ varied from 0 to 4 mM in the feed solution. Approximate 2 mL of feed and draw solution samples were taken at specific time intervals for HPLC analysis to determine the concentration of the PhACs, and an 8-mL aliquot sample of the feed was also collected at the same time to measure the humic acid concentration.

Because of the dilution of draw solution and the concentration of feed solution, PhAC permeation (P_s) through the membrane was proposed and employed as an indicator of the impact of the humic acid fouling layer on the permeation of PhACs. P_s was calculated by taking into account the draw solution dilution using a mass balance. Because the PhAC permeate concentration in the FO process is diluted by the draw solution, the actual (corrected) concentration of the target solute, $C_{s(t)}$, can be obtained by taking into account the dilution using a mass balance:

$$C_{s(t)} = \frac{C_{ds(t)}V_{ds(t)} - C_{ds(t-1)}V_{ds(t-1)}}{V_{w(t)}}$$ \hspace{1cm} (3)

where $V_{w(t)}$ is the permeate volume of water to the draw solution at time t; $V_{ds(t-1)}$ is the volume of draw solution at time (t-1); $V_{ds(t)}$ is the volume of draw solution at time t; $C_{ds(t)}$ is the measured concentration of target solute in the draw solution at time t; and $C_{ds(t-1)}$ is the measured concentration of target solute in the draw solution at time (t-1). Subsequently, P_s is calculated using the actual permeate concentration after accounting for water recovery (i.e., 25% in all experiments), yielding:

$$P_s = \frac{C_{ds(t)}V_{ds(t)}}{C_{f(0)}V_{f(0)}} \times 100\%$$ \hspace{1cm} (4)

where $C_{f(0)}$ and $V_{f(0)}$ are the concentrations of the target solute in the feed solution and the volume of feed solution at zero time.
The reduction in PhAC permeation (P_{sr}) was used to evaluate the impact of the humic acid fouling layer on the permeation of PhACs:

$$P_{sr} = \frac{P_{s\text{-clean}} - P_{s\text{-fouled}}}{P_{s\text{-clean}}} \times 100\%$$ (5)

where $P_{s\text{-clean}}$ and $P_{s\text{-fouled}}$ are the permeation of PhACs through the clean and humic acid fouled FO membrane, respectively.

The reverse flux of draw solute J_{salt} and forward hydrogen ion flux J_H in the FO process were determined using the mass balance calculation:

$$J_H \text{ or } J_{salt} = \frac{(C_tV_t - C_0V_0)}{At}$$ (6)

where C_0 and C_t are the concentrations of the draw solute or hydrogen ion in the feed at time 0 and t, respectively; V_0 and V_t are the volumes of the feed at time 0 and t, respectively; A is the membrane area, and t is the operating time of the FO experiment. Draw solute concentrations of NaCl and MgSO$_4$ in the feed solution were determined by measuring electric conductivity and using the calibration curves of NaCl and MgSO$_4$, while those of glucose and urea were determined using total organic carbon (TOC) measurement. The concentrations of glucose and urea were determined using a TOC analyser (TOC-VCSH, Shimadzu, Kyoto, Japan). The hydrogen ion concentration in the feed was determined by the measurement of feed solution pH value.

The amount of humic acid deposited on the membrane surface was determined using the mass balance calculation:

$$m_{HA} = \frac{(C_{t\text{-HA}}V_t - C_{0\text{-HA}}V_0)}{A}$$ (7)

where $C_{0\text{-HA}}$ and $C_{t\text{-HA}}$ are the concentrations of humic acid in the feed at time 0 and t, respectively. The concentration of humic acid was determined by UV absorbance measurement at 254 nm using a UV-Vis Spectrophotometer (UV-1700, Shimadzu, Kyoto, Japan). A linear calibration curve with a coefficient of determination (R^2) greater than 0.99 between humic acid concentration and UV_{254} absorbance was obtained within the concentration range used in this study.
2.7. Analytical methods

A Shimadzu HPLC system (Shimadzu, Kyoto, Japan), equipped with a Supelco Drug Discovery C18 column (with a diameter, length, and pore size of 4.6 mm, 150 mm, and 5 µm, respectively) and a UV–Vis detector, was used to measure the concentration of carbamazepine and sulfamethoxazole in the feed and draw solution samples. The detection wavelength was 280 nm. Milli-Q water buffered with 25 mM KH₂PO₄ and acetonitrile were used as the mobile phase at a flow rate of 1 mL/min. The sample injection volume was 50 µL. Calibration yielded a linear curve with a coefficient of determination (R^2) above 0.99. Carbamazepine and sulfamethoxazole analysis was carried out immediately upon the conclusion of each experiment. The limit of quantification for carbamazepine and sulfamethoxazole under these conditions was approximately 10 µg/L.

3. Results and discussion

3.1. Impact of fouling on membrane properties

Deposition of humic acid onto the membrane surface was insignificant when the feed solution contained 50 mg/L of humic acid and no calcium (Figure 1). As calcium concentration in the feed solution increased from 0 to 4 mM, the amount of humic acid deposited on the membrane surface increased significantly from 1.35 to 7.22 mg/cm². The influence of calcium concentration on the deposition of humic acid onto the membrane surface can be attributed to the complexation between calcium and humic acid molecules (Mi and Elimelech 2008, Nghiem et al. 2008). In fact, visual observation of the membrane samples at the end of each experiment confirmed the proportional increase in humic acid deposition with respect to the increase in calcium concentration (Supplementary Data, Figure S2).

The formation of a humic acid fouling layer on the membrane surface did not result in significant decrease in the membrane pure water permeability coefficient; however, it led to a substantial decrease in the membrane salt (NaCl) permeability coefficient (Figure 2). It is noteworthy that the membrane salt (NaCl) permeability coefficient was measured in RO mode after the membrane was pre-fouled with humic acid at an initial permeate flux of 6.5 L/m²h (which is also the flux used in the FO experiments). Under this condition, the deposition of humic acid on the membrane surface could be visually confirmed, but water
flux decline was negligible (Supplementary Data, Figure S2) and the water flux behaviour obtained in the RO mode was similar to that in the FO mode. Therefore, the membrane pure water and salt (NaCl) permeability coefficients of the humic acid fouled membrane obtained in RO mode can be used to assess the impact of the humic acid cake layer on membrane performance in the FO process.

[Figure 2]

Possessing a large number of free hydroxyl and carboxylic functional groups, the humic acid layer can be highly hydrated (Wang et al. 2001). These hydrated humic acid molecules can block the membrane pores and enhance solute rejection by steric hindrance, which reduces solute transport through the membrane. In the FO process, the transport of water through the membrane is driven mostly by diffusion. This is also true in the RO mode when the permeate flux is sufficiently low. Unlike convective transport, the diffusion of water molecules through the membrane pores is not adversely influenced by a hydrated humic acid layer on the membrane surface, because the hydrated humic acid layer provides more available sites, which facilitate the diffusion of water molecules and thereby, compensate for the blockage of membrane pores (Cohen-Tanugi and Grossman 2012). As a result, the humic acid fouling layer reduced the membrane solute (NaCl) permeability coefficient but did not induce any significant impact on the membrane water permeability coefficient (Figure 2).

3.2. Impact of fouling on water and reverse salt fluxes

Generally, the presence of the humic acid fouling layer did not result in any significant FO water flux decline (Figure 3). Using 0.5 M NaCl as the draw solution, the water flux decreased slightly from 6.5 to 5.1 L/m²h within the first hour of filtration and remained stable at 5.1 L/m²h throughout the remaining duration of the experiment. Without humic acid in the feed (denoted as ‘clean matrix’), the water flux decline was insignificant. Similarly, no significant water flux decline could be observed even when a discernible humic acid fouling layer formed on the membrane surface at high calcium ion concentrations. This negligible flux decline can be explained by the relatively low water permeate flux and low humic acid fouling layer resistance under the experimental conditions. At a low water permeate flux, the external and internal concentration polarizations are negligible and thus the impact of a humic acid cake layer on permeate flux is expected to be insignificant. Furthermore, the estimated humic acid layer resistance \(R_c \) was less than 1% of the membrane intrinsic resistance (Supplementary Data, Appendix A). Our results are consistent
with a recent study by Parida and Ng (2013) who also reported limited water flux decline when they examined FO fouling using a feed matrix containing up to 50 mg/L organic foulant and 5 mM calcium.

[Figure 3]

The formation of a humic acid fouling layer rendered the membrane surface more negatively charged. In addition, the membrane surface became more negatively charged as calcium concentration in the feed solution increased (Figure 4). The increase in membrane negative surface charge could reduce the transport of feed and draw solution ions in the forward and reverse directions. Consequently, at the experimental pH value of 6.5, as the calcium concentration in the feed solution increased from 0 to 4 mM, the membrane zeta potential changed from -5 to -38 mV (Figure 4) and the reverse draw salt (NaCl) flux decreased by more than ten-fold, from 3.49 to 0.22 g/m²h (Figure 1). Ion transport in the FO process is bi-directional (Hancock et al. 2011a); thus, a decrease in the reverse draw salt (NaCl) flux also led to a decrease in the forward hydrogen ion flux as observed in Figure 1. It is likely that the reverse flux of Cl⁻ was hindered by an enhanced electrostatic interaction with the more negatively charged humic acid fouling layer. To maintain the electroneutrality of the feed solution, the forward diffusion of hydrogen ions was coupled with the reverse permeate of draw solution Na⁺ (Hancock and Cath 2009, Xie et al. 2012b). Therefore, the forward hydrogen ion flux also decreased with the decrease in the reverse draw salt flux as the concentration of calcium increased from 0 to 4 mM.

[Figure 4]

3.3. Impact of fouling on PhAC permeation

3.3.1 Role of calcium and humic acid fouling

Permeation of the neutral carbamazepine decreased substantially from 23% under clean membrane conditions to 14% when humic acid was introduced to a feed solution that did not contain calcium (Figure 5). The molecular width of carbamazepine is 0.529 nm (Table 1) while the membrane pore diameter is 0.74 nm (Xie et al. 2012a). Thus, it is possible that the hydrated humic acid fouling layer could have hindered solute transport through the membrane pore, thereby reducing the permeation of carbamazepine as humic acid fouling occurred. Hindrance of carbamazepine permeation caused by the hydrated humic acid fouling layer was further enhanced as calcium was introduced to the feed solution, (which also led to
an increase in the deposition of humic acid on the membrane surface as reported in section 3.1. Indeed, carbamazepine permeation decreased further to 3% as the calcium concentration in the feed solution increased from 0 to 4 mM (Figure 5).

The molecular width of sulfamethoxazole is slightly larger than that of carbamazepine. More importantly, at pH 6.5, both the membrane and more than 90% of sulfamethoxazole molecules are negatively charged (Figure 4). Thus, in addition to steric hindrance, electrostatic interaction also plays an important role in the rejection of this compound (Xie et al. 2012b). As a result, permeation of the charged sulfamethoxazole was considerably smaller than that of the neutral carbamazepine. The permeation of the negatively charged sulfamethoxazole decreased from 10% in the clean matrix to 6.1% in the humic acid matrix with no calcium in solution (Figure 5). The permeation of sulfamethoxazole decreased further to 1.2% as the deposition of humic acid on the membrane surface increased due to the introduction of 4 mM calcium to the feed solution. It is noteworthy that reduction in the permeation of both carbamazepine and sulfamethoxazole correlates very well with the decrease in the membrane salt (NaCl) permeability coefficient reported in section 3.1. Coefficients of determination (R^2) of the linear regression between the membrane salt (NaCl) permeability coefficient and the reduction in carbamazepine and sulfamethoxazole permeation were 0.996 and 0.997, respectively.

[Figure 5]

3.3.2 Role of reverse draw salt flux

To provide further insight into the impact of the humic acid fouling layer on the passage of carbamazepine and sulfamethoxazole through the FO membrane, MgSO$_4$, urea, and glucose were also used as the draw solutes, in addition to NaCl, to obtain a range of reverse draw solute fluxes (Figure 6). In a clean matrix, reverse draw solute flux could hinder the forward diffusion of neutral solutes, through a phenomenon known as ‘retarded forward diffusion’, thereby reducing their permeation through the FO membrane (Xie et al. 2012a). In agreement with the retarded forward diffusion phenomenon, permeation of neutral carbamazepine in the clean matrix is inversely proportional to the reverse draw solute flux (Figure 6), which is in the order of urea < NaCl < glucose < MgSO$_4$ (Figure 7) when these draw solutes were used in FO experiments.

Different types and degrees of reverse draw solute flux resulted in varying amounts of humic acid deposited on the membrane surface. The amount of humic acid deposited on the
membrane surface for the fouling experiments with the four types of draw solutes was in the following order: NaCl > MgSO$_4$ \approx urea \approx glucose (Figure 6). Reverse transport of ionic NaCl draw solute likely elevated the localized ionic strength in the fouling layer and led to further aggregation of humic acid foulant, thereby promoting the deposition of humic acid (Tang et al. 2011).

Varying deposition of humic acid on the membrane surface using four types of draw solutes led to differing reductions in the permeation of carbamazepine and sulfamethoxazole. The reductions occurred in the following order: NaCl > MgSO$_4$ \approx urea \approx glucose (Figure 7), which was the same as the order of draw solutes observed when measuring the amount of humic acid deposition on the membrane surface (Figure 6). This observation was consistent with our hypothesis that the hydrated humic acid fouling layer hindered feed solute transport through the membrane pores, thereby reducing their permeation.

3.4. PhAC permeation after physical cleaning of the membrane

Membrane cleaning was conducted by increasing the cross-flow velocity from 9 to 18 cm/s. Because of the low hydraulic resistance and loose structure of the humic acid cake layer, which is a characteristic of the fouling layer in FO (Mi and Elimelech 2008), it is not surprising that the humic acid cake layer was fully removed by the increase in the shearing rate. This physical cleaning restored the permeation of carbamazepine and sulfamethoxazole as well as the reverse salt (NaCl) flux to those of the virgin (clean) membrane (Figure 8). The reversible fouling behaviour observed here confirms a weak adhesion of humic acid to the membrane surface (Mi and Elimelech 2008) and suggests that humic acid did not penetrate into the membrane pores.

4. Conclusion

Results reported here indicate that calcium in the feed solution promoted the deposition of humic acid onto the membrane surface. Higher deposition of humic acid was also observed when NaCl was used as the draw solute due to an increase in ionic strength at the membrane interface in comparison to MgSO$_4$, glucose, and urea, which exhibited a negligible reverse solute flux or are organic based. The increase in humic acid deposition on
the membrane surface led to a substantial decrease in the membrane salt (NaCl) permeability coefficient but did not result in a significant decrease in the membrane pure water permeability coefficient. The decrease in carbamazepine and sulfamethoxazole permeation as the deposition of humic acid increased, which correlated well with the decrease in the membrane salt (NaCl) permeability coefficient. It is hypothesized that the hydrated humic acid fouling layer hindered solute transport through the membrane pores and enhanced steric hindrance, but not the diffusion of water. Results reported here also indicate that the humic acid did not penetrate into the membrane pores.

5. Acknowledgments

We acknowledge the doctoral scholarship provided by the University of Wollongong to Ming Xie to support his PhD study. Hydration Technology Innovations is thanked for the provision of membrane samples.

6. References

List of Tables

Table 1: Key physicochemical properties of model PhACs used in this study

<table>
<thead>
<tr>
<th></th>
<th>Pharmaceutical</th>
<th>Carbamazepine</th>
<th>Sulfamethoxazole</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molecular weight (Da)</td>
<td>236.3</td>
<td>253.3</td>
<td></td>
</tr>
<tr>
<td>(pK_a^a)</td>
<td>9.73</td>
<td>1.7; 5.8</td>
<td></td>
</tr>
<tr>
<td>Log (K_{ow})</td>
<td>2.45</td>
<td>0.89</td>
<td></td>
</tr>
<tr>
<td>Molecular dimensions (nm)(b)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>0.891</td>
<td>1.031</td>
<td></td>
</tr>
<tr>
<td>Width</td>
<td>0.529</td>
<td>0.587</td>
<td></td>
</tr>
<tr>
<td>Depth</td>
<td>0.507</td>
<td>0.526</td>
<td></td>
</tr>
</tbody>
</table>

\(a\) From the SciFinder Scholar (ACS) database.

\(b\) Molecular dimensions were calculated using Molecular Modelling Pro Version 6.3.3 (Chem SW Inc.).
Figure Captions

Figure 1: Reverse salt (NaCl) and hydrogen ion fluxes and the deposition of humic acid onto the membrane surface as a function of calcium in the feed solution. The deposition of humic acid was determined by mass balance calculation. The experimental conditions were as follows: initial concentrations of carbamazepine and sulfamethoxazole in the feed = 500 µg/L, initial concentration of humic acid = 50 mg/L, initial feed solution pH = 6.5, the background electrolyte contained 20 mM NaCl, 1 mM NaHCO₃, and varying concentrations of Ca²⁺, draw solution = 0.5 M NaCl, cross-flow rate = 1 L/min for both sides (corresponding to the cross-flow velocity of 9 cm/s), and temperatures of the feed and draw solutions = 25 ± 1 °C. Error bar represents standard deviation from duplicate runs at the specified experimental conditions.

Figure 2: Pure water and salt (NaCl) permeability coefficients in clean and humic acid matrices with calcium concentrations from 0 to 4 mM. Error bar represents standard deviation from duplicate experiments.

Figure 3: The permeate water flux of humic acid fouling in forward osmosis (FO). FO experimental conditions: the initial feed pH = 6.5 and the feed solution contained 50 mg/L humic acid in a background electrolyte (20 mM NaCl, 1 mM NaHCO₃, and varying concentrations of Ca²⁺ from 0 to 4 mM). Draw solution = 0.5 M NaCl. Cross-flow rate = 1 L/min (corresponding to the cross-flow velocity of 9 cm/s). Temperatures of feed and draw solutions were 25 ± 1 °C.

Figure 4: Zeta potential of virgin and humic acid-fouled FO membranes. A humic acid-fouled membrane was dried in a desiccator and then soaked in Milli-Q water for 24 hours prior to the measurement. The humic acid fouling experimental conditions were described in Figure 1. Error bar represents the standard deviation of duplicate measurements of two membrane samples at the specified experimental conditions.

Figure 5: Permeation of carbamazepine and sulfamethoxazole in the clean matrix and in the humic acid matrix at varying concentrations of Ca²⁺. The experimental conditions were described in Figure 1. The error bar represents the standard deviation from duplicate experiments.

Figure 6: The flux of reverse draw solute and the deposition of humic acid in clean and humic acid matrices using 0.5 M NaCl, 2.5 M MgSO₄, 3 M glucose, and 3.5 M urea as draw solutions, respectively. The experimental conditions were as follows: the initial
concentrations of carbamazepine and sulfamethoxazole in the feed = 500 µg/L, initial feed pH = 6.5, initial humic acid concentration = 50 mg/L, the background electrolyte solution contained 20 mM NaCl, 1 mM NaHCO₃, and 2 mM Ca²⁺. Varying draw solutions of 0.5 M NaCl, 2.5 M MgSO₄, 3 M glucose, and 3.5 M urea were used to induce the same initial water flux. The feed and draw solution temperature was 25 ± 1 °C. Cross-flow rate = 1 L/min for both sides (corresponding to the cross-flow velocity of 9 cm/s).

Figure 7: Comparison of permeation of (a) sulfamethoxazole and (b) carbamazepine using varying types and concentrations of draw solutes in FO. Other experimental conditions were described in Figure 6.

Figure 8: Comparison of permeation of sulfamethoxazole and carbamazepine and reverse salt (NaCl) flux among virgin membrane, humic acid fouled membrane, and physically cleaned membrane at an initial feed pH of 6.5. Experimental conditions for the physically cleaned membrane were: initial concentrations of sulfamethoxazole and carbamazepine in the feed = 500 µg/L, initial pH = 6.5, the background electrolyte contained 20 mM NaCl and 1 mM NaHCO₃, draw solution = 0.5 M NaCl, cross-flow rate = 1 L/min for both sides (corresponding to the cross-flow velocity of 9 cm/s), temperatures of the feed and draw solutions = 25 ± 1 °C.
Figure 1

- Reverse salt flux
- Forward hydrogen ion flux
- Humic acid deposit amount

Ca2+ concentration (mM)
Pure water permeability coefficient, A (L/m2 h bar)

Salt (NaCl) permeability coefficient, B (L/m2 h)

Clean 50 mg/L humic acid with varying calcium

576 Figure 2
Figure 3

Water flux (L/m²h) vs. Time (min)

- Clean matrix
- 50 mg/L humic acid without Ca²⁺
- 50 mg/L humic acid with 1 mM Ca²⁺
- 50 mg/L humic acid with 2 mM Ca²⁺
- 50 mg/L humic acid with 4 mM Ca²⁺
Figure 4
Figure 5

50 mg/L humic acid with varying calcium

Solute permeation (%)
3.5 M Urea
3 M Glucose
2.5 M MgSO₄
0.5 M NaCl

Clean matrix
Humic acid matrix

Deposition of humic acid (mg/cm²)
Reverse salt flux (g/m²h)

Deposition of humic acid

Figure 6
Figure 7

(a) Sulfamethoxazole permeation (%) in clean and humic acid matrices.

(b) Carbamazepine permeation (%) in clean and humic acid matrices.
Figure 8