Sedimentology of the Melawi and Kentungau Basins, West Kalimantan, Indonesia

Rachmat Heryanto Sutjipto

University of Wollongong

UNIVERSITY OF WOLLONGONG
COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author.

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
1991

Sedimentology of the Melawi and Kentungau Basins, West Kalimantan, Indonesia

Rachmat Heryanto Sutjipto

University of Wollongong

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact Manager Repository Services: morgan@uow.edu.au.
NOTE
This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING
You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
SEDIMENTOLOGY OF THE MELAWI AND KETUNGAU BASINS, WEST KALIMANTAN, INDONESIA

VOLUME ONE

A thesis submitted in (partial) fulfilment of the requirements for the award of the degree of

DOCTOR OF PHILOSOPHY

from

THE UNIVERSITY OF

WOLLONGONG

by

RACHMAT HERYANTO SUTJIPTO

(Ir ITB Bandung, MSc Wollongong Uni.)

Department of Geology

1991
TABLE OF CONTENTS

VOLUME ONE

ABSTRACT

ACKNOWLEDGEMENTS

CHAPTER ONE - INTRODUCTION

1.1 BACKGROUND OF STUDY

1.2 LOCATION

1.3 PHYSIOGRAPHY

1.3.1 Lake District Depression
1.3.2 Upper Kapuas Meander Belt
1.3.3 Ketungau Hills
1.3.4 Central Topographic High
1.3.5 Melawi and Ketungau Peneplains
1.3.6 Madi Highland
1.3.7 Schwaner Mountains

1.4 CLIMATE, VEGETATION AND POPULATION

1.5 PREVIOUS GEOLOGICAL WORK

1.6 GEOLOGICAL BACKGROUND

1.6.1 Regional Geology
1.6.2 Local Geology

1.7 AIM OF THE STUDY

CHAPTER TWO - REGIONAL GEOLOGY

2.1 REGIONAL GEOLOGY

2.2 MELAWI BASIN

2.2.1 Ingar Formation
2.2.2 Suwang Group
2.2.2a Dangkan Sandstone
2.2.2b Silat Shale
2.2.3 Melawi Group
2.2.3a Sepauk Sandstone 22
2.2.3b Payak Formation 24
2.2.3c Tebidah Formation 25
2.2.4 Kapuas Group 26
2.2.4a Sekayam Sandstone 26
2.2.4b Alat Sandstone 27

2.3 KETUNGAU BASIN 28
2.3.1 Merakai Group 29
2.3.1a Kantu Formation 29
2.3.1b Tutoop Sandstone 30
2.3.1c Ketungau Formation 32

2.4 PALAEONTOLOGICAL AGE CONTROL 33
2.4.1 Melawi Basin 33
2.4.2 Ketungau Basin 37

2.5 STRUCTURAL GEOLOGY 39
2.5.1 Northwestern Kalimantan Domain 40
2.5.2 Schwaner Zone 40
2.5.3 Submarine Cretaceous Zone 41
2.5.4 Boyan Melange Zone 41
2.5.5 Melawi Basin 42
2.5.5a Pre-Silat Fold Belt 42
2.5.5b Silat Fold Belt 42
2.5.5c Post-Silat Fold Belt 43
2.5.6 Lubok Antu Melange Zone 43
2.5.7 Ketungau Basin 44
CHAPTER THREE - SEDIMENTATION

3.1 SEDIMENTARY STRUCTURES

3.1.1 Hydrodynamic conditions from sedimentary structures

3.1.2 Melawi Basin

3.1.2a Ingar Formation

3.1.2b Dangkan Sandstone

3.1.2c Silat Shale

3.1.2d Sepauk Sandstone

3.1.2e Payak Formation

3.1.2f Tebidah Formation

3.1.2g Sekayam Sandstone

3.1.2h Alat Sandstone

3.1.3 Ketungau Basin

3.1.3a Kantu Formation

3.1.3b Tutoop Sandstone

3.1.3c Ketungau Formation

3.2 LITHOFACIES

3.2.1 Melawi Basin Sequence

3.2.2 Ketungau Basin Sequence

CHAPTER FOUR - PETROGRAPHY

4.1 PETROGRAPHIC METHODS

4.2 PETROGRAPHIC RESULTS

4.2.1 Petrological Components in the Melawi and Ketungau Basins

4.2.1a Quartz

4.2.1b Feldspar

4.2.1c Rock Fragments
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.1d Micas</td>
<td>99</td>
</tr>
<tr>
<td>4.2.1e Heavy Minerals</td>
<td>100</td>
</tr>
<tr>
<td>4.2.1f Other Accessory Components</td>
<td>100</td>
</tr>
<tr>
<td>4.2.1f Matrix</td>
<td>101</td>
</tr>
<tr>
<td>4.2.1g Cement</td>
<td>101</td>
</tr>
<tr>
<td>4.2.2 Petrological characteristics of each formation</td>
<td>102</td>
</tr>
<tr>
<td>4.2.2a Ingar Formation</td>
<td>102</td>
</tr>
<tr>
<td>4.2.2b Suwang Group</td>
<td>104</td>
</tr>
<tr>
<td>4.2.2c Melawi Group</td>
<td>107</td>
</tr>
<tr>
<td>4.2.2d Kapuas Group</td>
<td>110</td>
</tr>
<tr>
<td>4.2.2e Merakai Group</td>
<td>113</td>
</tr>
<tr>
<td>4.3 CLUSTER ANALYSIS</td>
<td>116</td>
</tr>
<tr>
<td>4.3.1 Q-mode Analysis</td>
<td>118</td>
</tr>
<tr>
<td>4.3.1a Suwang Group</td>
<td>118</td>
</tr>
<tr>
<td>4.3.1b Melawi Group</td>
<td>119</td>
</tr>
<tr>
<td>4.3.1c Kapuas Group</td>
<td>120</td>
</tr>
<tr>
<td>4.3.1d Merakai Group</td>
<td>122</td>
</tr>
<tr>
<td>4.3.1e Relationships between groups and basins</td>
<td>123</td>
</tr>
<tr>
<td>4.3.2 R-mode cluster analysis</td>
<td>128</td>
</tr>
<tr>
<td>4.4 IMPLICATIONS AND DISCUSSION</td>
<td>131</td>
</tr>
<tr>
<td>4.4.1 Melawi Basin</td>
<td>132</td>
</tr>
<tr>
<td>4.4.2 Ketungau Basin</td>
<td>135</td>
</tr>
<tr>
<td>CHAPTER FIVE - DIAGENESIS</td>
<td>137</td>
</tr>
<tr>
<td>5.1 INTRODUCTION</td>
<td>137</td>
</tr>
<tr>
<td>5.2 METHODS</td>
<td>138</td>
</tr>
<tr>
<td>5.2.1 Petrography</td>
<td>138</td>
</tr>
</tbody>
</table>
5.2.2 Scanning Electron Microscopy (SEM) 139
5.2.3 X-ray Diffraction (XRD) 140
5.3 DIAGENETIC PROCESSES 141
5.3.1 Compaction 141
5.3.2 Authigenic Minerals 143
5.3.2a Quartz 144
5.3.2b Clay Minerals 145
5.3.2c Pyrite 149
5.3.2d Laumontite 149
5.3.2e Sphene 150
5.3.2f Calcite 150
5.3.2g Feldspar 151
5.3.3 Secondary Porosity 151
5.4 DISCUSSION 153

CHAPTER SIX - ORGANIC PETROLOGY 161
6.1 INTRODUCTION 161
6.2 RESULTS 163
 6.2.1 Vitrinite Reflectance 163
 6.2.2 Maceral Type 166
 6.2.2a Melawi Basin 166
 6.2.2b Ketungau Basin 170
6.3 DEPOSITIONAL SETTING BASED ON MACERAL TYPE 171
6.4 COAL AND HYDROCARBON POTENTIAL 172
 6.4.1 Coal Potential 172
 6.4.2 Hydrocarbon Potential 176
 6.4.2a Source Rock 176
 6.4.2b Maturation 177
CHAPTER SEVEN - DEPOSITIONAL AND POST-DEPOSITIONAL HISTORY AND TECTONIC SETTING OF THE MELAWI AND KETUNGAU BASINS

7.1 PALAEOCURRENT ANALYSIS

7.2 DEPOSITIONAL ENVIRONMENT

7.2.1 Melawi Basin Sequence

7.2.1a Ingar Formation

7.2.1b Dangkan Sandstone

7.2.1c Silat Shale

7.2.1d Sepauk Sandstone

7.2.1e Payak Formation

7.2.1f Tebidah Formation

7.2.1g Sekayam Sandstone

7.2.1h Alat Sandstone

7.2.2 Ketungau Basin Sequence

7.2.2a Kantu Formation

7.2.2b Tutoop Sandstone

7.2.2c Ketungau Formation

7.3 PROVENANCE

7.3.1 Melawi Basin

7.3.2 Ketungau Basin

7.4 DIAGENETIC IMPLICATIONS

7.5 TECTONIC SETTING

CHAPTER EIGHT - CONCLUSIONS

REFERENCES
VOLUME TWO

FIGURES FOR CHAPTER ONE
FIGURES FOR CHAPTER TWO
FIGURES FOR CHAPTER THREE
FIGURES FOR CHAPTER FOUR
FIGURES FOR CHAPTER FIVE
FIGURES FOR CHAPTER SIX
FIGURES FOR CHAPTER SEVEN

TABLES FOR CHAPTER 2
TABLES FOR CHAPTER 3
TABLES FOR CHAPTER 4
TABLES FOR CHAPTER 5
TABLES FOR CHAPTER 6

APPENDICES 1-9 STRATIGRAPHIC COLUMNS (IN MAP POCKET)

APPENDIX 10 FOSSIL DESCRIPTIONS

APPENDICES 11-12 PETROGRAPHIC DATA

APPENDICES 13-21 CLUSTER ANALYSIS DATA

APPENDIX 22 CROSS-BED ANALYSIS DATA
The contents of this thesis are the results of original research and the material included has not been submitted for a higher degree to any other university or similar institution.

Rachmat Heryanto Sutjipto
ABSTRACT

The Melawi and Ketungau Basins are located in West Kalimantan, Indonesia. The Ketungau Basin developed between a Tertiary subduction complex (Lubuk Antu Melange) on the Kalimantan-Sarawak border and the Semitau High to the south. The basin is about 50 km wide, 150 km long and it continues eastward into the Mandai Basin. The Semitau High is a linear structural zone comprising submarine slope deposits, a belt of Cretaceous subduction complex (Boyan Melange) and Permian granitoid and metamorphic rocks. The Melawi Basin sequences were deposited between the Semitau High and the continental basement (Schwaner Zone) to the south. The basin is about 75 km wide and 300 km long.

The shallow marine to terrestrial sequences in the Melawi and Ketungau Basins were deposited during the Late Eocene to Oligocene. The Melawi Basin succession comprises four main units separated by periods of uplift and erosion: (1) Ingar Formation – a deep outer shelf marine mudstone; (2) Suwang Group – fluviatile sandstone and lagoonal to marine trough shale; (3) Melawi Group – fluviatile to shallow marine clastic deposits; and (4) Kapuas Group – fluviatile sandstone at the top of the succession. The Ketungau Basin consists of a conformable sequence (the Merakai Group) of shallow marine and floodplain deposits, overlain successively by fluviatile sandstone and floodplain to marginal marine mudstone. The alternation between marine and terrestrial sequences, and the presence of three unconformities in the Melawi Basin,
indicates tectonic instability during the depositional histories of the basins.

On the basis of sandstone petrology, diagenesis and depositional facies the Melawi Group and Alat Sandstone in the Melawi Basin can be correlated, respectively, with the Kantu Formation and Tutoop Sandstone in the Ketungau Basin. Both palaeocurrent and provenance studies indicate derivation of the Melawi and Ketungau Basin sequences from the north, mainly from uplifted recycled orogenic material in the Boyan and Lubok Antu Melanges. A few units in the Melawi Basin contain magmatic arc detritus derived from the Schwaner Mountains to the south.

Although both basins contain coal seams, the best quality coal is at the top of the Melawi Basin sequence. Organic maturation and vitrinite abundance indicate that both basins have potential for the generation and entrapment of petroleum.

Late Cretaceous subduction in northwestern Kalimantan deformed the Late Cretaceous marine sequence producing the Boyan Melange which incorporated Permian granitic microcontinental fragments. Uplift of the Simitau High (Boyan Melange) along backthrusts during the Paleocene and Early Eocene produced an accretionary prism flanked to the south by the forearc Melawi Basin. Periodic backthrusting resulted in folding, uplift and unconformities in the northern Melawi Basin. Northward migration of the Benioff Zone in the Late Eocene created the forearc Ketungau Basin between the old and new (Lubok Antu Melange) outer arc ridges.
ACKNOWLEDGEMENTS

This research work was carried out under the sponsorship of the Australian International Development Assistance Bureau (AIDAB), through the Indonesia - Australia Geological Mapping Project (IAGMP). Special appreciation is addressed to Mr. John Casey as the former advisory committee of the project, Duncan Dow and David Trail as the former and later leader of the field work and also all the staffs of IAGMP.

In this matter, I would like to address to Mr. Frank S. Wojtaszak and Ms. Norma L. Buckman as the present and former regional directors of, training officers messrs David Wise, Bill Rush, David Engel, Ms. Gail Ward, Bruce O'Brien and to AIDAB social workers Mr K.Passmore and Ms. T. McCormack who have given the valuable during study.

My deep gratitude is expressed to my supervisor Assoc. Prof. Brian G. Jones for his encouragement, patient guidance, valuable suggestions, constructive discussions and general assistance throughout this study. I am also indebted to Dr. Adrian C. Hutton for their corrections and suggestions in parts of my thesis.

The author would like to record his thanks to Assoc. Prof. A. J. Wright, Chairman of the Department of Geology and also to all academic staff for their careful assistance during this study. Technical assistance of D. A. Carrie, M. Perkins, A. M. Depeers, J. Pemberton, D. Martin and Mrs. R. M. Varga is also acknowledged. Special thanks is also addressed to Mrs. B. R. McGoldrick for her assistance in typing part of the final manuscript.

Special appreciation is also recorded to Dr. Rabiyal Sukamto, the Director of the Geological Research and Development Centre (GRDC), Bandung and all the staff of GRDC for giving me the opportunity to do this research work.

Special thanks go to the postgraduate students who provided advice during informal discussion and helped in arranging figures, tables, thesis draft and photocopying, especially B. Daulay, H. Panggabean, Y. Kusumabrata, Susilohadi, C. Nas, B. Hartoyo, R. I. Amier, K. Sutisna and others.

Finally, I am indebted to my wife, Lies Rochmaniar; daughter, Gemma Kharisma; and my son Gea Mahardika, for their companionship, patient support and encouragement throughout the time of my studentship and hopefully for the success of this study.