Electrochemical co-deposition of Tin+ phases with gold in ionic liquids

Jie Ding
University of Wollongong

Jian Wu
University of Wollongong, jwu@uow.edu.au

Douglas R. MacFarlane
Monash University

William E. Price
University of Wollongong, wprice@uow.edu.au

Gordon G. Wallace
University of Wollongong, gwallace@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/scipapers

🔗 Part of the [Life Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons](https://ro.uow.edu.au/scipapers)

Recommended Citation

Ding, Jie; Wu, Jian; MacFarlane, Douglas R.; Price, William E.; and Wallace, Gordon G.: Electrochemical co-deposition of Tin+ phases with gold in ionic liquids 2008, 5863-5869.

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Electrochemical co-deposition of Tin+ phases with gold in ionic liquids

Abstract
The electro-deposition of titanium from two different classes of ionic liquids has been studied. Gold ions in solution have been used as an additive in order to provide a stable nucleation site for titanium to deposit on via a co-deposition process. Despite evidence from previous literature, it was found that it was not possible to reduce titanium from the +4 state to titanium (0) due to problems of redox cycling and solubility of reduced titanium species in the various ILs trialled. It was however found that gold was a very effective nucleating agent for these reduced titanium species and that successful mixed Ti$^{n+}$/gold electro-deposits were obtained. The content of titanium in these species could be varied according to the conditions and IL used.

Keywords
Electrochemical, deposition, phases, gold, ionic, liquids

Disciplines
Life Sciences | Physical Sciences and Mathematics | Social and Behavioral Sciences

Publication Details

This journal article is available at Research Online: https://ro.uow.edu.au/scipapers/1243
Electrochemical co-deposition of Ti II phases with gold in ionic liquids

Jie Ding, Jian Wu, Douglas R. MacFarlane, William E. Price* and Gordon Wallace

Received 3rd March 2008, Accepted 20th June 2008
First published as an Advance Article on the web 8th August 2008
DOI: 10.1039/b803650k

The electro-deposition of titanium from two different classes of ionic liquids has been studied. Gold ions in solution have been used as an additive in order to provide a stable nucleation site for titanium to deposit on via a co-deposition process. Despite evidence from previous literature, it was found that it was not possible to reduce titanium from the +4 state to titanium (0) due to problems of redox cycling and solubility of reduced titanium species in the various ILs trialled. It was however found that gold was a very effective nucleating agent for these reduced titanium species and that successful mixed Ti II/gold electro-deposits were obtained. The content of titanium in these species could be varied according to the conditions and IL used.

Introduction

Titanium is an industrially important metal used in many applications due to its physical and corrosion properties. Current processing of titanium rich ores to obtain the metal involves high temperature molten salts as the most efficient media for titanium electro-deposition. Such media and conditions are problematic and corrosive. Past attempts to use other organic or aqueous media have not been very successful. In recent years, the increasing interest and availability of room temperature ionic liquids (IL) has led to a growing literature on the electro-deposition of metals from these novel media.

This success, due to the many desirable properties of IL, such as wide electrochemical windows, good conductivity and wide liquid temperature range, has led a number of groups to investigate the potential for using IL to produce titanium. However, to date reports of the direct electro-deposition of titanium from a range of ionic liquids at room temperature have not been convincing or successful. Attempts have been hampered by difficulties in eliminating redox cycling of multi-valent titanium ions, formation of titanium sub-halide species and handling very reactive dendritic products. It is believed that titanium is deposited in a very reactive form, which may be subsequently chemically attacked. The titanium electrodes can only be obtained by producing large nuclei, which affect either the nucleation kinetics or the chemical reactivity of the growing surface, and hence induce adherent titanium deposition. Other work has reported that the titanium was electro-deposited on Au(111) and the step edge of HOPG (highly oriented pyrolytic graphite) from ionic liquids although only a trace amount of titanium metal was obtained. Abbott and co-workers have reported that titanium electrodeposition has been achieved using a foreign metal (such as silver) as an additive in several kinds of aromatic solvent, which nucleates readily, allowing growth of titanium on these nuclei. Shinsaku has shown that titanium electro-deposition has occurred on an aluminium cathode in propylene carbonate, with Ti forming an alloy with Al.

A recent paper describes the deposition of Ti from TiCl4 in butyl methyl imidazolium bis(trifluoromethylsulfonyl)am (bmim NTf2) at a gold electrode. This paper uses cyclic voltammetry, chronoamperometry and in situ scanning tunneling microscopy (STM) to follow the reduction process of Ti(IV) to Ti(II) and then deposition of Ti(0) at a potential of around −1.8 V (vs. a ferrocene/ferrocenium Fc+/Fc reference) onto a Au(111) substrate surface. The amounts of deposit formed are very small, being just a few monolayers thick and essentially this work looks at the nucleation process. In addition, definitive evidence for the presence of Ti metal is lacking.

This work though does provide a parallel to our own investigations which have been aimed at trying to produce titanium via an ambient temperature electrochemical method using ionic liquids as a viable alternative to current high temperature methods such as the Kroll process used industrially. Part of this work has involved studying the redox chemistry of titanium in ionic liquids and the problems of redox recycling of the species between the electrodes and the solubility of these species. This included a detailed in situ EC-STM study of the electro-deposition process, where the difficulties of trying to deposit titanium from TiCl4 solutions in room temperature ionic liquids are described. The main conclusion from this work was that we were unable to convincingly show that TiCl4 in ionic liquids was reduced to Ti(0) by chemical or electrochemical reduction. Rather the presence of non-stoichiometric halides, such as TiCl0.2 and TiCl1.1, were detected in deposits. In addition it was shown that the lack of solubility of Ti(II) and possibly Ti(III) chloro species was a major stumbling block to further reduction.

In this current study, we look at the role of gold in being able to facilitate the electro-deposition of titanium species from a number of different ionic liquids including imidazolium based...
types. The use of gold as a substrate was shown to be useful by Mukhopadhyay and co-workers22,26 for titanium and by El Adebin et al. for a range of metals being electro-deposited from ionic liquids.10,11,13 The electrochemistry of gold chloride solutions in the common ionic liquid 1-butyl-methyl-imidazolium bis(trifluoromethanesulfonyl)amide (bmim \textit{NTf}_2) has recently been comprehensively studied.27 For our study a solution containing gold was trialled to first deposit gold to provide a stable nucleation site for titanium to deposit on.

Experimental

Chemicals

Ethyl-methyl-imidazolium bis(trifluoromethanesulfonyl)amide (emim \textit{NTf}_2) and methyl-propyl-pyrolidinium bis (trifluoromethanesulfonyl)amide (C\textsubscript{3}mpyr\textit{NTf}_2) were prepared using an existing method.28 Titanium tetrachloride and gold chloride were obtained from Sigma-Aldrich and used as purchased.

Apparatus and electrochemical measurements

All experiments involving the ionic liquids were performed in a nitrogen-filled glovebox to exclude water and oxygen. Cyclic voltammetry and electro-deposition (under potentiostatic conditions) were carried out using a three-electrode system. A piece of platinum mesh was used as the auxiliary electrode; a glassy carbon disk was used as the working electrode and an Ag/Ag+ was used as the reference electrode. This pseudo reference electrode was calibrated against the ferrocene/ferro-cenium ion redox couple. The Ag/Ag+ reference is +0.45 V vs. Fc/Fc+. More details are given in the discussion later.

Three different concentrations of Au(III) were prepared (0.01 M, 0.05 M, and 0.1 M) by adding AuCl\textsubscript{3} to 5 ml emim \textit{NTf}_2 solutions containing 0.59 M TiCl\textsubscript{4}. Experiments to investigate potentiostatic electro-deposition were carried out on these three different solutions giving varying molar ratios of Au(III) to Ti(IV) (Au : Ti, 1 : 59, 1 : 12, 1 : 5.9). The deposition time used was 3 h. Electrodeposition by potentiostatic reduction were carried out at −1.8 or 2.5 V (vs. Ag/Ag+).

A second ionic liquid, methyl-propyl-pyrolidinium bis(trifluoromethanesulfonfyl)amide (C\textsubscript{3}mpyr\textit{NTf}_2) was trialled for the co-deposition of titanium. This ionic liquid has a substantially larger potential window. It was hoped that it might be feasible to extend the redox chemistry possible using the available potential range of ±3 V vs. Ag/Ag+ using this system. Growth of Au–Ti deposits were then followed by studying both CV and potentiostatic reduction at −3.0 V.

Electron microscopy and XPS measurements

The deposits obtained on a GC electrode and were stored in the ionic liquid and analysed by both SEM and XPS, the latter being carried out at the University of New South Wales, Sydney Prior to both XPS and SEM work samples were washed to remove residual TiCl\textsubscript{4}/IL solution that may have been attached to the surface of the film. The XPS data were acquired using a monochromatic Al K-alpha X-ray source on an ESCALAB220i-XL photoelectron spectrometer (VG Scientific, UK) at pass energy of 100 eV for wide scans and 20 eV for narrow scans. The step size for narrow scans was 0.1 eV. The analysis area was about 1 mm2. Data files were collected and processed using Eclipse software.

The morphology and microstructure of the Ti–Au co-deposit prepared in this work were investigated using SEM. The images obtained were recorded using a Leica Model Stereoscan 440 scanning electron microscope. The SEM images were taken at different magnifications, varying between ×500 and ×30,000, in order to obtain detailed information on the samples.

Results and discussion

The potential window of emim\textit{NTf}_2 at a glassy carbon disk electrode was found to be between about ±2 V vs. Ag/Ag+. This was calibrated against the reference standard Ferrocene/Ferrocenium ion (Fc/Fc+). For solutions of 0.001–0.02 M Fc/Fc+ the redox couple was found to be at 0.45 (±0.01) V vs. Ag/Ag+ and independent of scan rate (10–100 mV s−1). Upon addition of 10% w/w TiCl\textsubscript{4} the solution quickly turned yellow. This colour change, we believe, is due to the chloro-titanium complexes formed in solution. The water content (as measured by Karl Fischer titration) of the ionic liquid used is approximately 100 ppm. The change in colour also occurs for batches of ionic liquid that have been prepared under much more stringent conditions (water content less than 10 ppm). Given this concentration of water and that of the TiCl\textsubscript{4} (10% w/w), it is very unlikely that there is a significant role being played by the residual water in hydrolysing the Ti species present in the solution. Whether the residual water plays any other role in the electrochemistry particularly in relation to the stability of the ionic liquid at deeply reductive potential is an interesting matter beyond the scope of this paper but is currently being investigated. Cyclic voltammetry (CV) obtained at a glassy carbon disk electrode of a solution containing 10% w/w TiCl\textsubscript{4} shows a large redox couple centred on 0.4 V with no large tail toward the cathodic limit (Fig. 1). The electrochemistry observed for a solution of emim\textit{NTf}_2 containing TiCl\textsubscript{4} is almost identical to that seen for a solution of bmim\textit{NTf}_2 containing TiCl\textsubscript{4} by Mukhopadhyay and co-workers.22 We have also repeated this experiment using bmim\textit{NTf}_2 and obtained a similar result (data not shown). The reduction peak at
−0.4 V (vs. Fe/Fc⁻) has been assigned to the Ti(IV) to Ti(II).
The available literature also assigns the reduction peak at
−1.3−1.5 V (vs. Fe/Fc⁻) to the under potential deposition
(UPD) of Ti(II) to Ti metal,22,23 with 3D deposition of Ti being
observed around −1.9 V (vs. Fe/Fc⁺). It is observed here that

Table 1 Effect of gold concentration on Ti deposition

<table>
<thead>
<tr>
<th>AuCl₃/M</th>
<th>Molar ratio Ti: Au in deposit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>1 : 1.76</td>
</tr>
<tr>
<td>0.05</td>
<td>1 : 6.32</td>
</tr>
<tr>
<td>0.10</td>
<td>1 : 9.89</td>
</tr>
</tbody>
</table>

The CV of GC electrode in emim NTf₂ containing 0.59 M TiCl₄
with (A) and without (B) 0.01 M AuCl₃.

Fig. 3 CV of GC electrode in emim NTf₂ containing 0.59 M TiCl₄
with (A) and without (B) 0.01 M AuCl₃.

Fig. 2 CV using GC electrode in emim NTf₂ (A) with and (B)
without 0.01 M AuCl₃.
this couple is much less well defined. We have also repeated the CV experiment using a gold working electrode with the TiCl$_4$/emimNTf$_2$ system and obtain similar reproducible results. The nature of this redox peak at this more negative potential and its assignment is discussed further in another paper. Our investigation here now focuses on the role that gold might play in the redox chemistry and deposition of Ti species in ionic liquid by considering gold as AuCl$_3$ in the ionic liquid in addition to TiCl$_4$.

Fig. 2 shows the CV characterisation of the emim NTf$_2$ electrolyte in the presence and absence of gold. Characteristic gold redox peaks are observed and a gold metallic deposit was readily obtained at the working electrode. This is consistent with work by Aldous et al. who showed that AuCl$_4^-$ is initially reduced to AuCl$_2^-$ prior to deposition as Au(0). In the presence of both TiCl$_4$ and AuCl$_3$ the redox peaks for titanium are still clearly seen by comparing Fig. 1 with Fig. 3A and B.

The deposits obtained on the electrodes with varying concentrations of gold(III) showed a similar visual appearance. SEM images revealed two types of deposit, a dendritic growth (Type A) and more uniform patches of growth (Type B) as shown in Fig. 4. EDS was performed to assist in the elucidation of the chemical composition of the deposition. The Au–Ti deposition results are summarized in Table 1. The amount of Titanium in the film is clearly affected by the ratio of Au : Ti in solution. The larger mole ratio of gold in the deposit compared with Ti, in spite of the large Ti : Au molar ratio in solution, is indicative of the more facile reduction process for Au and the more accessible reduction potential. The highest Ti : Au in solution ratio (590 : 1) does enable substantially more titanium in the deposit. EDS however, does not give any details of the nature or speciation of the titanium in the deposit. Fig. 5 shows photographs of the electrode deposits taken through a standard light microscope, which were obtained from the three
different solutions of varying molar ratios of Au(III). The
metallic lustre, due to the presence of Au(0) is clearly visible
in the deposits. The presence of gold as Au(0) was unequi-
vocally confirmed by XPS.

It was also found that X-ray mapping results gave qualita-
tively consistent results to the EDS (Fig. 6). The deposit was
compositionally heterogeneous with islands of high Ti content
being present. XPS confirmed the clear presence of titanium;
however, energy of the titanium peaks were found to be
characteristic not of Ti(0) but of higher oxidation states,
predominantly Ti(IV) (Ti 2p3 459.2 eV). The samples for
XPS were not exposed to air to any significant extent and
the transfer into the spectrometer was rapid. While some
surface oxidation may be possible during transfer, it is unlikely
that there were significant changes sufficient to convert all of
the deposit from Ti(0) to higher oxidation states. It was not
possible to relate this specifically back to the presence of non-
stoichiometric halides found in our previous paper.26 These
were found using in-situ techniques and only with a few layers
of atoms deposited rather than with the bulk films produced
here. However, the key finding from this experiment again is
that titanium was not present as Ti(0).

In a longer term (16 h) experiment the result of electro-
deposition at -1.8 V from a 0.01 M AuCl₃ and 0.59 M TiCl₄
solution (Fig. 7) showed a large amount of deposition with a
distinctly porous structure. EDS data indicated the relatively
high amount of titanium and strong titanium peaks in the
spectrum, again the main characteristic peak being consistent
with Ti(IV) and not Ti(0).

Similar electro-deposition experiments were carried out
using a different ionic liquid, C₃mpyrrNTf₂. C₃mpyrr NTf₂

![Graph](image1)

Fig. 8 Typical CV of C₃mpyrr NTf₂ at a scan rate of
50 mV s⁻¹.

![Graph](image2)

Fig. 9 Typical CV of Au (0.01 M) + TiCl₄ (0.59 M) in C₃mpyrr
NTf₂.

Element analysis Ti, S, Cl
Ratio (am%) Ti 60.22, S 15.37 Cl 24.31

![Image](image3)

Fig. 10 Au-Ti deposition on large GC electrode from C₃mpyrr NTf₂ (0.01 M AuCl₃ and 0.59 M TiCl₄) –3 V for 17 h. Left: SEM; right EDS
result.
has a substantially larger stable potential window as shown in Fig. 8. It is thus feasible to try to extend the redox chemistry possible to ±3 V vs. Ag/Ag⁺. Growth of Au–Ti deposits were then followed by studying both CV and potentiostatic reduction experiments at −3.0 V. A typical CV is shown in Fig. 9. This again shows distinct redox couples attributable to both Au and Ti for an ionic liquid solution containing 0.01 M AuCl₃ and 0.59 M TiCl₄.

The result of potentiostatic growth at −3.0 V for 17 h gave a very good uniform deposit with a bright metallic lustre. These were analysed by SEM and EDS. The most significant difference between this result and the one for emimNTf₂ is the much higher amount of Ti in the EDS with little or no Au peaks at all (Fig. 10). This is surprising, given that gold by itself will readily deposit onto the GC electrode under the same conditions as shown in Fig. 11. The deposit obtained was quite thick and it is possible that in the co-deposition experiment gold was being preferentially deposited first and that a titanium rich layer is being laid down subsequently. It was not possible to carry out any depth profile studies to probe this further. It does, though, represent a very significant result. It is possible to produce films with a high Ti content but there is little evidence that the titanium has been reduced to the metallic state. This is more likely that titanium was deposited in mixed valence states. This is further developed in an accompanying paper. In addition, the measurable sulfur peaks in Fig. 10 would also indicate the significant incorporation of the ionic liquid anion or its degradation product. This is again an interesting result as given the lack of sulfur in the EDS result in Fig. 7 it would suggest that when the emim NTf₂ ionic liquid was used there was no measurable incorporation of it into the deposited films.

In order to test whether the co-deposits of Ti–Au were stable to reoxidation after formation the following experiment was carried out. A Ti: Au film was grown at constant potential...
at \(-1.8\) V for 17 h using emim NTf2 as the solvent. This film was then placed in fresh ionic liquid and cyclic voltammetry performed as shown in Fig. 12. The CV showed 3 initial peaks located at \(-0.5, -0.27\) and \(0.070\) V. After scanning 5 cycles, all these peaks rapidly disappeared, leaving a CV trace typical of the pure ionic liquid. This strongly suggests that the Au–Ti film is relatively stable to re-oxidation. The transient peaks observed in the initial scans are likely to be due to trace contaminants still present on/in the film that are readily returned to solution and undergo redox changes or are available on the surface of the film and re-oxidised.

Similarly, the Au–Ti co-deposit on a glassy carbon electrode was also re-oxidised at 0.5 V (vs. Ag/Ag\(^+\)) for 4 h and then a cyclic voltammogram was run. This is shown in Fig. 13. Again the voltammogram shows little redox activity with only one or two small redox couples at around \(-1.5\) and \(-0.6\) V apparent. Both experiments suggest that the co-deposit is stable and irreversibly deposited on the electrode. There is no evidence of significant reoxidation of either gold or titanium species.

Conclusions

Experiments to directly electro-deposit titanium from a range of ionic liquids at room temperature have not been convincing or successful. Attempts have often been hampered by difficulties of eliminating redox cycling of multivalent titanium ions and handing very reactive dendritic products. Our previous attempts have not been successful and have indicated that the solubility of Ti(II) species in the ionic liquids is an effective barrier to further reduction.\(^{26}\) Work by Mukhopadhyay and coworkers\(^{22}\) suggested that gold might form an effective substrate for the nucleation of titanium from these ionic liquid based solutions.

We were therefore interested in this use of gold as a possible nucleation agent and have investigated the co-deposition of titanium/gold from the solution of TiCl4 and AuCl3 in a variety of room temperature ionic liquids. The current results indicate that gold was able to effectively act as a nucleating agent for the electro-deposition of titanium species from TiCl4 solution in two different ionic liquids. In experiments with emim NTf2 films with variable Ti: Au ratio may be obtained using different molar ratio of the metal ions in solution. C3mpyrNTf2 has a wide electrochemical potential window enabling potentiostatic growth of a co-deposit at \(-3.0\) V, resulting in very good uniform films with high titanium content. Stability experiments suggest that the co-deposit is stable and irreversible. This process is a good electrochemical method for obtaining thin films with controlled thickness with high levels of titanium species. This may be useful for a range of applications. However, in all our experiments\(^{26}\) there is no convincing evidence for the reduction of Ti(IV) down to Ti(0) and that the titanium present in the film was at a higher oxidation state with possibly mixed valence states.\(^{26}\) This is contrary to other published literature. Further work is being carried out to look at possible ways to stabilize titanium(II) and Ti(III) species in solution in ionic liquids.

Acknowledgements

The authors gratefully acknowledge the Australian Research Council for funding this work (LP0454110) and Rio Tinto for their financial and other support. The referees are thanked for some insightful questions.

References